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Abstract
The operational reliability of aeroengines is
vital to civil aviation safety; however, bearings
and other key components are prone to failure
under harsh operating conditions. In real-world
monitoring data, severe class imbalance often leads
conventional fault diagnosis methods to be biased
toward majority classes, limiting their ability
to identify critical faults. To address this issue,
this paper proposes a robust anomaly detection
framework that integrates the Synthetic Minority
Oversampling Technique (SMOTE) with a Broad
Learning System (BLS). SMOTE is first applied
to generate synthetic fault samples in the feature
space, thereby balancing the data distribution and
reducing bias. The balanced data are then fed into
a BLS classifier, which exploits its flat architecture
to achieve high-dimensional feature representation
and fast non-iterative training. Experimental
results on multiple aeroengine bearing datasets
demonstrate that the proposedmethod outperforms
comparative approaches in terms of fault detection
accuracy and robustness.
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1 Introduction
As the core power unit of aircraft, the operational
reliability of aeroengines is directly linked to the
safety threshold of civil aviation operations. However,
aeroengine systems are highly complex and operate
continuously under extremely harsh conditions such
as high temperature, high speed, variable loads and
intense vibration. These factors easily induce various
mechanical failures and accelerate the aging process
of components [1, 2]. Among numerous failure
modes, wear of key friction pairs such as bearings
is particularly prevalent. Subsequent replacement
and maintenance of these components often incur
substantial human and financial costs. Therefore, there
is an urgent need to develop effective methods for
monitoring and predicting the operational status and
potential failures of aeroengines.

In the aeroengine health management system, wear
particles carry abundant information about the surface
conditions of mechanical friction pairs and serve as a
crucial basis for analyzing fatigue failures [3]. Based
on oil analysis technology, which detects particle
and element contents in lubricating oil has become
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one of the mainstream diagnostic methods [4, 5].
Currently, oil analysis techniques mainly include
spectral analysis, magnetic plug monitoring, and
ferrography analysis. In particular, ferrography
analysis utilizes a high-gradient magnetic field to
separate wear iron particles from oil samples [6].
By observing their visual characteristics through
microscopy, it enables qualitative and quantitative
evaluation of wear conditions. However, despite its
unique advantages in revealing wear mechanisms,
ferrography analysis still faces significant challenges
in practical engineering applications. Traditional
analysis processes are highly dependent on experts’
prior knowledge and manual experience, which not
only leads to low diagnostic efficiency but also
renders the analysis results highly subjective and
uncertain. Consequently, it is difficult to meet the
standardization and real-time requirements of modern
aviation maintenance.

Machine learning and deep learning technologies
have been introduced into aeroengine fault diagnosis
to address the limitations of traditional methods,
greatly promoting the development of intelligent
diagnosis. As reviewed in recent progress surveys [7],
early studies attempted to construct expert knowledge
bases through fuzzy logic and clustering, but such
methods are often constrained by the difficulty of
knowledge acquisition and poor adaptive capacity
[8]. With the iteration of algorithms, deep learning
has demonstrated significant advantages in feature
extraction. For instance, Lyu et al. [9] proposed a
state-guided multi-task network (MTS-Net), which
leverages auxiliary information to enhance the
flexibility of few-shot diagnosis. Reference [10]
developed a hybrid model integrating physical
information and Beta-VAE, improving robustness
under high-noise and missing data conditions.
Reference [11] combined digital twins with graph
neural networks (GNNs) to optimize feature
extraction and domain adaptation capabilities
under complex operating conditions. Despite the
considerable reference value of these methods, such
models typically rely on massive high-quality data for
training, are time-consuming to train, and tend to get
trapped in local optima. Furthermore, most existing
methods are based on the assumption of balanced
data, whereas real-world aeroengine monitoring data
exhibits severe class imbalance, a huge number of
normal samples alongside extremely scarce fault
samples [12, 39, 42]. This data distribution bias causes
models to overfocus on normal classes during training,

thereby sacrificing the recognition accuracy of critical
faults.

