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Abstract

This paper develops a general and implementation
friendly stability framework for self-learning control
(SLC) laws of the form u(t) = kq(t)u(t — 7) + kov(t).
Uniform ultimate boundedness is established
for a class of general linear plants under two
engineering actuator assumptions: (i) smoothness
and (ii) saturation with maximum value. These
assumptions are reasonable for practical systems
and yield an explicit bound, which converts the

1 Introduction

1.1 Motivation

Many aerospace control systems operate under strict
computational and energy constraints, motivating
control laws that are both resource-aware and
implementable on embedded flight hardware [1, 12].
Moreover, practical actuation is rarely discontinuous:
for actuators such as reaction wheels and control
moment gyros, the commanded torque is bounded
by saturation and evolves smoothly due to rate limits,

delay learning mechanism into a nominal (delay-free),, , qwidth constraints, and internal motor/drive

controller plus a bounded perturbation injection.
The most notable feature of SLC is its simplicity
of structure coupled with excellent performance.
It is compatible with traditional algorithms and
can enhance even PD-type controllers. A complete
design procedure and a spacecraft attitude tracking
simulation example are provided to demonstrate
compatibility with aerospace applications while
presenting a broadly applicable theoretical result.
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dynamics [2, 4]. This practical actuation property
is not merely a modeling convenience; it represents a
physically grounded prior shared by a broad class of
engineered systems, which can be exploited in control
design [3].

From a control-theoretic perspective, actuator limits
and smoothness constraints can be viewed as
hard input bounds and (possibly) input-derivative
constraints, both of which directly affect stability
margins, transient performance, and achievable
tracking accuracy [2, 5]. Neglecting these constraints
may lead to unrealistic torque profiles, degraded
on-orbit performance, or even instability when
implemented on real hardware. Consequently, a
substantial body of literature incorporates saturation
handling (e.g., anti-windup and constrained control)
and actuator dynamics into the synthesis process
to ensure feasibility and robustness under realistic
actuation [6-8]. These considerations motivate control
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designs that explicitly respect bounded, smooth
actuation while achieving high-precision attitude
regulation and tracking in the presence of disturbances
and modeling uncertainty [9].

In this context, self-learning control (SLC) is particularly
appealing, formerly called online learning control
in [10]. Instead of introducing elaborate adaptive/
observer structures, SLC updates the current command
by reusing a portion of past control information
through a simple algebraic relation, leading to low
implementation complexity and modest computational
overhead [11]. While time-delay and iterative learning
ideas have been extensively studied in aerospace
attitude regulation and beyond, delay is most often
treated as a harmful effect to be suppressed (e.g., as
uncertainty or a disturbance). By contrast, SLC treats
delayed/iterative information as a useful signal: when
actuation is smooth and bounded, past input-output
data become a reliable resource that can be leveraged
to improve tracking and robustness in a systematic yet
mechanistically simple manner. These features make
SLC under practical actuation both broadly relevant
and scientifically valuable.

1.2 Related Work

This paper provides a stability analysis framework for
SLC applied to general linear systems

z(t) = Az(t) + Bu(t) (1)
where z(t) € R", u(t) € R™, and (A, B) is stabilizable.
A typical SLC law takes the form [11]

u(t) (2)

where 7 > 0 is named the Learning Interval; in previous
investigations, ki(t) € (0,1) is called the Learning
Intensity and is set to constant (possibly time-varying,
such as in [11, 13]); and v(t) is a stabilizing baseline
control. When the tracking error is large, (2) can lead
to rapid growth in u(t) and possible saturation. A
variable learning intensity (VLI) mechanism alleviates
this by reducing k;(t) when u(t — 7) is large [11]. A
fully developed stability analysis framework of SLC
for general linear systems is provided. To this end, the
learning-difference transformation is introduced [11]:

a(t) : (3)

which is also a key idea in our proposed SLC method.
This operator explicitly quantifies how much the
commanded input changes over one learning interval
window. Under practical actuation, the command

ky(t)u(t — 1) + ka2 v(t),

u(t) —u(t =),

signal delivered by real actuators is typically bounded
and bandwidth-limited; hence u(t) is expected to
vary smoothly rather than exhibit abrupt jumps.
Consequently, for a sufficiently small 7, the learning
difference 4(t) is naturally small and can be regarded
as a structured, physically interpretable incremental
input rather than an arbitrary disturbance. This
makes (3) a suitable interface between physics-driven
actuation constraints and learning-based control: it
allows past command information to be reused while
keeping the induced learning term consistent with
actuator smoothness, which is central to the proposed
self-learning control design under practical actuation.

