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Abstract
Fixed-wing unmanned aerial vehicle (UAV)
formation technology, as a crucial research
direction in multi-agent system cooperative control,
while facing constraints in multiple areas, has
demonstrated broad application prospects in
military reconnaissance, disaster monitoring,
agricultural plant protection and other fields in
recent years. This paper systematically reviews
the key technological systems of fixed-wing
UAV formation control, including formation
configuration design, communication topology,
cooperative control algorithms, navigation
positioning and obstacle avoidance strategies.
By analyzing the latest research progress, the
performance differences between centralized
and distributed control architectures were
summarized, and the applicable scenarios of
mainstream formation control strategies such
as behavior method, virtual structure method,
and navigation-follow method were compared.
The research results show that hybrid control
architectures combining model predictive control
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and reinforcement learning algorithms exhibit
superior performance in complex environments.
Meanwhile, this paper discusses the technical
challenges faced by formation systems in terms
of communication reliability, dynamic obstacle
avoidance, and energy optimization. This
paper highlights the critical transition from
traditional control to AI-enabled autonomous
cooperation. By identifying the limitations of
current communication protocols and energy
management strategies, it provides a roadmap for
the theoretical research and engineering application
of large-scale fixed-wing UAV formations.

Keywords: fixed-wing UAV, formation control, obstacle
avoidance strategy, autonomous decision-making.

1 Introduction
As a vital branch of multi-agent cooperative control,
UAV swarm (formation) technology has developed
rapidly from theoretical exploration to engineering
applications since the early 21st century. In particular,
fixed-wing UAV formation systems—thanks to their
long endurance, high cruise speed, and large payload
capacity—have shown unique advantages in both
military and civilian domains. The global drone
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market size is estimated at USD 73.06 billion in
2024 and is projected to reach USD 163.60 billion by
2030, growing at a CAGR of 14.3% from 2025 to 2030
[1], reflecting vast industrialization prospects.

1.1 Research Background and Significance
In terms of theory, Reynolds’ 1987 Boids model [2]
first captured flocking behavior of birds and fish
with simple rules, thereby laying the foundation for
swarm intelligence research. This work inspired
subsequent developments in distributed coordination,
where Jadbabaie et al. [3] provided the first rigorous
proof that simple nearest-neighbor rules could achieve
asymptotic convergence in heading alignment. With
advances in computing and control theory, UAV
formation research accelerated significantly around
2007. Olfati-Saber et al. [4] systematically organized
the consensus control framework for multi-agent
systems, providing rigorous proofs that combine
algebraic graph theory and Lyapunov theory, and
supplying scalable, portable mathematical tools for
distributed formation algorithms. Fax et al. [5]
further developed information flow analysis methods
for vehicle formations, establishing fundamental
limits on achievable formation performance based on
communication topology. The theoretical framework
was further enriched by subsequent studies. Ren et
al. [6] demonstrated how consensus protocols could
be adapted to formation maintenance tasks, while
Cao et al. [7] provided a comprehensive overview
of distributed coordination paradigms. Murray [8]
synthesized these developments, highlighting the
transition from centralized to distributed architectures
as formation scales increased.

From a graph-theoretic perspective, the algebraic
properties of communication networks play a
crucial role in formation stability and convergence
rates. Mesbahi et al. [10] established that the
second-smallest eigenvalue of the graph Laplacian
(algebraic connectivity) directly determines consensus
convergence speed, while Bullo et al. [9] developed
comprehensive frameworks for analyzing coordination
under switching topologies. The seminal work by
Fiedler [11] on algebraic connectivity provided the
mathematical foundation for understanding how
network structure affects coordination performance.
Chinese scholars have likewise made significant
contributions: the 2021 survey by Do et al. [12] offered
a panoramic review and performance comparison
of leader–follower, virtual structure, behavior-based,
consensus, and learning-based methods, giving a

clear roadmap for engineering implementation and
technical selection.
Coordinated turns in fixed-wing aircraft are governed
by a tight relationship between speed, bank angle,
and turning radius: higher speeds or shallower banks
lead to wider turns, while lower speeds and steeper
banks allow tighter maneuvers. This relationship
directly constrains how formations can maneuver
around obstacles or follow curved paths. At the same
time, stall margins shrink during turns because the
effective load on the wings increases with bank angle,
meaning that the minimum safe airspeed rises as turns
become steeper. Controllers must therefore ensure
that bank commands are moderated when aircraft
are operating near stall conditions or under gusty
winds. In addition, fixed-wing airframes impose hard
limits on bank angle, g-loading, and roll rate, all of
which cap how sharply an aircraft can turn and how
quickly it can roll into or out of a maneuver. These
limits translate into upper bounds on formation agility
and reconfiguration speed. Energy management
adds another layer of coupling: climbing requires
additional power, while banking increases drag and
demands higher throttle settings to sustain altitude
and speed. Formation members must therefore
continuously balance throttle, drag, and altitude
changes to maintain their relative geometry. Finally,
safety spacing is not arbitrary but is shaped by the
time required for sensing, communication, and control
responses, plus additional margins for wind and
modeling uncertainties. At typical small-UAV cruise
speeds, even modest delays can translate into required
separations of several to tens of meters. Together these
aerodynamic, structural, and energy constraints define
the feasible limits of how close fixed-wing aircraft
can fly, how sharply they can maneuver, and how
quickly they can reshape formations. Later sections of
this review highlight how these limits are encoded in
controllers, coordination logic, and evaluation metrics.

1.2 Technological Development Timeline
Fixed-wing UAV formation technology has generally
experienced three stages:

1.2.1 Stage I: Centralized control and basic formation
keeping (2000–2010)

Research centered on centralized architectures, where
a ground station or a master UAV exerted global
control. Early formation flights often relied on
preset waypoints or simple feedback control. For
example, in 2003 the U.S. Naval Research Laboratory
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Table 1. Performance comparison of two typical control methods.
Control
Method

Communication
Complexity

Applicable
Scale

Typical
Application

Leader–Follower O(N) 5–15 aircraft Agricultural spraying swarms
Behavior-Based O(N log N) 10–30 aircraft Cooperative disaster search

(NRL) “Multi-UAV Cooperative Control Project”
(MICA) achieved straight-line formation flight
of four fixed-wing UAVs with ±5 m positioning
accuracy [13]. The dominant controllers included
PID and LQR. Communications during this stage
required high-bandwidth data links, and formation
sizes typically did not exceed six aircraft. Limitations
included: 1) high single-point-of-failure risk at
the central node; 2) communication load grew
quadratically with the formation size; and 3)
insufficient adaptability to dynamic environments.

1.2.2 Stage II: Distributed control and dynamic
reconfiguration (2011–2018)

With the maturing of distributed control theory,
researchers shifted their focus to local-interaction
approaches. In 2014, MIT’s Distributed Robotics
Lab implemented consensus algorithms to maintain
a stable 10-UAV diamond formation using only
neighbor information, reducing communication load
by 80% [14]. Key breakthroughs included: 1) practical
engineering applications of the virtual-structure
method (e.g., NASA Mars UAV program);
2) dynamic topology optimization for online
formation reconfiguration; and 3) event-triggered
communications that significantly reduce energy
consumption. The performance comparison between
these typical control methods is summarized in
Table 1.

1.2.3 Stage III: Intelligent autonomous cooperation
(2019–present)

AI is pushing formation control toward greater
autonomy and environmental adaptability. Deep
Reinforcement Learning (DRL) and Federated
Learning have become hot topics. For example,
Europe’s “SESAR 2020” project [16] used multi-agent
RL to enable obstacle avoidance for 50 UAVs in

urban environments with decision latencies below
100 ms. Emerging technologies such as 5G/6G
communications and quantum navigation are
being integrated, further expanding the boundaries.
Current features include: 1) hybrid architectures
combining centralized mission planning with
distributed execution; 2) bio-inspired clustering
algorithms (e.g., pigeon-flock optimization) to
enhance large-scale robustness; and 3) cross-domain
teaming, extending to manned–unmanned formations.
Representative achievements include DARPA’s
“Gremlins” aerial recovery demonstration [17]
(2020) and the Hungarian Academy of Sciences’
Guinness-record 1,024-UAV swarm flight (2023).

