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Abstract
As people’s living standards continue to rise, the
food processing industry is facing many challenges
such as improving production efficiency, ensuring
food safety, and reducing processing costs. The
emergence of artificial intelligence (AI) technology
has brought new opportunities for this industry.
This paper describes AI applications in food
processing, especially focuses on machine learning
(ML) and deep learning (DL) techniques. These
techniques are used for grading and sorting of
raw materials, production optimization during food
processing, quality inspection, and food safety
assurance. For example, ML algorithms can be
combined with non-destructive testing techniques.
This allows for the effective identification of
adulterated meats. The implementation of AI
not only improves production efficiency but also
enhances food safety and quality control through
real-time monitoring and rapid, non-destructive
detection methods. Future developments in AI
technologies are expected to further promote the
sustainable development of the food processing
industry by improving data quality, developingmore
interpretable models, and reducing costs.
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1 Introduction
Food processing involves transforming various raw
materials, including agricultural products, aquatic
products, and livestock, into consumable formats.
These formats can be directly consumed, cooked
before consumption, or designed to align with human
dietary preferences. The processed food industry’s
growth is closely tied to a nation’s economic health
and societal well-being [1]. As living standards
escalate, consumer expectations regarding food safety
and quality standards are likewise intensifying. To
cater to this heightened demand for superior food
quality, there is a pressing need to devise food
analysis techniques that are precise, dependable, and
non-destructive [2]. The food processing industry
is faced with many challenges such as improving
production efficiency, ensuring food safety, and
reducing processing costs.

Advancements in technology have led to the
emergence of AI technology. As a result, AI has
been used in almost every industry, including
pharmaceuticals, cosmetics and agriculture [3]. AI
is a discipline within computer science, focusing
on emulating, augmenting, and broadening human
intelligence. It primarily consists of data, algorithms,
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and computing power. AI can learn from data, make
autonomous decisions, and self-optimize, thereby
achieving the cognitive, learning, reasoning, and
decision-making capabilities inherent in human
intelligence [4]. The rise of AI technology has brought
new opportunities for the food processing industry.
Two primary branches of AI technology, ML and
DL, are widely used. Their implementation can
improve production efficiency, facilitate the detection
of foreign objects to uphold food safety standards, and
predict shelf life, which are poised to make substantial
contributions to the continued progression of the food
processing industry.

2 ML and DL
2.1 Machine Learning
ML aims to enable computers to acquire knowledge
without explicit programming. It focuses on
discovering algorithms capable of learning from
and making predictions based on data, shifting
away from a reliance on predefined programmatic
directives. Therefore, ML algorithms are essentially
data-driven [5]. By combining different traditional
ML methods with various non-destructive testing
techniques, various types of adulterated meats (such
as pork, ground beef, and sausages) can be effectively
detected [2].

ML includes three main paradigms: supervised
learning, unsupervised learning, and reinforcement
learning. Within the realm of supervised learning,
distinct methodologies are employed for discrete
and numerical data, namely classification and
regression. In classification tasks, algorithms such
as Support Vector Machines (SVM), Discriminant
Analysis (DA), Naive Bayes (NB), and K-Nearest
Neighbors (K-NN) are widely employed. Conversely,
Generalized Linear Model (GLM), Support Vector
Regression (SVR), Linear Regression (LR), Gaussian
Process Regression (GPR), Ensemble methods, and
Decision Tree (DT) can be used for regression [6].
With slight modifications, SVM, K-NN, and DT
can serve dual purposes. Among these, SVM is
a standout classification algorithm in supervised
learning frameworks. Unlike other difference-finding
techniques, SVM identifies similarities among
samples, making it highly suitable for distinguishing
high-quality foods from decaying or perishable
ones [7]. For example, SVM can categorize bananas
by analyzing their extracted feature vectors, which
include attributes like color and texture. This allows
for the classification of banana ripeness and the

detection of peel defects [7].