1.3 Contribution

The main contributions are threefold:

1) Physics- and engineering-grounded learning
assumption. A rigorous connection is established
between standard actuation properties-bounded
input |lu|| < umax and smooth variation ||u| <
L||u||, and the key self-learning quantity, yielding
the explicit learning difference bound |a| <
LTumax. This result turns the learning-difference
condition from a heuristic requirement into a
verifiable consequence of practical actuation.

2) Complete stability theory for SLC in linear

systems. A systematic uniform ultimate boundedness

(UUB) analysis is developed for the closed loop
with a nominal stabilizer and a self-learning
controller. The proof avoids delay-dependent
LMI machinery and instead follows a transparent
nominal-plus-perturbation argument that clarifies
how the learning term affects stability and
ultimate bounds.

3) Implementation simplicity and an end-to-end
engineering pipeline. The resulting controller
has a minimal structure: the learning update
is an algebraic reuse of past commands, and
the nominal feedback can be as simple as a
PD-type stabilizer. The theoretical results are
complemented by a complete design-and-simulation
workflow, demonstrated through a spacecraft
attitude tracking example that illustrates the

effectiveness of the approach.

1.4 Organization
Section II formulates the problem and assumptions.

Section Il introduces the learning difference reformulation

and establishes key bounds. Section IV presents the
main UUB stability theorem and a practical tuning
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guideline. Section V provides a spacecraft attitude
simulation example. Section VI concludes this paper.

2 Self-Learning Control Fundamentals

2.1 Self-Learning Control Law
We employ an SLC/VLI-SLC structure that explicitly

separates a learning item and an updating item:

u(t) = Ki(t)u(t —7)+ Kov(t) (4)
N—_— ——— N——

learning item updating item

where 7 > 0 is the learning interval. The matrix
Ki(t) € R™*™ is a (possibly time-varying) learning
intensity that reuses past actuation commands and
thereby injects accumulated control experience into
the current input. The matrix Ky € R™*™ weights
the updating item, which provides the instantaneous
correction based on the current state.

For simplicity and in line with common SLC/VLI
constructions, K;(t) is assumed to be diagonal
(component-wise learning); the analysis can be
extended to general bounded K;(t). The baseline
control v(t) is chosen as a simple feedback law,

v(t) = —Kuz(t), (5)

with K € R™*". In this form, the learning
item captures previous, experience-based reuse of
prior commands, whereas the updating item can
be implemented by a minimal stabilizer (e.g., a
PD-type feedback), highlighting the modularity and
implementation simplicity of the SLC architecture.

2.2 Engineering Actuator Assumptions

Assumption 1 (Smooth and Saturated Actuation). The
actual control command u(t) satisfies, for all t > 0,

(6)
(7)

la@) < L{lu@)],
[ < max,

for some constants L > 0 and umax > 0.

Remark 1. Assumption 2.2 formalizes two ubiquitous
physical features of real actuation: magnitude limits
and rate/bandwidth limits. The saturation bound (7) is
routinely enforced in practice by command limiting or
hardware constraints. The smoothness condition
(6) captures the fact that many actuators cannot
change their output arbitrarily fast; it is consistent
with bandwidth-limited devices and naturally arises
from internal actuator dynamics, drive electronics,
and command filters.

38

Although motivated by aerospace systems (e.g.,
reaction wheels), the same premise applies far
more broadly. Electric drives and motor-driven
mechanisms exhibit finite acceleration and torque
slew; compliant and mechanical subsystems (e.g.,
spring—mass—damper elements) produce forces that
evolve continuously under continuous excitation;
and, more generally, most engineered physical
systems do not admit discontinuous actuation in real
time. Therefore, Assumption 2.2 should be viewed
as an engineering-grounded prior rather than an
application-specific restriction, and it provides a broad
foundation for the proposed self-learning control
framework under practical actuation.