1.3 Current Technical Challenges
Despite significant progress, fixed-wing UAV
formations still face key bottlenecks that arise from the
platform’s aerodynamics and flight mechanics, which
limit performance and hinder reliable deployment in
complex environments.

1.3.1 Communication reliability
In complex electromagnetic environments, multipath
effects and spectrum congestion can severely degrade
link quality [18]. In urban canyons or mountainous
terrain, signal attenuation can exceed 20 dB. Research
has shown that under strong interference, packet loss
over conventional radio links can exceed 40% [19],
threatening formation stability. New approaches such
as terahertz communications and quantum encryption,
are being explored but remain at the lab stage. The key
parameters of various communication technologies
suitable for formation applications are compared in
Table 2.

Table 2. Communication technologies for formation applications.

Technology Bandwidth
(MHz)

Latency
(ms) Anti-Interference Max

Nodes
Conventional RF 20 50–100 Weak 10–15

5G NR 100 1–5 Medium 50–100
Terahertz 1000+ 1 Strong 200+

5



Aerospace Engineering Communications

1.3.2 Dynamic obstacle avoidance and real-time
decision-making

There is a significant contradiction between the
computational complexity and real-time performance
of the existing algorithms: although optimal
control-based method achieve high accuracy, the time
consumption for a single planning may exceed 500
ms, while lightweight algorithms such as the artificial
potential field method struggle to handle complex
obstacle scenarios. A 2023 MIT study shows that at 30
m/s, traditional avoidance methods achieve only 68%
success, whereas deep-learning solutions with edge
computing raise it to 92% [20].

1.3.3 Collaboration of heterogeneous systems
With increasing task complexity, the lack of a general
framework for cooperative control of heterogeneous
UAV formations limits the system scalability [21].
Differences in configurations and payloads lead to
incompatible control parameters and protocols. In its
2021 white paper, the European Telecommunications
Standards Institute (ETSI) clearly pointed out that
the drone market is flooded with a large number
of incompatible private solutions, which has led
to a closed ecosystem and seriously hindered the
collaborative working ability of equipment from
different manufacturers as well as the deployment
of large-scale drone applications. This leads to a
significant reduction in the efficiency of formation
deployment in scenarios that require rapid networking,
such as emergency disaster relief.

1.3.4 Energy and endurance bottlenecks
Energy management is a key factor restricting the
long-endurance performance of UAV formations.
The endurance of high performance fixed-wing
UAVs degrades dramatically when performing high
overload maneuvers. This fundamental trade-off
between mobility and endurance is the main
bottleneck currently faced by lithium battery-based
electric propulsion systems and has also become
the core challenge in mission planning and energy
management algorithm design [23]. Hydrogen fuel
cells are promising but their current energy density is
insufficient for large-scale, long-duration formations.

1.3.5 Lack of safety and standards
The lack of security measures and standard
frameworks is becoming the main obstacle to
technological development. The 2019 incident
involving Iran’s drone formation being spoofed and
intercepted via GPS indicates that there are obvious

deficiencies in the anti-interference capability of the
existing system [24]. Meanwhile, statistics from the
International Civil Aviation Organization (ICAO)
show that as of 2023, only 12 countries worldwide have
established specific regulations for drone formation
operations, and the standard system lags far behind
technological development.
This paper aims to provide a systematically review
of the research status of fixed-wing UAV formation
technology. It focuses on analyzing the technological
breakthroughs in control architecture, algorithm
design, navigation and obstacle avoidance, etc. Over
the past five years, objectively evaluates the advantages
and disadvantages of various methods, and discusses
the future development trends. By integrating the
latest research achievements at home and abroad,
it provides comprehensive technical references for
researchers to promote technological innovation and
application expansion in this field. The overall
research framework and organization of this review
are illustrated in Figure 1.

2 System Architectures for Fixed-Wing UAV
Formation Control

2.1 Comparison of centralized and distributed
control architectures

The architecture of fixed-wing UAV formation control
systems can be broadly classified into two categories:
centralized and distributed. Each architecture
has its specific applicable scenarios and technical
characteristics. Centralized architectures use a star
topology: all UAVs send state information to a
ground station or master node, which computes and
issues commands [25]. A typical representative of
this architecture is the "Cooperative Operations"
system of Northrop Grumman. Its advantages
lie in the visibility of global information, which
facilitates the achievement of optimal control,
and the relatively simple algorithm design [26].
However, as formation size grows, communication
bandwidth and computation balloon. Theoretical
analysis shows that the communication complexity
of the centralized control system for N unmanned
aerial vehicles is O(N2), and when N > 10, the
system performance degrades significantly [27].
Farooq et al. [27] demonstrated that centralized
coordination of nonholonomic mobile robots suffers
from computational intractability as the number
of agents increases beyond a critical threshold. In
addition, the single-point failure risk of the central
node also limits the system reliability, which is
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Figure 1. Overall research framework and organization of the review.

Table 3. Centralized vs. distributed architectures.
Dimension Centralized Architecture Distributed Architecture
Control Structure Star topology; central decision-maker Mesh topology; autonomous node decisions
Communication Cost O(N2), grows sharply with scale O(N), scalable
Typical Latency 100–500 ms (depends on backhaul) 10–50 ms (local)
Single-Point Failure High risk of system collapse Affects only local portions
Computation Load Concentrated at central node Balanced across nodes
Suitable Scale ≤10 aircraft 10–100 aircraft
Typical Scenarios Precise formation shows, short-range ISR Wide-area monitoring, dynamic missions

particularly prominent in military confrontation
environments [28].

The distributed control architecture achieves
global coordination through local information
interaction [32]. Each UAV only exchanges data
with neighboring members, significantly reducing
the communication burden. The consensus-based
framework developed by Hrabia et al. [29] and
Dimarogonas et al. [30] established stability
guarantees even under communication delays
and packet losses, addressing key practical concerns
in aerial networks. The distributed model predictive
control framework proposed by the research team
fromMIT [31] in 2017 has achieved stable formation

flight of 20 fixed-wing UAV, with a communication
complexity of only O(N). Building on earlier work by
Keviczky et al. [66] andDunbar [68], these approaches
decompose the global optimization problem into
coupled local problems that can be solved iteratively.
Richards et al. [67] further enhanced robustness by
incorporating uncertainty bounds directly into the
distributed MPC framework. Advantages include
scalability, robustness to node failure, and adaptability
to dynamic topology [33], though it poses greater
coordination challenges, and global performance
may be suboptimal, especially for heterogeneous
formations [35].

The theoretical foundations for analyzing distributed
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Figure 2. Comparison of three typical formation control topologies.

architectures were established by Anderson et al. [38],
who characterized formation rigidity using graph
theory, and Lin et al. [39], who derived necessary
and sufficient graphical conditions for maintaining
desired geometric configurations. Tanner et al. [40]
extended these results to switching networks, proving
that connectivity preservation is sufficient for flocking
under broad conditions. The typical topologies
associated with these architectures are illustrated in
Figure 2, and a comprehensive comparison of their key
characteristics is presented in Table 3.

In practical applications, a hierarchical hybrid
architecture is often adopted: high-level task planning
is centralized, while low-level execution is distributed.
This combination can not only ensure the overall
coordination of the task but also enhance the
robustness of the system. Tests conducted by Beihang

University in 2021 showed that the hybrid architecture
demonstrated the best cost-effectiveness in formations
of 15 to 30 aircraft.