Unlike supervised learning, unsupervised learning
does not require a training dataset. It includes
algorithms like Fuzzy C-Means (FCM), K-Means,
Fuzzy Logic (FL) systems, Expert systems, Swarm
Intelligence algorithms, and Markov clustering [8, 9].
Expert systems utilize knowledge fromvarious sources
to solve complex problems. They are based on the
principles and reasoning of human experts. They can
imitate the decision-making abilities of human experts,
making them powerful tools for decision-making [10].

2.2 Deep Learning
DL represents aML technique usingANN. Its benefit is
the enhanced ability to independently extract features
from raw data. Employing DL improves classification
accuracy and reduces error rates [11]. Currently,
integrated DL with detection technologies or image
processing is widely used as an effective method
for assessing fruit quality, tackling problems such
as classifying types, predicting nutrient levels, and
determining infections or damages.

ANN is the basis for DL, enabling it to make
choices or forecasts through the complex interplay
of input data. For example, it can accurately
predict the makeup and antioxidant traits of banana
phenolic compounds [12], like the quality variation
in spray-dried black [13], and it can also predict
pomegranate oil extraction rates [14]. Multiple
ANN types are employed, such as CNN, Recurrent
Neural Network (RNN), Deconvolution Neural
Network (DNN), Feed-forward Neural Networks
(FNN), Modular Neural Network (MNN), Multilayer
Perceptron Neural Network (MPNN), and Generative
Adversarial Network (GAN) [15]. Among them,
RNN is capable of processing sequence data. It
has a memory function that captures long-term
dependencies in sequences. CNN, a prevalent
neural network type, is primarily employed for
data processing involving lattice-like topol such
as pictures. Pan et al. [16] crafted an advanced
method for the multi-category categorization of
food images via CNN. The introduction of a novel
system named DeepFood was suggested, employing
DL to derive detailed and impactful characteristics
from a collection of food ingredient imagery, while
also enhancing the overall precision of multi-class
categorization through sophisticated ML technology.
By employing CNN-based DL architecture and
cost-effective computer vision modules, it is also
possible to quickly detect defective apples on the
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sorter [17]. In addition, Rauf et al. [18] suggested a DL
structure grounded in the CNN methodology for fish
species. In terms of identification and classification,
the suggested CNN framework comprises 32 profound
layers capable of deriving essential distinguishing
characteristics from the images. It can be seen
that CNN is widely applicable in the realm of food
processing.

3 Application of AI in food
3.1 Grading and sorting of raw materials
In food processing, raw material grading and sorting
are fundamental for maintaining product quality and
production efficiency. AI technology’s continuous
evolution has significantly transformed this process.
Figure 1 illustrates the diverse applications of AI
in raw material grading and screening, ranging
from automated classification to quality evaluation of
various food items, including fruits, vegetables, meats,
and grains. By integrating advanced image processing,
sensor technologies, and data analysis algorithms, AI
can swiftly and precisely identify visual attributes,
maturity, nutritional value, and potential defects in
food items, enabling efficient and accurate grading
and sorting. These technologies not only improve
production efficiency, but also enhance food processors
with a more reliable means of quality control, laying a
solid foundation for subsequent processing stages.

Figure 1. Application of AI in Grading and Sorting.

ML is also used to predict intramuscular fat content for
meat classification and sorting. Traditional methods
for detecting intramuscular fat content (IMF%) are
accurate but involve lengthy preprocessing. Chen
et al. [19] employed visual scores of marbling in
loin muscle pictures and traditional meat quality
traits as predictors to predict IMF% in pigs, utilizing
computer vision methods and meat quality attributes.
Compared to traditional techniques, the duration was