2.3 Control Objective

Our goal is to establish uniform ultimate boundedness
of the closed-loop system under (4)—(5) and Assumption
2.2. In particular, we aim to show that the state remains
bounded asymptotically, i.e.,

(8)

limsup ||z(t)| <,

t—r00
for some explicit constant » > 0 determined by 7,
L, umax, and the controller gains, and to provide
an explicit bound r = r(7, L, umax, K1, K2, K), ie.,
we aim to construct a Lyapunov function V' (x) and
constants a > 0, b > 0 s.t. along closed-loop solutions

9)

with b = b(7, L, umax, K1, K2, ), which directly yields
an ultimate bound.

V(:p(t)) < —aV(z(t)) + 0,

3 Learning-Difference Reformulation and Key
Bounds for Self-Learning Control

3.1 Learning Difference Transformation

Define the learning difference (3). Then, we have

u(t —7) = u(t) — at). (10)

Then, we present the bound on learning difference
from an engineering scenario.

Lemma 1(Learning-Difference Bound). Under Assumption
2.2, the learning difference satisfies

la®)]| < oy = LTtumax, VE>0.  (11)

Proof: Seeing the learning difference definition, we
have
t

u(s)ds.

() = ult) — u(t — ) = / (12)

t—1
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Therefore, from Assumption 1, we have

t

o)l < [ il ds< [ Liue)]ds

< /tt Lumax ds = LTUpax. (13)
3.2 Self-Learning Control Law
Substituting (10) into (4) gives
u(t) = Ki(t) (u(t) — a(t)) + Kav(t), (14)
hence
(I = K1(t)u(t) = Kau(t) — Ki(t)a(t). (15)

Assumption 2 (Non-singularity of Learning Map). There
exist constants 0 < k < k < 1 s.t. for all ¢,

kI < Ky (t) < kI, (16)
so that I — K (t) is invertible and
|- o) < (17)
Define
() = (I — Ki(t)) ' Ko, (18)
ra(t) == (I — K1 (1) K (1) (19)
Then from (15),
u(t) = k1 (t)v(t) — ra(t)u(t) (20)

Remark 2. Eq. (20) is the core simplification: the
self-learning control law (with conventional time-delay
item) becomes a delay-free algebraic equation with
a bounded perturbation term —xs(t)a(t). The size of
this perturbation is controlled by . and the learning
intensity bounds.

4 Stability Analysis for Linear Systems

4.1 Closed-Loop Dynamics
Using (5) and (20), we obtain

u(t) = —r1(t) Kz(t) — ka(t)u(t). (21)
Substituting into (1) gives
(1) = <A - Bm(t)K>x(t) ~ Bre(W)a(t).  (22)

4.2 Nominal Stabilization Condition
We choose K (and possibly K») so that the nominal
matrix

A. .= A—-BrK (23)
is Hurwitz for a representative constant ki (e.g.,
worst-case gain upper bound), and we employ a

quadratic Lyapunov function for robustness to the
bounded injection.

To make this explicit, define bounds from Assumption 3.2.
If Ky = kol with ky > 0 and Kl(t) < kI, then

k k
=m0l <

(el < -

11—k

(24)

4.3 Uniform Ultimate Boundedness

Theorem 1(UUB Stability). Consider (1)-(5)—(4).
Suppose Assumptions 2.2 and 3.2 hold. Assume
there exists P = 0 and Q = Os.t. forall ¢,

(A - Bm(t)K) Py P(A - Bm(t)K) < Q.
(25)

Then the closed-loop state x(t) is uniformly ultimately
bounded. Moreover, defining

cQ = Amin(Q), cp = Amax(P), cpp :=||PB]|, (26)

and using ||k2(t)|| < k2 and Lemma 3.1, the ultimate
bound satisfies

. 2cppR2 | Amax(P)
limsup ||z(t)|| < o
HOopll B < 0 Nvin (P)
2cpp k2 )\max(P)
= LTumax. (27
cQ )\mln(P) T ( )