To address the performance degradation of classifiers
caused by the severe imbalance between abnormal
and normal samples in vibration data of aero-engine
bearings, this study proposes an anomaly detection
model that combines the synthetic minority
oversampling technique with the broad learning
system. The core idea consists of two stages. First,
the SMOTE algorithm is employed to intelligently
oversample the minority class (abnormal) samples
in the feature space, thereby constructing a training
dataset with a relatively balanced class distribution
and mitigating the model’s bias toward the majority
class. Second, the balanced data are input into
the broad learning system for rapid training and
classification. Owing to its flat network structure that
does not require deep iterative training, the broad
learning system can efficiently extract patterns from
high-dimensional vibration features and achieve
accurate identification of abnormal states.

2 Related Work
2.1 Imbalanced Learning
The degradation process of an aircraft engine may last
for several years, andmostmonitoring data correspond
to the healthy operating state of the engine [41, 43, 45].
This leads to a data imbalance problem, in which
samples representing the healthy state far outnumber
those corresponding to fault states [19]. Under such
data imbalance conditions, anomaly detection for
aircraft engines can be adversely affected. Predictive
models tend to be biased toward the majority class
representing healthy conditions while neglecting the
minority class representing fault conditions, which in
turn degrades prediction accuracy [23, 44]. To address
this issue, two main categories of strategies can be
considered, namely data level strategies and algorithm
level strategies.

From the data perspective, the primary approach
involves data resampling [24–26]. By applying
oversampling or undersampling techniques to
rebalance the dataset, the class distribution can
be made more uniform [20]. Vairetti et al. [21]
proposed a hybrid resampling method based on
the MapReduce framework, in which oversampling
and undersampling are performed simultaneously
to improve imbalanced classification performance
while enhancing computational efficiency. Wang et
al. [22] designed a three stage sampling algorithm
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Figure 1. The framework of our method.

that first expands minority class samples through
perturbed random oversampling, then applies the
Synthetic Minority Over sampling Technique, and
finally removes noisy samples near class boundaries
using distance based methods.

From the algorithmic perspective, methods [27–29]
specifically designed for imbalanced data can be
employed. For example, cost sensitive learning [30,
31] adjusts class specific weights to encourage the
model to focus more on minority classes, while
ensemble learning [32, 33] improves overall predictive
performance by combining the outputs of multiple
base classifiers. These algorithms are generally more
effective at identifyingminority class samples and thus
enhance model performance under imbalanced data
conditions.

2.2 Broad Learning System
Inspired by the Random Vector Functional Link
(RVFL) [13] neural network, Chen and Liu proposed
the Broad Learning System (BLS) [40]. The BLS

features a simple architecture and high classification
accuracy, employing a single-layer, horizontally
scalable network framework capable of extracting
sparse features from input data. Comparedwith RVFL,
BLS [46]can map input samples into a more suitable
feature space, thereby efficiently handling large
volumes of time-varying data. More crucially, BLS
retains the core mechanism of randomly generating
hidden layer node weights, which can be constructed
based on any continuous probability distribution.

Compared to deep network models [49] that have
gained significant attention in recent years, BLS
exhibits notable efficiency during the training phase.
This advantage stems from the absence of inter-layer
coupling effects and the fact that its weight updating
process does not rely on multi-layer connectivity
mechanisms or gradient descent algorithms. Instead,
the pseudo-inverse method is adopted to compute
the weight parameters corresponding to each feature
node [14]. The core computational step of BLS involves
solving the pseudo-inverse of the combined matrix of
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feature nodes and enhancement nodes with respect to
the target output values [15]. These feature nodes
and enhancement nodes are concatenated to form
the hidden layer of the model. By computing the
pseudo-inverse matrix, BLS can rapidly determine the
final output weights. This approach also effectively
avoids common issues in deep learning models
such as gradient vanishing or gradient explosion.
Furthermore, the model possesses dynamic expansion
capabilities, enabling the seamless integration of
new data into the existing network structure for
training. This effectively mitigates challenges
associated with undersampling and oversampling,
thereby further enhancing computational efficiency
and model generalization performance.

In recent years, multiple improved versions of BLS
have been proposed [34, 47, 48]. For instance, the
Adaptive Imbalanced Robust Graph Embedding BLS
(AI-RGEBLS) [18] employs graph-based embedding
to address class imbalance and enhance fault tolerance.
Chen et al. [16] developed an adaptive broad
learning system that integrates graph embedding
and intuitionistic fuzzy theory to improve the
robustness and accuracy of classification under
imbalanced data conditions. Yin et al. [17] proposed
an Adaptive Weighting Enhanced Broad Learning
System (AW-EBLS), which significantly enhances the
performance of fault diagnosis for aviation fuel pumps
under imbalanced data scenarios by optimizingweight
allocation [35] through density-based methods and
employing a multi-enhancement window structure.