significantly shortened. used partial least squares
(PLS) and ML analysis methods. They measured 299
lamb loins using a near-infrared fiber-optic device.
Excised samples were used for Soxhlet extraction
to determine IMF content, and predictive models
were developed using PLS or ML analysis. The
predictive models’ outcomes for IMF were comparable
between the two analytical techniques and successfully
predicted intramuscular fat levels in lamb muscle [20].
Robots [21] designed for sorting are capable of
categorizing fruits according to their color and size.
ML can also classify fruits based on their colour, shape,
and so on. Phate et al. [22] proposed various SVM
classifiers and a weighting model developed using
Optimized Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) and the Computer Vision System (CVS),
achieving automatic classification of sweet lemon
fruits. The model is also highly reliable for estimating
sweet lime weight. Kumar et al. [23] proposed
a system using two SVM classifiers for automated
evaluation and categorization of tomatoes. Tomatoes
were classified in three stages. In the first stage,
tomatoes are distinguished from other species. In
the second phase, mature and immature tomatoes are
categorized based on their color. Stage three identifies
three varieties of anomalies: black spots, ulcers, and
melanin. The system’s efficacy was assessed based on
its precision, exactness, perceptiveness, and precision
indices. Comparative analysis with similar methods
proved that the suggested system outperforms current
ones in classifying and grading tomatoes.

DL,with its focus onmulti-layer neural networks, finds
broader application in the automated categorization
and sorting of raw materials. Pan et al. [16] produced
a new framework called DeepFood. First, deep feature
extraction was performed using CNN-based transfer
learning algorithm. Then, an algorithm for classifying
multiple categories was employed. Assessment of the
DeepFood framework on a diverse dataset revealed
its enhanced capability in identifying ingredients,
surpassing numerous existing studies in the domain.
The process involves more than just employing DL
for the extraction of diverse and efficient features
from the food ingredient image dataset, but also
by applying advanced ML techniques to improve
the average accuracy of classification. DL is widely
used for fruit classification, Bhat et al. [24] used DL
techniques combined with DT to classify coconuts.
Experimental findings indicate a 93% accuracy rate
for DT and a 100% accuracy rate for the sophisticated
DL model DenseNet. It shows that DL models such
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as DenseNet perform better compared to traditional
ML algorithms such as DT. Different industries use
different types and parts of coconuts, so automatic
classification of coconuts will help speed up the
process. Albarrak et al. [25] utilized CNN for
categorizing date fruits. They proposed a new model
based on DL and CNN for date fruit classification. The
suggested model undergoes training and validation
procedures utilizing an internally curated dataset,
which encompasses eight distinct varieties of date
fruits prevalent in Saudi Arabia. For enhanced
precision, the model employs various preprocessing
methods, including attenuation learning rate, image
enhancement, model checkpoints and hybrid weight
adjustment. The model uses the trained MobileNetV2
architecture and the results show that themodel attains
an accuracy of 99%. This model also undergoes
comparisons with other established models like
AlexNet, ResNet, VGG16, and so on. The findings
demonstrate the superiority of the suggested model
over others in accuracy metrics. Momeny et al. [26]
employed modified CNN algorithm for the precise
identification and classification of cherry appearances.
By integrating techniques of maximum pooling and
average pooling, it is utilized to improve the ability of
CNNgeneralization, which in turn enables the grading
of cherries. The method is also compared with CNN
and baseline pooling approaches. The findings reveal
that the proposed CNN in the study outperforms
the other methods, achieving an impressive accuracy
rate of 99.4%. Thus, the application of CNNs in
conjunction with image processing techniques offers a
promising solution for assessing the export potential
and marketability of cherry fruits, potentially serving
as a viable alternative to traditional cherry grading
methodologies. Hu et al. [27] developed a device
for identifying and classifying apples in the field
through the DL framework. Utilizing machine vision
and various techniques, they developed detection
algorithms to distinguish among four characteristics:
apple size, color, shape, and surface imperfections.
Subsequently, the four characteristics were merged,
and SVM was employed to classify the field apples
into three categories: first, second, and other-grade
fruit. Field studies have demonstrated that, under
conditions where the feeding interval for apples is
maintained at under 1.5 seconds and the movement
velocity does not surpass 0.5 meters per second, the
resultant mean grading accuracy attains 94.12%. This
level of accuracy fulfills the stringent criteria for on-site
apple grading, indicating the efficacy of the adopted
methodology. Except apple, CNN models in DL can