Proof. Let V(z) = 2T Pz. Along (22),
’ T T T -
V=ru ((Aﬁ) P+ P(A,{))CL‘ — 2z PBkotl
<~z Qu +2||z|| | PBI| ||x2| ||

where A, = A — BriK. Using 27Qz > cg |z,
[#2]] < Rz, and |[a]| < ax,

V < —cgllz|® + 2cppRacs ||z - (28)
By Young’s inequality, for any € > 0,
_ € 2 1 _ 2
2cppRoa ]| < §Hx|| + i(QCPBK,QaT) . (29)
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Choosing € = cq yields

. 92 2 =2
V< =2+ =222 (30)
Using [|z]|? > V/Amax(P), it follows that
, cQ 20 pF3 o
V< - \% 31
— 2)\maX(P) + CQ aT? ( )

which implies uniform ultimate boundedness. Let

C
0= Q(P) (32)
2 2 22
b= ZPBR2 2 (33)
Q
Then '
V < —aV +b. (34)
By the comparison lemma, for any ¢ > tg,
V() < eV (1) 4 2 (1 - ety (35)
a

which implies limsup, ,., V(¢) < % and hence the

closed-loop system is uniformly ultimately bounded.

Moreover, since Apin(P)||z]|? <V, it follows that

1 b
I Ol = a
12801310”95( )< Amin(P) a
2cppRy [ Amax(P)
CQ )\mln(P) “ ( )

4.4 Parameter Tuning Guidelines

A practical approach is to design a baseline gain K
for a fixed nominal gain k1 (e.g., K10 = 1’“_—2]5) such
that A — Bk oK is Hurwitz, then select P by solving
the Lyapunov equation (A — Br1oK)TP + P(A —
Bri1oK) = —Q for a chosen Q > 0. If k;(t) varies
in a small range, a common P may still satisfy (25)
(quadratic stability over the gain range). This can be
checked by evaluating the inequality at the extreme
values of k1 (t) when k1 (t) is scalar/diagonal. From
(27), the ultimate bound scales as

lim sup [l2()]] = O(Lrttmax).

t—o00

(37)

Hence:

e Smaller learning interval 7 improves the ultimate
bound and reduces the injection magnitude.

e Smaller learning intensity upper bound k reduces

Rg = —, improving robustness.

1-k’
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e Larger c( (faster nominal convergence) reduces
the ultimate bound, motivating more aggressive
baseline feedback K within actuator limits.

Remark 3. The way the Analysis Avoids Delay LMIs.
The key step is treating the learning term through
the identity u(t — 7) = wu(t) — a(t), turning the
delay mechanism into a bounded injection —xo(t)a(t).
Under smoothness and saturation, @ admits an
explicit bound proportional to 7. This enables a
Lyapunov argument similar to input-to-state stability
estimates without constructing Lyapunov-Krasovskii
functionals.

5 Application Example:
Tracking Simulation

Spacecraft Attitude

This section illustrates how the general linear theory
can guide an aerospace attitude control simulation.
The simulation uses a nonlinear spacecraft model,
while the analysis is presented in a general linear
setting; this is typical when the main theoretical
chapter targets a broad class and the application
validates engineering feasibility.

5.1 Spacecraft Attitude Dynamics Model

Remark 4. While the theoretical analysis in Sections 34
focuses on linear systems for generality, the following
simulation demonstrates the engineering feasibility
and performance of SLC/VLI-SLC when applied to a
nonlinear spacecraft attitude tracking problem. We
consider rigid spacecraft attitude dynamics [11]

Jw=—-wJw+u+d, (38)
1
§= 5(61X + qol3)w, (39)
, 1

do = —§qu, (40)

where w € R3? is angular velocity, Q = [¢7, qo]" is the
unit quaternion, and u € R3 is the control torque.

5.2 Tracking Errors and Baseline Controller

Define attitude and angular velocity tracking errors
(details omitted for brevity; standard quaternion error
mapping is used). Let s := w. + 0¢g. with o > 0.

