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Abstract
Food security is crucial for human survival and
national economic development, but frequent
meteorological disasters have caused great harm
to agricultural production. Therefore, it is very
important and meaningful to study how to quickly
and accurately predict the loss rate of disasters. Only
based on historical loss sequence, the time series
prediction method can effectively predict future
loss. Therefore, this paper first briefly describes
the main means of time series prediction, namely
statistical methods andmachine learning algorithms.
Secondly, the commonly used machine learning
algorithms for disaster loss time series prediction,
and its application cases and existing problems, were
introduced in detail. To address the issue of small
sample sizes for loss predication, data augmentation
techniques can be used; To address the issue of data
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non-stationarity, Empirical Mode Decomposition
(EMD) can be used to decompose the original
sequence into relatively stationary sub-sequences. In
addition, exploratory solutions have been proposed,
such as ensemble learning strategies for multiple
machine learners, and combining machine learning
algorithms with optimization algorithms, strong
prediction strategies, or attention mechanisms.
Finally, a summary solution for conventional disaster
damage prediction was proposed.

Keywords: food security, meteorological disasters, time
series prediction, machine learning.

1 Significance and Overview of Agricultural
Disaster Loss Sequence Prediction

Food security is a cornerstone of human survival
and sustainable economic development. However,
frequent meteorological disasters—such as droughts,
floods, and extreme temperatures—severely threaten
agricultural productivity, leading to significant crop
losses and destabilizing food supply chains [1, 2].
Accurate prediction of agricultural disaster losses
is critical for proactive disaster mitigation, resource
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allocation, and policy formulation to safeguard food
production [1, 3–8].

Therefore, it is very important and meaningful to
study how to quickly and accurately predict the loss
rate of disasters. However, due to the irregularity of
the frequency and degree of meteorological disasters,
predicting disaster losses is a difficult scientific
problem, which raising an urgent need to develop a
fast and feasible method [9, 10].

Traditional approaches to loss assessment often rely
on post-disaster surveys, which are time-consuming
and reactive. Time series prediction methods, which
analyze historical loss data to forecast future trends,
offer a promising alternative by enabling preemptive
risk management [6]. Based on historical loss
sequence, and past loss values as input data, a forecast
model that conforms to the loss variation law is
constructed to predict future loss.

However, the formation of disaster losses is very
complex and influenced by multiple factors, often
exhibiting nonlinear and unstable characteristics,
making it difficult to building an effective forecasting
model. In addition, agricultural disaster losses
exhibit complex nonlinear and non-stationary patterns
due to interactions between climate variability, soil
conditions, and crop resilience, making accurate
prediction challenging [11].

2 Time Series Prediction Methods
In the field of agricultural disaster loss prediction, due
to the seasonality, periodicity, and high randomness
of agricultural production data, traditional statistical
methods often fail to precisely predict crop yield
reduction and economic losses. Machine learning
methods can effectively capture these complex
nonlinear characteristics, showcasing stronger
advantages in agricultural yield prediction, pest
outbreak forecasting, and disaster loss estimation.
The time series prediction methods mainly include
statistical and machine learning methods. The
statistical method utilizes statistical equations
to construct prediction models. Traditional
statistical models include autoregressive (AR) [12],
autoregressive moving average (ARMA) [13],
autoregressive integral moving average (ARIMA) [14]
models, and so on. The AR model can fit the
relationship between regression variables themselves.
The iterative relationship between adjacent variables is
represented by a linear combination of historical data.
The moving average (MA) model introduces sliding

windows to extract variation features. The integration
of AR and MA can more accurately simulate time
sequence. Afterwards, the ARIMA method was also
developed and widely applied [15, 16].

In addition, other statistical methods are also popular,
such as exponential smoothing model (ES) [17, 18],
cubic polynomial curve fitting model (CPCF) [19],
and grey model (GM) [20], etc. These statistical
methods have shown good performance in solving low
dimensional and linear problems [21], but have weak
performance in nonlinear prediction, which cannot
be predicted well meteorological disaster losses with
complex, nonlinear, multi-dimensional, and uncertain
characteristics.

Machine learning (ML) algorithms have achieved
satisfactory results in regression [22]. It can effectively
fit nonlinear relationships between multi-dimensional
variables by constructing complex learning networks
and significantly enhance forecast accuracy [2, 16,
23], which become a possible solution for loss
prediction [15, 24, 25].

In the past few decades, various machine learning
models for time series prediction have been proposed,
such as artificial neural network (ANN) [26–29],
backpropagation neural network (BPNN) [30, 31],
generalized regression neural network (GRNN) [32],
recurrent neural network (RNN) [33], long short-term
memory network (LSTM) [34, 35], Gated Recurrent
Unit network (GRU) [36, 37], radial basis function
network (RBF) [38], support vector machine model
(SVM) [39–42], extreme learning machines (ELMs),
and so on.