2.3 Aero-Engine Fault Diagnosis
Aero-engines operate under complex and harsh
working conditions, and their long service life leads
to gradual performance degradation and occasional
sudden failures. As critical rotating components,
bearings are particularly prone to localized defects
such as inner race, outer race, and rolling element
faults, which can significantly affect engine reliability
and flight safety. Consequently, fault diagnosis
and health monitoring of aero-engine bearings have
become important research topics in the field of
condition-based maintenance [36–38].

Existing studies [50] on aero-engine fault diagnosis
primarily focus on vibration signal analysis, in which
time-domain, frequency-domain, and time–frequency
features are extracted to characterize different fault
modes. Traditional machine learning methods,
including support vector machines [51], random
forests [52], and ensemble learning [53] techniques,

have beenwidely applied to bearing fault classification.
However, in real aero-engine monitoring scenarios,
fault samples are extremely scarce compared with
normal operating data, resulting in severe class
imbalance. This imbalance often causes conventional
classifiers to be biased toward healthy conditions,
leading to high false-negative rates for early or
incipient faults [54].

To address these challenges, recent research [55, 56]
has explored deep learning-based methods, such
as convolutional neural networks and recurrent
neural networks, to automatically learn discriminative
features from raw vibration signals. Although
these approaches have shown promising performance,
they usually require large-scale labeled datasets and
extensive training time, which limits their applicability
in practical aero-enginemonitoring systems. Moreover,
their performance may degrade significantly when
trained on highly imbalanced datasets [19].

In summary, there remains a need for efficient and
robust fault diagnosis methods that can effectively
handle imbalanced aero-engine bearing data
while maintaining high diagnostic accuracy and
computational efficiency.

3 Methodology
3.1 SMOTE-Based Data Balancing for Rare Fault

Samples
The overall procedure of the method is illustrated
in Figure 1. In the monitoring data of aero-engine
bearings, samples corresponding to the normal
operating condition usually dominate, whereas fault
samples, such as inner race faults, outer race faults,
and rolling element faults, are extremely scarce. If a
classifier is trained directly on the original dataset, the
model tends to be biased toward the majority class,
namely normal samples, which leads to an increased
miss detection rate for fault samples. To overcome
this issue, the SMOTE algorithm is employed in this
study to oversample theminority class samples. Unlike
simple random over sampling, which generates new
data by directly duplicating existing samples, SMOTE
creates synthetic samples based on interpolation in the
feature space, thereby effectively avoiding the problem
of model overfitting.

Let the minority class sample set in the training
dataset be denoted as Xmin = {x1, x2, . . . , xT }, where
xi ∈ Rd represents a d-dimensional feature vector.
For each minority class sample xi, the Euclidean
distances between xi and all other samples in Xmin

50



Aerospace Engineering Communications

are computed. The samples are then ranked according
to these distances, and the k nearest neighbors of xi
are identified.

According to a predefined oversampling rate, one
sample x̂i is randomly selected from the k nearest
neighbors as an auxiliary sample. A new synthetic
sample xnew is generated along the line segment
connecting xi and the selected neighbor x̂i. The
generation formula is given by

xnew = xi + δ · (x̂i − xi) (1)

where δ is a random variable uniformly distributed in
the interval [0, 1].

Through this procedure, SMOTE fills the sparse
regions between minority class samples in the feature
space, thereby making the decision boundary of the
fault class more distinct. The processed dataset not
only achieves a balanced class distribution but also,
to a certain extent, simulates feature variations of the
same fault mode under different operating conditions
or noise disturbances. This enhances the robustness of
subsequent classificationmodels in identifying bearing
fault characteristics.

3.2 BLS–Driven Fault Diagnosis Model
After data balancing is completed, BLS is adopted
as the classifier in this study. The framework of the
BLS is shown in Figure 1. Unlike traditional deep
neural networks, which extract features by increasing
network depth, BLS enhances its approximation
capability by horizontally expanding feature nodes
and enhancement nodes. Its main advantage lies
in the flat network architecture, in which weight
determination is transformed into a pseudoinverse
solution of a linear system. This significantly reduces
training time and makes the method well suited for
real time monitoring of aero-engines.