Choose a baseline stabilizer

o(t) = —ks 6(w) (1), (41)
¢(w) = llwl* + llwll +1, (42)

and apply the SLC update component-wise:
ui(t) = kii(t)ui(t — 7) + kavi(t), i=1,2,3. (43)
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A common VLI mapping is

lui(t —7)| +¢€

k14(t) = exp <—71
Y2

) €(0,1), (44)
with v1,7v2,e > 0.

5.3 Simulation Setup

Inertia and disturbance:

e J is symmetric positive definite; use nominal plus
uncertainty if desired.

e d(t) is bounded (e.g., combination of sinusoidal
terms).

Actuator non-idealities: saturation, dead-zone, bias
torque, and time-delay may be included in the actuator
model; command limiting enforces ||u(t)|| < umax-

Parameter selection: Choose 7 small (e.g., one
sampling period), set ¢ small to avoid £y ;(t) — 1,
and tune ko, k3,0 to obtain acceptable tracking and
torque margins.

5.4 Metrics

Tracking performance is measured by |w.(?)| and
attitude error angles. Control saturation weakening is
quantified by the percentage of time at saturation and
a cumulative energy index

T
_ o lw(®)dt
f(;r|ui,baseline(t)|dt

i

5.5 Discrete-Time Implementation

In practical digital controllers, the learning interval =
is an integer multiple of the sampling period T. Let k
be the time index and 7 = NTj

ulk] = Kq[k] ulk — N] + Ky v[k]. (45)
The learning difference is
ulk] = ulk] — ulk — NJ. (46)

The VLI map can be implemented via lookup tables to
reduce runtime computation. See Algorithm 1.

5.6 Simulation Results

5.6.1 Simulation setup

A nonlinear spacecraft attitude tracking problem is
considered to evaluate the proposed variable learning
intensity scheme. The rigid-body attitude dynamics
are described by

Jw = (Jw) X w+u+d, (47)

Algorithm 1: SLC with Learning-Difference View

1: Choose sampling period T and learning steps N
(T = NTs).
2: Select baseline controller v[k] (42).
3: Choose K3 and VLI parameters (1,72, ¢€) to
enforce 0 < ki ;(k) < 1.
4: fork=0,1,2,... do
5.  Measure/estimate z[k] (or (¢,w)) and compute
v[k].
6:  Compute learning intensity K [k] (fixed or
VLI).
:  Update u[k] = K;[k|ulk — N] + Kavlk].
8:  Apply limits to enforce ||u[k]|| < umax-
9: end for

where w € R? is the body angular velocity, J € R3*3
is the (possibly uncertain) inertia matrix, u € R3 is
the control torque, and d € R? denotes exogenous
disturbances.

The attitude is represented by the unit quaternion
@ = col(q, qo) and evolves according to the standard
quaternion kinematics. The desired angular velocity
is selected as

wq(t) = 107 2[cos 9, — sintp, — cos ] ", ¥ = 0.1¢.

(48)
The disturbance torque is chosen as
—3cos(pt) — 6sin(0.3pt) + 3
d(t) = 1073 | 1.5sin(pt) — 3cos(0.5¢t) — 2| |
—3sin(¢pt) + 8sin(0.4pt) — 1
©=0.5+|jw]. (49)

To test robustness against inertia uncertainty, the
inertia matrix is modeled as

J(t) = J+ AJ(t), (50)
where
20 2 09
J=12 17 05/, (51)
0.9 05 15
(3 +sin(0.5¢))e 0 +1
AJ(t) = diag | (4 + cos(0.5t))e 01 42 (52)

(5 + sin(0.5¢))e 01t — 1

The initial conditions are set tow(0) = [0 0 0] " and
Q(0) = col([—0.2 0.3 —02]", \/O.83> . (53)

The simulation runs for 7' = 800 s with sampling
period Ty = 0.01 s. The learning interval is chosen
as 7 = 0.05s.
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Table 1. Energy and tracking performance summary (last 50 s for RMS metrics).

Method E, E, E.  RMS(||wel]) (rad/s) RMS(f.) (rad) max; ||u(t)]|co/Umax
Non-SLC 1.0000 1.0000 1.0000  4.342569 x 10~3  3.527421 x 1072 0.5471
SLC 0.9874 0.9787 09727  3.510444 x 10~*  2.740603 x 1073 0.9500
VLI-SLC 0.9059 0.9110 0.8831  2.140248 x 10~*  1.604341 x 1073 0.6119

5.6.2 Controllers for comparison
Three controllers are compared:

1) Non-SLC (baseline without self-learning). The
learning term is removed and the control
command is u(t) = kav(t).