2.2 Innovations in Hybrid Architectures
Hybrid architectures combine centralized high-level
mission planning with distributed low-level
execution. Layered designs can improve coordination
while preserving robustness. Event-triggered
communication—transmitting only when deviations
exceed thresholds—can significantly reduce network
load while maintaining stability. The typical features
and operational characteristics of such hybrid
architectures are detailed in Table 4.

In recent years, many researchers have proposed
various Hybrid Control frames. The HAC (Hybrid
Adaptive Control) system developed by Stanford
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Table 4. Typical features of hybrid architectures.
Feature Centralized Layer Distributed Layer Coordination Mechanism
Role Global mission planning Local control execution Event-triggered communications
Response Time 100–300 ms 10–50 ms Adaptive dynamics
Typical Algorithms Model Predictive Control (MPC) Consensus algorithms Adaptive triggering
Fault Tolerance Larger impact of single fault Local tolerance to node faults Layered backup
Scale 10–50 10–50 Task-dependent

Table 5. Comparison of optimization methods.
Method Core Idea Strengths Limitations Scenarios
Minimum Spanning Tree Connectivity with minimal edges Minimal communications overhead Poor dynamic adaptability Static/low-speed formations
Algebraic Graph Optimize Laplacian eigenstructure Fast convergence High computational cost Medium/ large formations
Dynamic Topology Real-time link quality adaptation Strong environmental fit Extra sensing required High-speed maneuvers

University adopts a hierarchical design: the upper
layer is guided by the global trajectory provided
by the task planning node, and the lower layer
is distributed controlled by each unmanned aerial
vehicle based on local information. The test
results show that this architecture improves the
coordination of task execution while maintaining
distributed robustness [39]. Another innovative idea
is the event-triggering mechanism, where drones
only communicate when the state change exceeds
a threshold, which effectively reducing the network
load [40]. The adaptive triggering strategy proposed
by the team from Beihang University in 2021 reduced
the communication volume by over 60% while
ensuring the stability of the formation [41].

2.3 Communication Topology Optimization
Technology

Communication topology structure directly affects
the formation control performance. Researchers
have proposed a variety of optimization methods
grounded in algebraic graph theory [42, 43]. The
minimum spanning tree algorithm can construct
the most economical topology with guaranteed
connectivity, drawing on classical results from
combinatorial optimization. Mesbahi et al. [10]
demonstrated that optimizing the eigenstructure of the
Laplacian matrix can further improve the convergence
speed of formation consensus algorithms, with the
algebraic connectivity (second-smallest eigenvalue)
serving as a key performance metric. Mozaffari
et al. [43] provided comprehensive mathematical
foundations for understanding how graph properties
influence dynamic coordination, while Horn et al. [34]
established the spectral analysis tools necessary for
stability assessment.
In view of the high-speed movement characteristics
of fixed-wing UAV, dynamic topology optimization
algorithms adjust the communication link in real

time to balance communication quality and control
performance [45, 48, 49]. Cortés et al. [36] developed
proximity-based topology reconfiguration strategies
that maintain formation cohesion while adapting
to environmental obstacles and communication
constraints. Belta et al. [37] formalized abstraction
methods that enable hierarchical reasoning about
formation topology changes, facilitating real-time
reconfiguration decisions.

Recent advances in UAV communication networking
have opened new possibilities for formation
coordination. Hayat et al. [42] surveyed
communication challenges specific to UAV networks,
highlighting issues of mobility-induced topology
changes and line-of-sight requirements. Mozaffari
et al. [43] provided a comprehensive tutorial on
UAV wireless communications, covering channel
modeling, interference management, and network
optimization. Gharibi et al. [44] introduced the
"Internet of Drones" concept, proposing layered
architectures that integrate UAV formations into
broader cyber-physical systems. For mobile ad-hoc
networks formed by UAVs, Sahingoz [45] and
Bekmezci et al. [46] analyzed routing protocols
specifically designed for Flying Ad-Hoc Networks
(FANETs), which must cope with rapid topology
changes and frequent link breaks. Asadpour et al. [47]
conducted experimental analyses revealing that
conventional ground-based ad-hoc protocols often
fail in aerial environments due to three-dimensional
mobility patterns and altitude-dependent connectivity.
A comparison of these topology optimization methods
is summarized in Table 5.

It is worth noting that 5G network slicing
technology provides a new solution for formation
communication [50]. In the 2022 trial, China Mobile
achieved formation control with a latency of 1ms and a
reliability of 99.999%. Sharma et al. [51] demonstrated
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Table 6. Key metrics across architectures.
Architecture Comm. Complexity Scalability Robustness Scale
Centralized O(N2) Poor Weak 10
Distributed O(N) Excellent Strong 10–100
Hybrid O(N) Good Medium 10–50

how intelligent UAV deployment in heterogeneous
5G networks can improve coverage and capacity,
while addressing the unique challenges of aerial base
stations. However, the integration of heterogeneous
networks in cross-domain collaboration remains an
unsolved problem, especially the issue of reliable
navigation in GPS denial environments, which
requires urgent breakthroughs [55]. For scenarios
with intermittent connectivity, delay-tolerant
networking approaches [56] and epidemic routing
strategies [57, 58] offer alternative paradigms.
Zhang et al. [35] specifically designed data-delivery
protocols for UAV “flying courier” applications,
where formation members opportunistically
relay information in challenged communication
environments. To provide a holistic view, the key
performance metrics of the three main control
architectures (centralized, distributed, and hybrid)
discussed earlier are consolidated in Table 6.

3 Advances in Formation Control Algorithms
3.1 Classic Control Paradigm
After more than two decades of development in the
field of fixed-wing UAV formation control, several
classic control paradigms with distinct characteristics
have emerged. These algorithms exhibit significant
differences in theoretical basis, implementation
methods and application scenarios, and together they
constitute the core pillar of the formation control
technology system.

3.1.1 Based on the emergent characteristics of behavioral
methods

Behavior-based methods decompose complex control
tasks into basic behaviors such as aggregation, collision
avoidance, and target approaching, and adapt to
different scenarios by adjusting behavior weights [60].
The AuRA system developed by Georgia Tech adopts
this method to achieve formation reconstruction in
a dynamic environment, but its global stability is
difficult to be strictly proved [61].

3.1.2 Accurate control of virtual structure method
The virtual structure method regards the entire
formation as a virtual rigid body, and each UAV tracks

the corresponding point in the structure [53]. This
approach, formalized by Lewis et al. [54], provides
intuitive geometric control and simplifies trajectory
planning by treating the formation as a single entity.
Ren et al. [55] extended the virtual structure concept
to spacecraft formations, demonstrating that carefully
designed feedback laws can maintain precise relative
positioning despite orbital perturbations. Beard et
al. [56] developed coordination architectures that
combine virtual structure control with decentralized
collision avoidance, achieving both formation
maintenance and safety guarantees.
NASA successfully applied this method in the Mars
unmanned aerial vehicle project. By introducing the
elastic deformation mechanism of the virtual structure,
centimeter-level relative position control was achieved.
Askari et al. [57] further refined this approach
for fixed-wing UAVs, incorporating aerodynamic
constraints and coordinated turn dynamics into the
virtual structure framework. The latest research shows
that combining model predictive control can further
optimize the structural deformation trajectory. Kuriki
et al. [58] developed a fourth-order flight dynamics
model integrated with virtual structure control,
enabling high-fidelity formation maneuvers that
respect actuator limits and stall constraints. Ferrante
et al. [19] introduced elasticity-based mechanisms that
allow the virtual structure to deform adaptively in
response to obstacles or environmental disturbances,
combining the geometric simplicity of rigid formations
with the flexibility needed for real-world deployment.