The balanced dataset after SMOTE processing is
denoted asX .The input data are first transformed into
n groups of feature nodes through feature mapping.
The i-th group of mapped features Zi is computed as:

Zi = φi(XWei + βei), i = 1, . . . , n (2)

where Wei and βei are randomly generated weight
matrices and bias terms, respectively, and φi denotes
a linear or nonlinear activation function. All feature
nodes are concatenated as Zn = [Z1, . . . , Zn].

To further enhance the nonlinear approximation
capability of the model, the mapped features Zn are

taken as input to generatem groups of enhancement
nodes. The j-th group of enhancement nodes Hj is
computed as:

Hj = ξj(Z
nWhj

+ βhj
), j = 1, . . . ,m (3)

where ξj is the Sigmoid activation function, andWhj

and βhj
are also randomly generated parameters.

All enhancement nodes are denoted as Hm =
[H1, . . . ,Hm].

The final state matrix of the broad learning system,
denoted as A, is obtained by concatenating the feature
nodes and enhancement nodes, that is:

A = [Zn|Hm] (4)

If the target output matrix of the system is Y , the
training process can be formulated as solving the linear
equation:

Y = A ·W (5)

whereW is the weight matrix connecting the feature
layer and enhancement layer to the output layer. To
obtain the optimal weights, ridge regression theory is
applied to compute the pseudoinverse A†:

W = (λI +ATA)−1ATY (6)

Figure 2. Physical pictures of the experimental platform
and structural diagrams of the rolling bearings.

where λ is the regularization coefficient used to
improve the numerical stability of the system.

4 Experiments
4.1 Datasets
Rolling bearings are critical components in aero
engines and various types of rotating machinery,
and their operating condition is directly related to
the safety and reliability of the entire system. As
shown in Figure 2, within the bearing structure and
experimental test setup, localized damage occurring
on key components such as the inner ring, outer ring,
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Table 1. Performance comparison under different imbalance ratios.

Metric Dataset HIT CWRU PU
Imbalance ratio 5 10 20 5 10 20 5 10 20

AUC

Logistic Regression 0.5904 0.5794 0.5732 0.6356 0.6345 0.6306 0.6518 0.6439 0.6292
Random Forest 0.8488 0.7956 0.7425 0.8223 0.7995 0.7777 0.6755 0.6658 0.6544

Adaboost 0.6712 0.6468 0.6325 0.7528 0.7414 0.7197 0.6478 0.6195 0.6146
Ours 0.8706 0.8280 0.7880 0.8459 0.8304 0.7987 0.7019 0.6900 0.6645

ACC

Logistic Regression 0.4258 0.4262 0.4237 0.5285 0.5200 0.5196 0.1394 0.1282 0.1200
Random Forest 0.6779 0.6128 0.5684 0.6271 0.6083 0.5680 0.2013 0.1757 0.1614

Adaboost 0.4946 0.4635 0.4312 0.4900 0.4863 0.4778 0.1867 0.1599 0.1568
Ours 0.7351 0.6986 0.6654 0.7166 0.6851 0.6559 0.2177 0.2087 0.2067

F1 score

Logistic Regression 0.2158 0.2120 0.2075 0.4209 0.4060 0.4096 0.1253 0.1068 0.0907
Random Forest 0.5867 0.4715 0.4068 0.5297 0.4873 0.4170 0.1724 0.1548 0.1435

Adaboost 0.4116 0.2897 0.2387 0.3650 0.3563 0.3306 0.1309 0.1031 0.0857
Ours 0.7123 0.6629 0.5932 0.6592 0.6108 0.5627 0.1994 0.1748 0.1499

or rolling elements will induce pronounced abnormal
vibration characteristics during operation. Therefore,
bearing anomaly detection and fault identification
based on vibration signals have become important
research topics in the field of condition monitoring
and fault diagnosis. In this study, three representative
bearing fault datasets are employed for experimental
validation, namely partial data from HIT dataset [36],
PU dataset [38] and CWRU dataset [37].