3 Some Main Prediction Algorithms
Machine learning method performs well in disaster
loss rate estimation, with robust analysis and
processing capabilities for high-dimensional and
nonlinear data. Therefore, research in this area has
gradually increased [6, 28, 43–47]. For example, some
researchers have utilized BPNN [48, 49], RF [2, 50,
51], or Support Vector Machine (SVM) [4, 52, 53]
for disaster loss rate estimation and have achieved
excellent results, which provide a mature research
foundation [7]. For example, ANN and LSTM
neural network models have been widely applied
in crop yield forecasting, crop growth simulation,
and pest occurrence risk assessment, demonstrating
excellent prediction performance. The SVMmethod,
due to its robustness in small sample problems, has
been successfully used in agricultural disaster loss
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prediction (e.g., damage to coastal farmland due
to storm surges) and food supply chain disruption
forecasting.

The following is a brief overview and application of
some main machine learning algorithms.

3.1 Neural Networks
Artificial neural network (ANN) has many advantages
such as nonlinearity, adaptability, parallelism,
robustness, and strong computing power [54], and
have been applied in many fields for prediction,
such as economic growth estimation [55, 56],
stock price prediction [57, 58], and exchange rate
prediction [59, 60]. The numerical experiment
indicates that the performance of various neural
networks with different network structures varies and
is suitable for different situations [38].

For instance, BPNN is a classic network in time
series analysis. Even many scholars use heuristic
optimization algorithms to optimize its initial weights
and thresholds in order to improve model accuracy.
However, it still has drawbacks such as slow
convergence speed, low running efficiency and poor
generalization ability [11, 61, 62].

RNN is a typical algorithm. In RNN, the hidden
layer endowsmemory function by connecting nodes in
different components, but it has a divergence issue over
a long period of time. Therefore, LSTM was proposed
by introducing gate components. Furthermore, it was
improved by redesigning the gate structure [63], such
as bidirectional LSTM and GRU.

Additionally, GRNN performs well in small sample
fitting [64].

3.2 Support Vector Machine
Support Vector Machine (SVM) is a new type of
machine learning method, which has many strengths
to process nonlinear data, global optimization,
strong adaptability, and strong generalization ability,
especially for complex problems such as small samples,
nonlinearity, and high-dimensional. Compared with
neural network models, support vector machine
models require less training data [6]. Therefore, it
is an effective tool and more suitable for simulating
and predicting disaster loss sequences [65].

Based on traditional SVM and by combining
regularization theory, Least Squares Support Vector
Machine (LSSVM) is developed, which transforms
inequality constraints into equality constraints, and

uses quadratic programming method to solve function
estimation problems, greatly improving convergence
speed [66]. Overall, LSSVM can not only solve
problems with few samples and nonlinearity, but
also has many advanced properties (such as simple
operation, fast convergence speed and high prediction
accuracy, etc.), which can be used for disaster loss
prediction [6, 11]. However, it should also be noted
that non-stationary time series have a significant
impact on their prediction accuracy [11].

3.3 Application of Machine Learning Algorithms in
Disaster Loss Prediction

At present, researches on disaster loss prediction
are mainly focused on earthquakes [67–69],
tropical cyclones [70–73], floods [74–77], storm
surges [78],Wang et al. [79] and forest fires [16, 80].

Loss prediction models include two forms, i.e. single
and combined models.

Here are some cases of single model. Wang et
al. [79] estimate direct losses of storm surges by
using GIS and open data. Yin et al. [78] established
a grey correlation model of storm surge disaster
losses in coastal areas of China. Jin et al. [4] using
SVM to predicted storm surge disaster loss with
small sample data. Feng et al. [81] forecasted the
direct economic losses and sufferers of storm surges
separately based on SVM and BPNN. Zhang et al. [82]
evaluated the accuracy of five models, including
BPNN, one-dimensional convolutional neural network,
decision tree (DT), random forest (RF), and extreme
gradient enhancement (XGBoost), in constructing
mudslides prediction models. Lou et al. [83]
constructed a loss assessmentmodel of tropical cyclone
based on SVM. Cao et al. [84] used an improved grey
model to assess the direct economic losses caused
by marine disasters in coastal cities of China. He et
al. [85] used dynamic recurrent neural networks to
predict flood disaster losses. Ye et al. [86] discussed
the feasibility of artificial neural networks, nonlinear
regression, and EI Niño for predicting storm surge
disasters. Yang et al. [87] utilized the extendedKalman
filter to forecast the economic losses and casualties
caused by storm surge. Wu et al. [11] applied LSSVM
to predict the economic losses of waterlogging in the
subway station project. As research deepens, more
and more models are available, but choosing the
appropriate model still poses challenges [88].