3.1.3 Engineering practicability of pilot-following method
The leader-following method has become the most
widely used method in engineering due to its
intuitive concept and simple implementation. In
this paradigm, one or more leader UAVs follow
predetermined trajectories while follower UAVs
maintain desired relative positions. Consolini et
al. [59] developed nonholonomic leader-follower
controllers that explicitly handle input constraints
such as minimum turning radius and maximum
bank angle—critical for fixed-wing platforms. Dong
et al. [60] extended these results to time-varying
formations, enabling dynamic reconfiguration during
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flight missions.
The hierarchical architecture developed by Boeing
in the “Loyal Wingman” project has increased
energy efficiency by 30-40% compared to the
distributed approach. Peng et al. [61] demonstrated
adaptive dynamic surface control techniques that
compensate for uncertain hydrodynamic parameters
in marine vehicle formations; similar principles
apply to atmospheric turbulence compensation in
aerial formations. Arrichiello et al. [62] proposed
null-space-based behavioral control that allows
leader-follower coordination to be combined with
secondary objectives such as obstacle avoidance or
communication link maintenance. Wang et al. [63]
formulated integrated optimal formation control
problems that jointly optimize trajectory planning and
formation geometry, achieving significant fuel savings
in multi-UAV cooperative missions.

3.2 Innovations in Modern Control
The development of modern control theory has
provided more precise and robust solutions for
formation control of fixed-wingUAV. These algorithms
have demonstrated significant advantages in handling
system nonlinearities, environmental uncertainty, and
real-time requirements.

3.2.1 Constraint handling ability of model predictive
control

Model Predictive Control (MPC) has become
the core method of formation control due to its
ability to explicitly handle constraints [33, 80–84].
The distributed MPC framework proposed
by ETH Zurich innovatively combines rolling
time-domain optimization and distributed consensus
algorithms [71]. While ensuring formation stability, it
strictly satisfies state constraints (such as anti-collision)
and control input constraints (such as rudder surface
deflection limit). The experiment shows that its
position tracking error is less than 0.3 meters.
The theoretical foundations were established by
Dunbar et al. [65], who proved stability of distributed
receding horizon control for multi-vehicle systems
using appropriately designed terminal constraints.
Keviczky et al. [66] demonstrated that decentralized
MPC with sparse information exchange could
approach centralized performance while maintaining
computational tractability. Richards et al. [67]
addressed robustness explicitly, incorporating
bounded disturbances and model uncertainties
into tube-based MPC formulations that guarantee

constraint satisfaction despite uncertainties. Giselsson
et al. [70] developed efficient distributed optimization
algorithms with provable suboptimality bounds,
enabling real-time implementation on embedded
flight computers. Maestre et al. [69] compiled
comprehensive methodologies for distributed MPC
design, covering communication protocols, constraint
tightening strategies, and stability certification.
For fixed-wing UAVs specifically, the coupling
between longitudinal and lateral dynamics, along
with aerodynamic nonlinearities near stall, necessitates
careful MPC formulation. Venkat et al. [64]
demonstrated successful applications to power system
control with similar distributed structure, providing
algorithmic templates adaptable to UAV formations.
Recent advances incorporate learning-based models
that refine aerodynamic predictions online, combining
the safety guarantees of MPC with the adaptability of
data-driven methods.

3.2.2 Anti-interference characteristics of sliding mode
control

In terms of anti-interference control, sliding mode
control demonstrates significant advantages due to
its inherent robustness to matched uncertainties [74,
75]. The foundational theory established by Utkin et
al. [73] provides comprehensive treatment of sliding
mode design for electro-mechanical systems, directly
applicable to UAV actuator control. The super-twisted
sliding mode observer developed by Moscow Aviation
Institute, through a second-order sliding mode surface
design, effectively suppresses high-frequency chatters
and reduces the head angle estimation error under
30m/s crosswind conditions from ±5° to ±1.5° [76].
Shtessel et al. [71] presented modern sliding mode
control and observation techniques, including
higher-order sliding modes that eliminate chattering
while preserving robustness properties. Yu et al. [74]
surveyed sliding mode control combined with soft
computing approaches, demonstrating how fuzzy
logic and neural networks can enhance adaptive gain
tuning. Defoort et al. [75] specifically developed
sliding-mode formation control for cooperative
mobile robots, proving finite-time convergence to
desired configurations despite external disturbances.
Meanwhile, its integrated wind speed estimation
module can compensate for wind disturbance in real
time and balance response speed and stability via
adaptive gain adjustment mechanism. For crosswind
approaches, introduce a crab-angle estimator and
schedule controller gains with airspeed to cap sideslip
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and preserve coordinated-turn assumptions. Alwi
et al. [76] extended sliding mode techniques to
fault detection and fault-tolerant control, enabling
formations to maintain cohesion even when individual
UAVs experience actuator failures or sensor faults.

3.2.3 Stability assurance of backstepping method
For strict feedback systems, the backstep method
can ensure global stability by recursive construction
of Lyapunov functions, and is particularly suitable
for the dynamic models of fixed-wing UAV with
nonlinear and coupled characteristics. Meanwhile,
by considering the strong coupling characteristics
of fixed-wing UAV, a decoupling control strategy is
designed and an adaptive law is introduced to estimate
the uncertain parameters online, further enhancing its
stability.

3.2.4 Parameter robustness of adaptive control
Furthermore, the Model Reference Adaptive Control
(MRAC) system developed by Lockheed Martin
compensates for the uncertainty of aerodynamic
parameters by adjusting the controller parameters
online through a multi-model switching mechanism,
an online parameter identification algorithm, and a
stability monitoring module [80–83]. Lavretsky et
al. [77] provided comprehensive treatment of robust
adaptive control architectures suitable for aerospace
applications, while Ioannou et al. [78] established the
theoretical foundations for stability and convergence
under parameter adaptation.
Cao et al. [79] developed the L1 adaptive control
architecture, which guarantees transient performance
bounds—a critical requirement for formation flight
where temporary deviations can lead to collisions. This
approach has been successfully applied to the “Sky
Borg” unmanned aerial vehicle project, compensating
for its ±30% aerodynamic parameter deviation. Krstic
et al. [80] formalized backstepping-based adaptive
control design, enabling systematic handling of
nonlinear systems in strict feedback form. The
related technology has also been granted a US
patent. For formation applications, Rashid et
al. [82] integrated adaptive control with optimal
trajectory generation, allowing formations to maintain
coordination while individual members adapt to
changing flight conditions.

3.2.5 Innovation trend of algorithm integration
The integrated innovation of modern control
algorithms in the future will become a research
hotspot: the combination of MPC and sliding mode

control will further take into account both constraint
processing and anti-interference capabilities.The
adaptive backstepping frameworkwas used to enhance
the robustness of parameters.Through distributed
adaptive MPC, the performance of large-scale
formation is improved. These advancements have
significantly enhanced the control performance of
UAV formations in complex environments, laying the
foundation for future autonomous and collaborative
tasks.

3.3 Breakthroughs in Intelligent Control
Recent advances in multi-agent reinforcement
learning (MARL) have significantly enhanced UAV
swarm capabilities, offering solutions to coordination
challenges that are intractable with classical control
methods [84–88]. The fundamental challenge in
MARL is credit assignment: determining which
agent’s actions contributed to team success in
cooperative tasks. Foerster et al. [81] introduced
counterfactual multi-agent policy gradients (COMA),
which decompose team rewards using counterfactual
reasoning to provide individual feedback signals.
Rashid et al. [82] developed QMIX, a value
factorization method that learns a monotonic
mixing function to combine individual agent values
into a team value, enabling centralized training
with decentralized execution. Sunehag et al. [83]
proposed value-decomposition networks (VDN) that
linearly combine individual value functions, while
Yu et al. [84] demonstrated that Proximal Policy
Optimization (PPO) achieves surprisingly strong
performance in cooperative multi-agent games, often
outperforming more complex algorithms. Lowe et
al. [85] developed multi-agent actor-critic frameworks
for mixed cooperative-competitive environments,
enabling formations to coordinate internally while
competing against adversarial agents. For fixed-wing
platforms specifically, PPO-based methods have
demonstrated stable formation keeping under
aerodynamic constraints [15].