The key hyperparameters of the BLS architecture were
configured as follows: number of feature mapping
nodes = 40, number of enhancement nodes = 20,
with each node group containing 50 neurons. The
SMOTE algorithm was configured with k = 5
nearest neighbors, and the oversampling ratio was
dynamically adjusted to balance the minority and
majority classes.

4.2 Main Result
The experimental results demonstrate that for the
task of aero-engine bearing anomaly detection,
the proposed model achieves significantly superior
comprehensive performance on the HIT, CWRU and
PU datasets compared with mainstream benchmark

algorithms such as Logistic Regression, RandomForest
and Adaboost, as shown in Table 1.

This performance advantage can be attributed to
two main factors. First, the SMOTE preprocessing
stage effectively balances the class distribution by
generating synthetic minority samples, which reduces
the classifier’s inherent bias toward the majority
class and enhances its sensitivity to fault features.
Second, the BLS classifier leverages its broad, flat
network structure to efficiently extract discriminative
features from the high-dimensional vibration data.
Its training via the pseudoinverse method provides
a stable and optimal solution, avoiding convergence
issues common in iterative methods.

It is noteworthy that all algorithms exhibit an overall
performance decline on the PU dataset. This is
primarily attributed to two inherent characteristics
of the PU dataset: first, its acquisition environment
contains stronger industrial background noise, which
maymask some fault features; second, the fault signals
are comparatively weaker than in other datasets,
resulting in reduced feature discriminability. Despite
these challenges, the performance degradation of

(a)  AUC vs. K (b)  Accuracy vs. K (c) F1 score vs. K
Figure 3. Performance metrics vs. SMOTE k value under different imbalance ratios in the PU dataset.
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the proposed method is much smaller than that
of traditional algorithms. This comparison further
validates the robustness advantage of the SMOTE-BLS
framework when dealing with challenging data.
SMOTE enhances the model’s adaptability to noise to
some extent by generating synthetic samples through
reasonable feature space interpolation, while the flat
architecture and pseudo-inverse solution mechanism
of BLS reduce the risk of overfitting to noisy data,
maintaining better generalization capability.

It exhibits particularly strong robustness when
handling scenarios with extremely imbalanced
samples including an imbalance ratio of 20. The AUC,
ACC, and F1 metrics have generally decreased, but
they still outperform all comparison algorithms and
maintain the best performance. These findings verify
that the proposed algorithm can not only effectively
capture the early fault features of aero-engine bearings
but also maintain low false alarm and missing report
rates under the interference of a high proportion of
normal data. It thus holds remarkable application
value in practical industrial health monitoring and
condition-based maintenance scenarios.

4.3 Sensitivity
We conducted a sensitivity analysis on the selection
of the k value in SMOTE for the PU dataset. Through
systematic experiments, we verified the impact of
different k values on model performance. As
shown in Figure 3, the experimental results indicate
that k = 5 yields the optimal performance across
different imbalance ratios. The model performance
continuously improves from k = 2 to k = 5, which
suggests that when k < 5, insufficient sampling may
occur, and the generated synthetic samples may be
overly confined to the vicinity of the original samples,
resulting in insufficient diversity and failure to fully
utilize the neighborhood information of minority-class
samples. When k = 6, excessive noise may be
introduced or the distribution characteristics of the
original data may be disrupted, leading to a decline
in performance. Therefore, this study ultimately
adopts k = 5 as the neighbor parameter of the SMOTE
algorithm.

5 Conclusion
This study proposes a hybrid model integrating
SMOTE and BLS to address the class imbalance
issue in aero-engine bearing anomaly detection.
SMOTE balances the dataset by generating synthetic
fault samples via feature space interpolation, while

BLS enables efficient and accurate classification
through its flat architecture and pseudoinverse-based
weight computation. Experimental results on
HIT, CWRU, and PU datasets confirm the model’s
superiority over mainstream algorithms. It exhibits
strong robustness under extreme imbalance scenarios,
effectively captures early fault features, and maintains
low rates of false positives and missed detections.

Models developed on laboratory standard datasets are
confronted with the risk of performance degradation
when transferred to the complex operational
environments of actual aeroengines, especially under
the scenarios of real and variable working conditions,
extreme environmental noise, and multi-fault
coupling. To address this issue, we plan to enhance
the model’s robustness to noise and data quality issues
in future research, and further validate the model on
real or semi-physical simulation platforms.
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