Besides single model, many researchers proposed
a combination model to improve the prediction
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accuracy [89, 90]. For example, Chen et al. [91]
combined GA Elman neural network (ENN),
support vector regression (SVR), and GRNN into
a comprehensive evaluation model for predicting
tropical cyclone losses. Feng and Liu [81] believe that
the joint model of BP and SVM can better predict the
economic losses by storm surges. Zhao et al. [15]
combined the results of ENN and GRNN to achieve
interval prediction of economic losses caused by storm
surge disasters. They think that the performance of
the combined model is better than that of the single
model. Meng et al. [92] used four machine learning
models to predict the direct economic losses caused
by tropical cyclones in Guangdong Province. Yang
et al. [93] predicted the affected population caused
by tropical cyclones based on a mixed model of the
generalized additive model(GAM) and XGBoost.

4 Problems in Predicting Disaster Loss Time
Series

Time series prediction has been a research hotspot in
the past decade. Traditional statistical methods and
machine learning methods have been widely studied
and applied.

Machine learning methods have strong learning
abilities, which can automatically learn hidden
feature information in data and capture nonlinear
relationships. However, when the data is complex
and unstable, this learning ability requires a large
amount of data for training and optimization to achieve
excellent performance with high accuracy and strong
robustness [37].

However, due to the complexity, irregularity, noise,
and instability of meteorological disasters, as well
as difficulties in data collection, loss time sequences
also exhibit small sample size, strong randomness,
high volatility, weak regularity, non-stationary and
nonlinear characteristics [6, 15, 37]. So, the prediction
results from the original dataset are often not
satisfactory.

Small Sample Problem: Agricultural production data
often suffer from short recording periods and limited
effective data, which not only reduces the model’s
generalization ability but also directly impacts the
applicability of prediction results in real agricultural
decision-making. Therefore, data augmentation
techniques (e.g., interpolation, information diffusion
methods) to generate additional data samples help
improve the predictive capability of agricultural
production models, making them more suitable for

practical agricultural scenarios.

Non-stationary Problem: Agricultural production
data is often influenced by crop growth periods,
seasonal changes, and disaster occurrence frequencies,
resulting in noticeable non-stationarity. Applying
Empirical Mode Decomposition (EMD) to decompose
agricultural disaster loss sequences allows for the
extraction of different frequency loss patterns, helping
to build more stable and reliable agricultural loss
prediction models.

In summary, small sample size and non-stationary of
data in loss prediction are the two main issues.

4.1 Small Sample Size and Its Solution
The small sample size problem often led to large
errors and poor performance in loss estimation model.
It inevitably brings some limitations to machine
learning based loss rate estimation models, such as
easy overfitting and poor generalization ability [7,
37]. Therefore, in this case, choosing a suitable
learning algorithm, or finding amethod to enhance the
information of the original data, is currently urgently
needed [2].

Some researchers proposed data augmentation
technology to address the issue [37], such as virtual
sample generation (VSG) [94, 95]. The strategy of
VSG is to extract prior information from a given
small sample data, and then generate new virtual
samples to fill the information gap between the
original samples, which can obtain more samples
containing the original data features [37]. These
virtual samples have similarity. Its data distribution
and statistical characteristics are the same as the
original sample [37].

There are also many VSG techniques applied in
small samples. For example, Li et al. [96] use
an information diffusion model (IDM) to generate
virtual loss samples. Huang [97] also proposed
an information diffusion model, which is a fuzzy
statistical technique that converts single point samples
into set valued samples, which can effectively
utilize fuzzy information in small samples to fill
information gaps. Additionally, Sun [2] proposed
a new data augmentation technique called k-nearest
neighbor Gaussian noise method (KNN-GN), which
generates virtual samples by adding Gaussian noise
to the original sample. Rogoza [98] proposed local
extrapolation to simulate small samples less than ten.
Yuan et al. [1] and Sun et al. [2] generate virtual
samples through interpolation.
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Presently, some scholars have conducted researches on
small sample prediction. For example, Dan et al. [99]
established a small sample preprocessing model to
enhance data stationarity, and then used simulated
annealing algorithm and SVM for prediction. Rajesh
et al. [100] and Deng et al. [101] also applied grey
theory to traditional small sample prediction. Sun et
al. [2] combined KNN-GN with XGBoost to construct
a prediction model, which can quickly and accurately
estimate direct economic losses in a short period of
time after a storm surge occurs.

4.2 Data Non-stationary and Its Solutions
On this issue, some studies have shown that
the Empirical Mode Decomposition (EMD) can
decompose the original sequence into a set of IMF
(Intrinsic Mode Function) components with different
frequencies and residuals. After decomposition, these
subsequences are relatively stationary, which are easy
to simulate, can fully mine data information, better
reflect the physical characteristics of the original data,
and extract linear features from nonlinear time series.
Further, this method shows strong universality in
processing non-stationary data [97].