DARPA and the USAF reported the first in-flight
AI-controlled within-visual-range dogfight on
the X-62A VISTA in 2024, demonstrating rapid
decision-making in air-combat maneuvers [89].
This milestone validated that deep reinforcement
learning can handle the time-critical, safety-critical
decisions required in high-speed aerial engagements.
For UAV-specific control tasks, Koch et al. [91]
applied RL to attitude control, demonstrating
superior disturbance rejection compared to classical
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Table 7. Performance of control algorithms.
Algorithm
Type

Computational
Load

Disturbance
Rejection Explainability Suitable

Scenarios
Behavior-based Low Medium High Simple environments
Virtual Structure Medium High High Precise formations
MPC High High Medium Constrained settings
DRL Very High Very High Low Complex environments

PID controllers. Hwangbo et al. [92] trained
quadrotor controllers entirely in simulation using
domain randomization, achieving robust real-world
performance. Liaq et al. [93] developed autonomous
UAVnavigation using RL inGPS-denied environments,
while Rodriguez-Ramos et al. [94] solved the
challenging problem of autonomous landing on
moving platforms using deep Q-learning.

For sim-to-real transfer—a critical bottleneck
in deploying learned policies on physical
UAVs—Stanford’s DroneTransfer framework combines
meta-learning with domain randomization, enabling
effective strategy deployment after just 15 minutes of
real-world adaptation [94, 95]. The foundational work
by Tobin et al. [87] demonstrated that randomizing
visual textures, lighting, and dynamics parameters
during training produces policies robust to real-world
variations. Peng et al. [88] extended this to dynamics
randomization, enabling simulated training to
transfer to robots with significantly different physical
properties. Chebotar et al. [89] closed the sim-to-real
loop by incorporating real-world experience to
refine simulation distributions, iteratively improving
transfer performance. Muratore et al. [90] developed
transferability assessment metrics that predict
sim-to-real success before deployment, reducing costly
real-world failures. Loquercio et al. [95] specifically
addressed high-speed flight in natural environments,
combining learning-based perception with classical
control to achieve agile maneuvers through forests at
speeds up to 10 m/s.

Large-scale coordination has been achieved through
bio-inspired approaches, as exemplified by the
Flocking 3.0 system’s Guinness-record 1024-UAV
formation with ±0.25m precision [95]. This system
synthesizes Reynolds’ original flocking rules [2, 96]
withmodern sensing and communication technologies.
Duan et al. [99] developed pigeon-inspired
optimization algorithms that mimic the navigation
strategies of homing pigeons, achieving superior
performance in UAV path planning compared to
particle swarm optimization. Ho et al. [100] applied

swarm-based fuzzy logic control to mobile sensor
networks for hazardous contaminant localization,
demonstrating the versatility of bio-inspired
coordination beyond aerial platforms.
Security concerns in distributed learning are addressed
by Huawei’s FedFly framework, which employs
federated learning with differential privacy to reduce
communication overhead by 67% during collaborative
training [103]. This approach enables multiple UAVs
to jointly improve flight policies without sharing
raw flight data, preserving operational security. The
federated learning paradigm is particularly valuable
for military and commercial applications where data
privacy is paramount.
Imitation learning offers an alternative to pure RL
by leveraging expert demonstrations. Ho et al. [100]
developed Generative Adversarial Imitation Learning
(GAIL), which trains policies to produce behavior
indistinguishable from expert trajectories. Bojarski
et al. [101] famously applied end-to-end imitation
learning to autonomous driving, mapping raw camera
images directly to steering commands. Wang et
al. [102] adapted these techniques to UAV navigation
in large-scale complex environments, achieving robust
obstacle avoidance through learned perception-action
mappings. Meta-learning frameworks [107, 108]
enable “learning to learn,” where agents acquire the
ability to rapidly adapt to new tasks. Ferreira et
al. [107] developed Model-Agnostic Meta-Learning
(MAML), which trains model parameters such that a
few gradient steps on new tasks yield effective policies.
Duan et al. [103] proposed RL2, a meta-learning
framework where the recurrent policy itself encodes
the learning algorithm, enabling extremely rapid
adaptation to new environments.
Together, these developments suggest promising
directions for fixed-wing formation research, while
also underscoring the need to adapt algorithms
to aerodynamic constraints and long-range mission
profiles. The high speeds, large turning radii, and stall
constraints of fixed-wing platforms necessitate control
policies that respect flight envelope limits, unlike
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the more forgiving flight dynamics of quadrotors
used in most existing RL research. The performance
characteristics of various control algorithms discussed
throughout this section, including classical, modern,
and intelligent methods, are systematically compared
in Table 7.

3.4 Real-Time Command and Cooperative
Operations

The efficient task execution of fixed-wing UAV
formation requires real-time command and control
technology. The current development of technology is
mainly reflected in the following three dimensions:

3.4.1 Intelligent task segmentation management
Modern formation systems utilize an
adaptive five-phase mission segmentation
strategy: During take-off, reinforcement
learning-enabled cluster coordination achieves
±0.5m vertical synchronization accuracy. The cruise
phase employs model predictive control for optimal
formation-keeping and energy management, boosting
endurance by 15-20%. Standby operations benefit from
enhanced phase synchronization (spatiotemporal
error of less than 0.1s) [109], while the operational
phase dynamically selects terrain-optimized coverage
patterns (square/bow-shaped) via intelligent
trajectory planning, improving efficiency by
22-25% [110]. Finally, the landing phase ensures
multi-UAV touchdown synchronization within 0.3s
through distributed autonomous decision-making.

3.4.2 Collaborative control system architecture
The collaborative operation control system is
developed based on the QGC open-source architecture.
The communication layer realizes multi-machine link
management (supporting concurrent connection of
20 UAVs), protocol parsing and self-recovery after
disconnection. The interaction layer integrates a 3D
digital twin map and a dynamic formation editor,
supporting visual planning of 8 standard formations.

3.4.3 Hardware platform innovation
At the hardware level, a dual-screen ground station
device has been developed, equipped with an
i7-12800H processor and an SDR communication
module (with a transmission distance of 50km),
capable of simultaneously controlling 12 unmanned
aerial vehicles and connecting to third-party payload
control software. The CPU load rate is maintained
below 65%. These technological advancements have
significantly enhanced the operational efficiency of

the formation system in scenarios such as emergency
rescue and precision agriculture. Recent SDR-based
systems demonstrate end-to-end RF architectures
suitable for UAV control and counter-UAS, including
GPS spoofing/jamming and reconfigurable radio
pipelines [111]. The 2023 report of the United States
Department of Agriculture shows that the formation
operation efficiency of agricultural drones using this
technology has reached 5.8 times that of individual
drones.

4 Navigation and Obstacle Avoidance for
Formations

4.1 Advances in Cooperative Navigation
Cooperative navigation system for the fixed-wing
unmanned aerial vehicle (UAV) formation
significantly enhances positioning accuracy
and reliability through multi-source data fusion
technology [112, 113]. The main technical routes
currently adopted include:

4.1.1 Visual inertia fusion navigation system
The VINS-Fusion system (ETH Zurich) integrates
monocular vision (2MP) and IMU data (1000Hz)
in a tightly coupled graph-optimization framework,
achieving ±3cm relative positioning accuracy and
<0.1° angular error in GPS-denied environments [114].
By incorporating deep learning-assisted feature
extraction, it attains a 92% feature-matching success
rate under challenging conditions. The theoretical
foundations were established by Mourikis et
al. [114], who developed the Multi-State Constraint
Kalman Filter (MSCKF) that marginalizes old
camera poses while retaining feature observations,
enabling computationally efficient visual-inertial
odometry. Leutenegger et al. [110] developed
keyframe-based visual-inertial SLAM using nonlinear
optimization, balancing accuracy and computational
efficiency through selective keyframe retention.
Bloesch et al. [111] proposed direct EKF-based
visual-inertial odometry that operates on image
intensities rather than extracted features, improving
robustness in texture-poor environments. Mur-Artal
et al. [109] created ORB-SLAM2, an open-source
system supporting monocular, stereo, and RGB-D
cameras with real-time loop closure detection and
relocalization capabilities.