2) SLC (fixed learning intensity). The fixed-intensity
learning controller is implemented as

u(t) = kiu(t — 7) + kav(t), k1 =0.9. (54)

3) VLI-SSLC (variable learning intensity). The

variable intensity learning controller is given
by
ui(t) = k1i(t)ui(t — 1)+ kovi(t), i = 1,2,3, (55)
with
kri(t) = exp(=m (Jui(t = 7)| +2)7).

The update term uses the sliding-like variable s =
We + 0¢e and

v(t) = —kss(t)s(t),
<(t) = lw®I* + lw®)ll +1.

(56)

(57)

Unless otherwise stated, the parameters are
selected as: 11 = 4, 2 = 2, ¢ = 0.1, ko =
1, k3 =2, 0=1.

5.6.3 Non-ideal actuator model and energy index

To better reflect practical implementation conditions,
a non-ideal actuator model is included, consisting of
a small input delay, second-order actuator dynamics,
bias torque, dead-zone nonlinearity, saturation, and an
actuator health coefficient. The saturation bounds are
set to +1 N - m. Please see Actuator model for spacecraft
attitude control simulation for reference.

To quantify energy consumption, the energy index is
computed as
P

T
L p / us(t) dt, i € {2}, (58)
P; Non 0

E; =

where P; non is the corresponding baseline (Non-SLC)
energy.
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5.6.4 Results and discussion

Figures 1 and 2 illustrate the angular velocity
tracking error and attitude error angle, respectively.
All controllers achieve stable tracking under the
considered inertia uncertainty and external disturbances.
Compared with Non-SLC, both learning-based
methods (SLC and VLI-SLC) provide significantly
improved steady-state accuracy, demonstrating that
the learning term effectively leverages past control
information to enhance error compensation.

Angular velocity tracking error

—— Non-SLC
SLC (ky =0.9)

—— VLI-SLC
0.20

0.15

|lwe|l (rad/s)

0.05

0.00

0 100 200 300 400 500 600 700 800
t(s)

Figure 1. Angular velocity tracking error norm ||we||.

Attitude tracking error angle

0 100 200 300 400 500 600 700 800
t(s)

Figure 2. Attitude tracking error angle ..

Figure 3 shows the actuator output torques. While SLC
improves tracking accuracy, it exhibits a pronounced
initial torque peak due to the fixed learning intensity,
which increases the risk of hitting actuator saturation
when the initial tracking errors are large.
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Actuator output torques (non-ideal actuator)

1.0
—— Non—SLC

—— SLC (k; =0.9)
—— VLI-SLC

0.5 A

0.0 A

up (N-m)

-0.5 1

-1.0

1.0

0.5 A

0.0 A

uy (N-m)

-0.5 1

-1.0

1.0

0.5 A

0.0 1 %——& ——————— e —————

-0.5 1

ug (N-m)

-1.0

0 100 200 300 400 500 600 700 800
t (s)

Figure 3. Actuator output torques under the non-ideal actuator model. Dashed lines indicate saturation bounds.

Learning intensity
FMMWWWMM
) —— SLC (k;=09)
0.8 —— VLI-SLC k(1)

1.0

0.6 1

k11

0.4 -

0.2 1

0.0 T T T T T T T
1.0

0.8 1

0.6

ki 2

0.4 -

0.2 1

0.0 T T T T T T T T

1.0

0.8 1

0.6 1

ki3

0.4

0.2 1

0.0 T T T T T T T T
0 100 200 300 400 500 600 700 800

t(s)

Figure 4. Learning intensity comparison: constant intensity in SLC versus adaptive intensities in VLI-SLC.
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Bar-chart summary of energy and accuracy

Energy index

I Non-SLC
B SLC (k1 =0.9)
s VLI-SLC

Steady-state attitude error (last 50 s)

0.035 A
0.030 +
0.025 4
0.020 A
0.015 +

RMS(6,) (rad)

0.010 +
0.005 +

0.000 -

Non—SLC

SLC (k1 =0.9) VLI-SLC

Steady-state velocity error (last 50 s)

0.004 A

0.003 A

0.002 A

RMS(||w.||) (rad/s)

0.001 A

0.000 -

Non—SLC SLC (k1 =0.9) VLI-SLC

Peak torque ratio (saturation risk proxy)

Non—SLC

SLC (k1 =0.9) VLI-SLC

Figure 5. Bar-chart summary of energy index, steady-state accuracy (RMS), and peak torque ratio.