This technology has also been applied to loss
prediction. For instance, Chai et al. [6] decomposed
the time series of ship collision conflicts into
combinations of different frequency subsequences.
Each subsequence displayed a more regular
frequency range than the original conflict sequence.
Subsequently, different LSSVMs were established
for each IMF components. The final prediction
result of the ship collision conflict number was
obtained by summarizing the prediction results of
each subsequence. After this step, the prediction
accuracy was greatly improved [6].

4.3 Other Solutions
Besides the above solutions in a single model, some
ensemble learning strategies that usemultiplemachine
learners also begun to emerge [9, 20, 37, 102–105].
Ensemble learning is a learning strategy that combines
multiple learners together to reduce bias, achieve
superior generalization ability, improve the accuracy
and reliability of prediction, and has already achieved
excellent performance for predication [2, 106, 107].
Compared to a single machine learning model, it can
absorb the advantages of a single method and more
effectively extract the features of data. In addition
to single and combined models, ensemble learning
and optimization algorithms are gradually gaining

attention in agricultural disaster prediction. For
example, integrating optimization techniques such
as Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO) with machine learning models
for crop yield prediction, livestock loss estimation, and
food supply chain forecasting further improves the
model’s accuracy. Additionally, the prediction results
can directly support agricultural insurance pricing,
disaster risk zoning, and food emergency reserve
management.

Especially for small sample data, it can effectively
fit nonlinear functions, and comprehensively
extract high-dimensional and temporal features of
data. Even for the loss prediction, whether it is
the affected populations or economic losses, the
composite prediction has a smaller error than the
two single predictions. For instance, Du et al., [7]
constructed a new combination model, namely
Elman neural network-Generalized regression neural
network-Definite integral model (ENN-GRNN-DI),
for interval prediction of disaster losses [2, 7, 15].

In addition, some researches combined optimization
algorithms and machine learning model. They
adopted optimization methods to optimize the
hyperparameters of machine learning algorithms to
improve prediction accuracy. For example, Wang
et al. [108] and Yuan et al. [1] respectively used
the Beetle Antenna Search (BAS) algorithm and
Levenberg Marquardt (LM) algorithm to optimize
the BPNN, and used the optimized BPNN model to
predict the economic losses of storm surges, and found
that the prediction accuracy is significantly improved.
Lin et al. [42] used a Vector Space Model (VSM) to
correct the results of BPNN. Chen et al. [91] combined
genetic algorithm (GA) with Elman neural network,
SVR, and GRNN models to predict tropical cyclone
losses. Liu et al. [109] proposed a hybrid model that
combines wavelet transform (WT), genetic algorithm,
and support vector machine. Wu et al. [11] established
a new intelligent prediction model for economic losses
of subway station caused by rainstorm and flood
using sparrow search algorithm (SSA), mean impact
value (MIV) and LSSVM. The results showed that SSA
algorithms has the advantages of good stability, strong
global search ability, and fewer parameters. This fusion
method can not only improve the prediction accuracy,
but also have strong interpretability.

Furthermore, some researchers adopted a strategy of
combining machine learning algorithms with strong
predictors, such as Zhao [31] combining an adaptive
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boosting algorithm with BPNN (Adaboost-BPNN) to
predict direct economic losses frommarine disasters [2,
11]. Moreover, other researchers combined machine
learning algorithms with attention mechanisms to
improve prediction accuracy.

5 Conclusion
Therefore, based on the above analysis of existing
disaster loss prediction, in order to improve the
accuracy of disaster loss predication, the following
schemes can be proposed for conventional solutions:

1) The EMD-LSSVM method (i.e. Combining
empirical mode decomposition and least squares
support vector machine models): It decomposes the
original disaster loss time series into a set of IMFs
and a residual. Then, corresponding LSSVMmodels
are established using IMF components. Finally, the
predicted values of final loss are obtained by adding
each sub-sequence result [6].

2) The Interpolation-LSSVM method (i.e. Combining
Interpolation and least squares support vectormachine
models): It can achieve the goal of accurately
estimating disaster loss under small sample conditions.
Firstly, Interpolation is used to generate a new
enhanced data set. Then, LSSVM algorithm is
conducted to obtain the optimal loss estimation.
Finally, the model robustness was verified [7].

Based on the analysis above, future agricultural
disaster loss prediction methods should focus on the
EMD-LSSVM method (suitable for non-stationary
agricultural data) and interpolation-enhanced LSSVM
method (suitable for small sample agricultural
problems). Both methods help improve the accuracy
and stability of disaster predictions, which in turn
provide more precise disaster risk forecasting services
for agricultural production, food processing, and
agricultural supply chains. This will effectively
reduce the negative impact of meteorological disasters
on agriculture and food production, ensuring food
security.
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