4.1.2 Ultra-wideband ranging technology
For missions where satellite navigation is unavailable
or unreliable, alternative positioning methods become
critical. Groves [112] provided comprehensive
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treatment of GNSS, inertial, and multisensor
integrated navigation principles, establishing the
theoretical framework for fault-tolerant navigation
systems. Sabatini et al. [113] assessed avionics-based
GNSS integrity augmentation systems specifically
for UAS sense-and-avoid applications, addressing
the unique safety requirements of autonomous flight.
Vetrella et al. [116] demonstrated differential GNSS
combined with vision-based tracking to improve
navigation performance in cooperative multi-UAV
systems, achieving positioning accuracies suitable for
close-formation flight even with partial GPS outages.

4.1.3 Distributed integrated navigation architecture
The fundamental advantage of formation flight is
the ability to share information among members.
Roumeliotis et al. [115] pioneered distributed
multirobot localization, proving that relative position
measurements between robots can significantly
improve individual localization accuracy compared
to independent operation. Nerurkar et al. [117]
developed distributed maximum a posteriori
estimation algorithms that fuse proprioceptive sensing
with relative observations, achieving near-optimal
performance without requiring a central estimator.
Howard et al. [118] applied maximum likelihood
estimation to mobile robot team localization,
demonstrating how intermittent communication can
still yield significant localization improvements.

4.1.4 Breakthrough in quantum inertial navigation
The Qualcomm QTM8295 chipset has achieved
a significant breakthrough in drone formation
ranging [119, 120]. It adopts the 6.5GHz frequency
band and a time-of-flight (TOF) algorithm, achieving
a ranging accuracy of 10cm [121] and a maximum
ranging of 800m. It also supports self-organizing
networks with over 100 nodes, with a time slot
allocation efficiency reaching 95% [122]. UWB
technology offers advantages over GPS for relative
positioning: immunity to multipath fading, high
precision at short to medium ranges, and low latency
suitable for real-time control.

4.1.5 Distributed Integrated Navigation Architecture
The distributed Kalman filtering framework developed
by DARPA’s CODE project, by integrating data
from multiple sensors, can maintain a formation
positioning error of less than 5 meters in GPS
rejection environments and data integrity of 99.99%
under electromagnetic interference conditions,
demonstrating an anti-interference capability [123].
Its dynamic reconfiguration mechanism supports

the system’s degraded operation in the event of 50%
node failure. Herbert et al. [124] developed a general
optimization-based framework for local odometry
estimation with multiple sensors (VINS-Fusion),
enabling UAVs to fuse heterogeneous sensing
modalities adaptively based on availability and
quality.

4.1.6 Breakthrough in Quantum Inertial Navigation
The quantum inertial navigation prototype tested
by the UK Ministry of Defence uses the cold atom
interference principle (that is, based on the 87Rb
atomic interferometer and using Raman laser to
achieve acceleration measurement) to control the
positioning drift rate within 1.5m/h, demonstrating
the potential to solve the problem of cumulative errors
in long-duration navigation [125, 126]. While still
in early development, quantum navigation promises
orders-of-magnitude improvement over conventional
IMUs for strategic missions requiring multi-hour
autonomy without external position references.

4.2 Breakthroughs in Dynamic Obstacle Avoidance
Recent advancements in dynamic obstacle avoidance
for fixed-wing UAV formations have led to significant
progress in algorithmic innovation, computational
efficiency, and environmental adaptability.

4.2.1 Improved Artificial Potential Field Method
The conventional artificial potential field method
employs virtual attractive and repulsive fields for
obstacle avoidance, achieving computational times
below 10 ms per planning cycle [127]. However,
it suffers from inherent limitations such as local
minima and target inaccessibility, first identified by
Khatib [128] in robotic manipulator control. Ge et
al. [129] addressed local minima through dynamic
goal switching and virtual obstacle techniques.
Park et al. [130] combined potential fields with
simulated annealing to escape local optima in complex
environments. Through dynamic situational field
reconstruction, the success rate of obstacle avoidance
has been increased to 92%, while the average response
time in dense dynamic environments has been reduced
to 15 ms[130].

4.2.2 Sampling-Based Algorithm Optimization
The rapidly-exploring random tree (RRT) algorithm,
introduced by LaValle [125], provides probabilistic
completeness formotion planning in high-dimensional
spaces. Karaman et al. [126] developed RRT*,
which asymptotically converges to optimal paths
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through incremental rewiring of the search tree.
Gammell et al. [127] introduced Informed RRT*,
which focuses sampling within informed subsets of
the configuration space using admissible heuristics,
dramatically reducing planning time in cluttered
environments.
The improved RRT* algorithm proposed by Beijing
Institute of Technology reduces the path planning
time from the traditional 2-3 seconds to 0.4-0.6
seconds by introducing adaptive sampling area
division, GPU parallel accelerated computing
architecture and incremental update strategy, which is
particularly suitable for application in complex urban
environments [133]. The computational efficiency
gains are critical for fixed-wing UAVs, where high
cruise speeds demand rapid replanning to maintain
safety margins.

4.2.3 Velocity Obstacle Methods
For dynamic obstacle avoidance, the velocity obstacle
(VO) paradigm introduced by Fiorini et al. [131]
enables collision-free navigation among moving
obstacles by reasoning in velocity space rather than
configuration space. Van den Berg et al. [132] extended
this to reciprocal velocity obstacles (RVO), which
assume that all agents cooperatively avoid collisions,
enabling scalable multi-agent collision avoidance
without explicit communication. These methods are
particularly suitable for formation flight, where each
UAV must avoid not only external obstacles but also
neighboring formation members during maneuvers.

4.2.4 Optimal Control-Based Implementation
The Fastrack framework, developed byMIT, formulates
obstacle avoidance as a constrained optimization
problem [137]. By incorporating safety corridor
construction, distributed optimization algorithms,
and real-time performance guarantees, it maintains
a safety margin exceeding 5 meters even at high
speeds of 30 m/s [126]. Herbert et al. [124]
demonstrated modular integration of FaSTrack with
existing trajectory planners, providing certifiable safety
guarantees without requiring complete controller
redesign. This approach has been successfully
deployed in Amazon’s logistics drone fleet, achieving
a mission completion rate of 98.7%.

4.2.5 Deep Learning of Obstacle Avoidance
NVIDIA’s FlightNet system utilizes an end-to-end
convolutional neural network architecture, attaining an
obstacle avoidance success rate of 92% under adverse
weather conditions such as heavy rain and dense fog,

compared to 65% with traditional methods [137]. Liu
et al. [72] developed neural networks for high-speed
flight in cluttered environments using efficiently
updatable architectures that adapt online to changing
obstacle distributions. Feng et al. [134] designed
persistent full-area coverage strategies with dynamic
priorities, enabling formations to adapt coverage
patterns based on real-time obstacle detection.