In contrast, VLI-SLC markedly reduces the peak torque
demand in the initial transient, while maintaining
comparable steady-state tracking accuracy. This
improvement is attributed to the adaptive reduction of
k1,(t) when |u;(t — 7)| becomes large, which weakens
the aggressive learning behavior in high-torque
regimes.

The evolution of learning intensities is shown in
Figure 4. SLC keeps a constant k1, whereas VLI-SLC
automatically decreases ki ;(t) during large-torque
transients and increases it when the control effort
is small, thereby balancing transient saturation
avoidance and steady-state learning benefits.

Finally, Figure 5 summarizes energy and accuracy
metrics. VLI-SLC achieves a favorable trade-off: it
preserves the steady-state accuracy of SLC, reduces
the peak torque ratio (a proxy for saturation risk),
and yields improved energy indices relative to
fixed-intensity SLC in the considered scenario.

a4

5.6.5 Summary

Table 1 reveals a clear trade-off between energy
behavior and tracking accuracy across the three
methods. Regarding the energy indices £ =
[Ey, By, E.], Non-SLC maintains £, = £, = E, =1,
indicating the best energy preservation (i.e., minimal
additional dissipation). SLC exhibits a mild reduction
(E =~ 0.97-0.99), suggesting that improved tracking
is achieved at the cost of only a small energy loss.
VLI-SLC shows a more pronounced decrease (E =~
0.88-0.91), consistent with stronger dissipation or
more aggressive regulation introduced to enhance
closed-loop error suppression.

In terms of RMS errors over the last 50 s, SLC reduces
RMS(||well) from 4.34 x 1073 to 3.51 x 10~* (about
a 12x reduction) and RMS(6,) from 3.53 x 102
to 2.74 x 1073 (about a 13x reduction) compared
with Non-SLC, i.e., roughly an order-of-magnitude
improvement. VLI-SLC further decreases RMS(||w.||)
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to 2.14 x 10~% and RMS(f,) to 1.60 x 1073, yielding
an additional ~1.6-1.7x improvement relative to SLC,
which indicates stronger steady-state/late-stage error
attenuation.

The peak control ratio (peak_ratio) is highest for SLC
(0.9500), implying that its control input operates
closest to the saturation limit, consistent with its
substantial error reduction. = Non-SLC is more
conservative (0.5471), corresponding to noticeably
larger RMS errors. VLI-SLC achieves the smallest
RMS errors with a moderate peak ratio (0.6119),
suggesting that its performance gains are not solely
due to larger control magnitude but also to improved
control effectiveness; however, this comes with the
largest reduction in the energy indices.

Overall, Non-SLC favors energy preservation at
the expense of tracking performance; SLC trades

near-saturation peak actuation for an order-of-magnitude

error reduction with only minor energy loss; and
VLI-SLC provides the best RMS tracking with
moderate peak usage but incurs the greatest energy
decrease.

6 Conclusion

A general learning-difference reformulation was
developed for self-learning control laws and applied
to linear plants. Under practical actuator smoothness
and saturation assumptions, an explicit bound
||z < L7umax is obtained, which converts the
delay learning mechanism into a nominal stabilizing
controller plus a bounded perturbation injection. A
Lyapunov-based analysis yields uniform ultimate
boundedness and an explicit ultimate bound scaling
with L7Tumax. A spacecraft attitude simulation
setup was outlined to demonstrate the method
in an aerospace context. In our future work, the
differential learning reconstruction framework is
extended from linear systems to nonlinear spacecraft
attitude dynamics models, and errors are further
reduced by optimizing the learning parameters.
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