4.2.6 Collaborative Group Avoidance
The distributed obstacle avoidance strategy developed
by the European SESAR project coordinates the
obstacle avoidance actions of the entire formation
through V2V communication, establishing a complete
collaborative obstacle avoidance framework including
5G-V2X communication protocol, three-level
decision-making architecture, and commercial
operation [138, 139]. This hierarchical approach
assigns tactical obstacle avoidance to individual
UAVs while ensuring formation-level path feasibility
through higher-level coordination. Meanwhile, this
system has been commercially applied in the civil
aviation unmanned aerial vehicle (UAV) traffic
management system, capable of handling over 1,000
UAV flights per day [138].
These technological breakthroughs greatly enhance
the autonomous obstacle avoidance capability of UAV
formations in complex dynamic settings, facilitating
the large-scale commercial application of drone
operations. A schematic illustrating typical formation
reconfiguration maneuvers during dynamic obstacle
avoidance is shown in Figure 3.

Figure 3. Schematic of formation reconfiguration during
dynamic obstacle avoidance.

5 Application Challenges and Trends
5.1 Unique Value and Status of Fixed-Wing

Formations
With its unique aerodynamic characteristics and flight
performance, fixed-wing UAV formation technology is
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showing revolutionary application potential in several
key fields. Compared with multi-rotor platforms,
fixed-wing UAVs have significant advantages in terms
of endurance, flight speed and load capacity, which
make them an irreplaceable technical solution in
specific application scenarios.

5.1.1 Breakthroughs in large-scale surveillance
In the fields of meteorological monitoring and
environmental observation, the "Swift" project led by
NASA, which uses a formation system composed of
five medium-sized fixed-wing UAV, has set a record
of 72 consecutive hours of hurricane monitoring.The
formation configuration is adjusted in real time
according to meteorological conditions to ensure the
best monitoring coverage.

5.1.2 Economic innovation in logistics and transportation
The latest research report of Amazon Prime
Air [135] shows that for transportation distance
of 100-300 kilometers, the fixed-wing formation
system demonstrates significant speed advantages,
ultra-high load capacity and low energy consumption.
These advantages make fixed-wing formations
particularly valuable in the following logistics
scenarios: emergency transportation of medical
supplies, complex island supply logistics, and
biological agents delivery.
The economic viability of drone delivery depends
critically on energy efficiency and operational
range. Dorling et al. [136] formulated vehicle
routing problems specifically for drone delivery,
demonstrating that formation flight can reduce
per-package energy consumption by 25-35% through
aerodynamic drafting effects at scale. Stolaroff et
al. [141] conducted comprehensive life-cycle analysis
of drone delivery systems, finding that fixed-wing
formations offer superior greenhouse gas emissions
profiles compared to ground transportation for
medium-range deliveries (50-200 km) in low-density
areas. Di Franco et al. [137] developed energy-aware
coverage path planning algorithms that optimize
battery usage while ensuring delivery deadlines,
critical for commercial viability.

5.1.3 Tactical advantages in military security
The border patrol system deployed by the Israel
Defense Forces adopts an innovative "swarm" tactic,
enabling continuous monitoring capabilities for
24-hour non-stop patrols through a formation rotation
mechanism of eight drones. Its maximum tracking
speed can reach 200km/h, effectively dealing with

fast-moving targets. In addition, in mountainous
environments with an altitude difference of over 1,000
meters, it can still maintain a positioning accuracy of
±1.5 meters [22, 52].

5.1.4 Technological innovation in the Agricultural plant
protection

In the field of precision agriculture, fixed-wing
formation technology is driving the transformation
of plant protection operations. Test data from DJI
agriculture [143] in 2023 shows that a 10-UAV
formation can cover an area of up to 133 hectares
(≈2,000 mu) in a single day, increase the uniformity of
pesticide application by 40%, reduce comprehensive
operating costs by 35%, and decrease pesticide usage
by 25%. Fixed-wing UAV formations automatically
optimize their flight trajectories based on terrain and
crop distribution, and precisely control the dosage
of pesticides through multi-aircraft collaboration.
All these demonstrate technological innovation
breakthroughs in agricultural environments [144].

5.2 Energy Management and Endurance
Optimization

Energy management is a key factor restricting the
long-endurance performance of UAV formations.
The endurance of high performance fixed-wing
UAVs degrades dramatically when performing high
overload maneuvers. This fundamental trade-off
between mobility and endurance is the main
bottleneck currently faced by lithium battery-based
electric propulsion systems and has also become
the core challenge in mission planning and energy
management algorithm design [23, 140, 141].
Zhang et al. [145] developed energy-efficient UAV
communication strategies with trajectory optimization,
jointly optimizing flight path and transmission power
to maximize network lifetime. Their results show
that cooperative trajectory planning in formations
can extend mission duration by 40-60% compared
to independent operation. Basescu et al. [151]
proposed predictive model-based energymanagement
for fixed-wing UAVs, using nonlinearMPC to optimize
throttle settings while respecting battery discharge
constraints and thermal limits. Nigam et al. [147]
addressed energy-aware multi-drone coordination
for target tracking, demonstrating that intelligent
task allocation based on remaining battery capacity
prevents premature mission termination due to
individual UAV exhaustion.
The aerodynamic benefits of formation
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flight—particularly V-formation configurations
inspired by migrating birds—can yield significant
energy savings. Theoretical analysis suggests that
trailing aircraft in echelon formations experience
reduced induced drag, potentially saving 10-30% of
propulsive power depending on spacing and position.
However, maintaining precise relative positioning
requires continuous control effort, and turbulent
wakes from leading aircraft impose additional
disturbances on followers. The net energy benefit
depends critically on formation geometry, wind
conditions, and control efficiency.
Alternative propulsion technologies offer pathways
to extended endurance. Hydrogen fuel cells
provide 2-3× the energy density of lithium batteries,
enabling multi-hour missions at the cost of increased
system complexity and refueling infrastructure
requirements. Solar-augmented propulsion has
enabled demonstration flights exceeding 24 hours,
though payload capacity and operational flexibility
remain limited. Hybrid architectures combining
batteries with internal combustion engines or fuel
cells represent practical compromises for near-term
applications.

5.3 Heterogeneous System Collaboration
With increasing task complexity, the lack of a
general framework for cooperative control of
heterogeneous UAV formations limits the system
scalability [21, 148–152]. Differences in configurations
and payloads lead to incompatible control parameters
and protocols. In its 2021 white paper, the European
Telecommunications Standards Institute (ETSI) clearly
pointed out that the drone market is flooded with a
large number of incompatible private solutions, which
has led to a closed ecosystem and seriously hindered
the collaborative working ability of equipment from
different manufacturers as well as the deployment
of large-scale drone applications. This leads to a
significant reduction in the efficiency of formation
deployment in scenarios that require rapid networking,
such as emergency disaster relief.
Chung et al. [142] provided a comprehensive survey
of aerial swarm robotics, identifying heterogeneity
as a key challenge requiring research attention.
Heterogeneous formations may combine fixed-wing
UAVs for wide-area coverage with rotorcraft for
precision hovering, ground vehicles for persistent
presence, or even manned aircraft for supervisory
control. Freeman et al. [149] developed hierarchical
formation control architectures specifically for

heterogeneous UAVs, decomposing the control
problem into layers that handle differing dynamics.
Yan et al. [146] analyzed coordination mechanisms
across heterogeneous multi-robot systems, identifying
communication protocol standardization and
capability-aware task allocation as critical enablers.
Nigam et al. [147] demonstrated control of multiple
UAVs for persistent surveillance using mixed fleets
of fixed-wing and rotary-wing platforms, with flight
test results validating the practical feasibility of
heterogeneous coordination. Kuriki et al. [148]
developed consensus-based cooperative formation
controlwith collision avoidance formulti-UAV systems
accommodating different flight dynamics. Their
approach uses virtual forces that scale with platform
capabilities, ensuring that faster fixed-wing aircraft
maintain safe separation from slower rotorcraft during
coordinated maneuvers.
The integration of manned and unmanned platforms
represents an advanced form of heterogeneity
with significant military and civilian applications.
Human operators provide high-level reasoning,
ethical decision-making, and adaptability to novel
situations, while autonomous systems offer precision,
tirelessness, and scalability. “Manned-unmanned
teaming” (MUM-T) architectures must address trust,
transparency, and workload allocation to enable
effective human-machine collaboration.

5.4 Safety, Standards, and Regulatory Frameworks
The lack of security measures and standard
frameworks is becoming the main obstacle to
technological development. The 2019 incident
involving Iran’s drone formation being spoofed and
intercepted via GPS indicates that there are obvious
deficiencies in the anti-interference capability of the
existing system [24]. Meanwhile, statistics from the
International Civil Aviation Organization (ICAO)
show that as of 2023, only 12 countries worldwide have
established specific regulations for drone formation
operations, and the standard system lags far behind
technological development.
International regulatory bodies have begun addressing
UAV integration into controlled airspace. ICAO’s
Manual on Remotely Piloted Aircraft Systems [153]
establishes baseline operational procedures and safety
standards, though formation-specific guidance
remains limited. The U.S. Federal Aviation
Administration’s UAS Integration Roadmap [154]
outlines a phased approach to enabling routine
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UAV operations, with formation flight identified
as a medium-term milestone requiring additional
safety analysis. The European Union Aviation Safety
Agency (EASA) has published Acceptable Means
of Compliance for UAS operations [155], providing
regulatory clarity for commercial applications while
emphasizing risk-based approaches to certification.
In China, the "Interim Regulation on the Flight
Management of Unmanned Aircraft," implemented on
January 1, 2024, has established a comprehensive legal
framework. It specifically regulates collaborative flight
activities and airspace usage approvals, providing
clear compliance standards for large-scale formation
operations.
Clothier et al. [161] proposed a comprehensive
airworthiness certification framework for civil UAS,
adapting manned aircraft standards to autonomous
systems. Their framework addresses unique UAS
risks including communication link loss, autonomous
decision errors, and cyber vulnerabilities. For
formations, additional considerations include collision
risk within the formation, coordinated emergency
procedures, and fail-safe behaviors when individual
members malfunction.
Cybersecurity emerges as a critical concern for
networked UAV systems. GPS spoofing attacks [24],
communication jamming, and malware injection
threaten both individual platforms and coordinated
formations. Ferreira et al. [107] demonstrated
software-defined radio-based counter-UAS systems
capable of jamming and spoofing UAV control links,
highlighting vulnerabilities that formation systems
must address through encryption, authentication, and
anomaly detection.

5.5 Application Domains
5.5.1 Military and Security Applications
The border patrol system deployed by the Israel
Defense Forces adopts an innovative “swarm” tactic,
enabling continuous monitoring capabilities for
24-hour non-stop patrols through a formation rotation
mechanism of eight drones. Its maximum tracking
speed can reach 200km/h, effectively dealing with
fast-moving targets. In addition, in mountainous
environments with an altitude difference of over 1,000
meters, it can still maintain a positioning accuracy of
±1.5 meters [157].
Park et al. [23] developed differential game-based
air combat maneuver generation using scoring
function matrices, applicable to coordinated offensive

and defensive formations. Vásárhelyi et al. [24]
demonstrated outdoor flocking and formation flight
with autonomous aerial robots, validating collision
avoidance and cohesionmaintenance under real-world
wind and GPS noise conditions. These capabilities
extend to cooperative reconnaissance, electronic
warfare, and suppression of enemy air defenses
(SEAD), where formations can overwhelm defenses
through saturation tactics or provide mutual support
against threats.

5.5.2 Civilian and Commercial Applications
Fixed-wing UAV formations are widely used in civilian
applications including large-area mapping, forest fire
monitoring, and power-line inspection; and emergency
scenarios like disaster assessment, communications
relay, and material delivery [158].
Watts et al. [155] classified UAS applications in
remote sensing and scientific research, identifying
formation-enabled missions such as stereoscopic
terrain mapping and distributed atmospheric
sampling. Villa et al. [156] surveyed small UAVs
for air quality measurements, noting that formation
flights enable simultaneous multi-point sampling for
understanding pollutant dispersion. Erdelj et al. [157]
examined wireless sensor networks and multi-UAV
systems for natural disaster management, highlighting
formation coordination for rapid damage assessment
and survivor localization.
In precision agriculture, fixed-wing formation
technology is driving the transformation of
plant protection operations. Test data from DJI
Agriculture [152] in 2023 shows that a 10-UAV
formation can cover an area of up to 133 hectares
(≈2,000 mu) in a single day, increase the uniformity of
pesticide application by 40%, reduce comprehensive
operating costs by 35%, and decrease pesticide usage
by 25%.
Fixed-wing UAV formations automatically optimize
their flight trajectories based on terrain and crop
distribution, and precisely control the dosage of
pesticides through multi-aircraft collaboration. Kim
et al. [144] developed smart spraying systems
for UAV swarms that adapt application rates
based on vegetation indices measured during
flight, demonstrating technological innovation
breakthroughs in agricultural environments.

5.6 Future Research Directions
The future development of fixed-wing UAV formation
technology is expected to advance along three major
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directions: intelligent autonomous cooperative control,
novel communication and navigation systems, and
cross-domain collaborative operations.Intelligent
Autonomous Control: Deep reinforcement learning
will be employed to achieve dynamic task allocation
and autonomous decision-making [84–106].
Current RL successes in simulated environments
must be extended to handle the full complexity
of real-world flight, including aerodynamic
uncertainties, sensor noise, and adversarial conditions.
Sim-to-real transfer techniques [94, 96–99] will
become increasingly sophisticated, incorporating
physics-informed priors and online adaptation
mechanisms. Meta-learning approaches [107, 108]
promise rapid adaptation to novel mission profiles
and environmental conditions with minimal
real-world data. Communication and Navigation
Breakthroughs: Terahertz communications offer
10-100× bandwidth improvements over current RF
systems, enabling real-time sharing of high-resolution
sensor data for cooperative perception [19]. Pulsar
navigation and quantum inertial systems [125] will
address positioning challenges in highly contested
environments where GPS is denied or spoofed.
Delay-tolerant networking protocols [56–59] will
enable formation coordination with intermittent
connectivity, critical for beyond-line-of-sight
operations and urban environments with frequent
link breaks. Cross-Domain Collaboration: The
development of heterogeneous platform collaboration
frameworks [148–152] will enable joint operations
amongUAVs, manned aircraft, and ground equipment.
Standardized interfaces and protocols [22, 153–161]
will facilitate interoperability across manufacturers
and mission systems. Human-machine teaming
architectures will leverage human judgment
for high-level reasoning while delegating
precision execution and tireless vigilance to
autonomous systems [162]. Bio-Inspired and
Quantum Technologies: Bio-inspired swarm
algorithms [2, 100, 101] will significantly enhance
system adaptability, drawing on millions of
years of evolutionary optimization in natural
flocking and schooling behaviors. Quantum
technologies extend beyond navigation to include
quantum communications for unhackable data
links and quantum sensing for unprecedented
measurement precision. Quantum encryption
communication will enhance system security against
sophisticated cyber threats.Sustainability and Energy
Innovation: New energy technologies—including
advanced batteries, hydrogen fuel cells, and solar

augmentation—will substantially extend mission
endurance [23, 140, 141, 163]. Aerodynamic formation
optimization will exploit wake interactions to reduce
overall drag [164], potentially enabling transoceanic
flights and persistent area coverage. Energy-aware
mission planning will jointly optimize paths, speeds,
and formation geometry to maximize range and
endurance.
Together, these developments will drive fixed-wing
UAV formations toward greater intelligence,
robustness, and persistence in complex mission
environments, enabling applications that are currently
infeasible with existing technology.
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