recognise most fruits , and distinguish those that
have rotted from fresh fruits [28]. Motivated by a
number of traditional CNNs, Xie et al. [29] introduced
CarrotNet, a streamlined model leveraging machine
vision and DCNN for the detection of defective
carrots. The model, when evaluated on a test dataset,
exhibited an impressive accuracy rate of 97.04%.
These results underscore its potential application in
real-time monitoring and grading of carrot external
quality, thereby significantly enhancing operational
efficiency and minimizing manual labor requirements.
Jahanbakhshi et al. [30] employed a refined CNN
algorithm for identifying noticeable flaws in sour
lemon fruits, categorizing them based on these flaws.
They compared the proposed model with algorithms
such as KNN, SVM, DT and ANN classification.
The findings indicate that CNN has 100% accuracy.
Thus, it’s evident that the CNN technique and image
processing prove highly efficient in the classification
of sour lemons. The use of DL extends far beyond the
realm of fruits. For example, in nuts, Taner et al. [31]
employed a CNN model for the categorization of
hazelnut types. The precision of the suggested model
reaches up to 98.63% in the test dataset comprising
510 images. This outcome suggests indicates that
the suggested model can accurately classify hazelnut
varieties to meet the need for non-destructive, fast,
and reliable classification for commercial hazelnut
production. In meat, CV methods combined with
ANN enable real-time non-destructive monitoring.
Taheri-Garavand et al. [32] employed a hybrid
Artificial Bee Colony-ANN algorithm for selecting
the optimal features after feature extraction from
preprocessed fish images. Finally, SVM, K-NN and
ANN algorithms which are commonly used methods
were used to categorize the fish images. The ultimate
findings indicate that the ANN classifier exhibits a
strong capability in assessing the freshness of carp
preserved in ice. This underscores the applicability
of the ANN approach in such contexts. DL can be
used to predict carcass cut yield, and the use of CNN
in carcass segmentation can also be used for carcass
grading to determinemeat quality, Matthews et al. [33]
trained DL models for forecasting carcass cut yields
and assessed these predictions againstmore traditional
ML techniques. Their findings revealed that while
convolutional neural network (CNN) models could
indeed predict carcass cut yield, the method using
carcass sizes in the ML algorithm was slightly better
in absolute terms [34] assuming a crucial position.

Table 1 illustrates the use of ML and DL for
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categorizing and sorting other products. It can be
asserted that the implementation of DL and ML
has permeated almost all facets of the food sector,
assuming a crucial position.
3.2 Food processing
In food processing, AI technology not only improves
production efficiency but also significantly enhances
food safety and quality assurance. Figure 2 illustrates
the extensive applications of AI in food processing
and production, ranging from parameter optimization
to automated production. Through the integration
of sophisticated sensing technologies and advanced
image processing techniques, AI facilitates real-time
monitoring and adjustment of production procedures.
This ensures the preservation of essential nutrients
in food products while concurrently enhancing
production efficiency and elevating product quality
standards.

3.2.1 Production
In the realm of food processing, AI plays a pivotal
role in selecting appropriate processing parameters,
tailored to the microbiological profile of the food
items concerned [47]. AI technologies can also
enhance pasteurization processes’ efficiency and
efficacy. Specifically, ML algorithms are employed
to monitor product temperatures and heat treatment
durations, thereby calculating the actual sterilization
effect achieved. Subsequently, these algorithms
adjust pasteurization temperatures and durations
to ensure the elimination of harmful bacteria and
pathogens, while simultaneously preserving the

Figure 2. Application of AI in food processing.

nutritional integrity of the food [48]. Samodro et
al. [49] proposed a FL-driven temperature regulation
mechanism specifically designed for coffee roasters.
The system controls the temperature according to
the required degree of roasting. To ensure precise
temperature monitoring, a thermal imaging camera is
strategically positioned within the roasting chamber to
capture the real-time heat distribution of the roasting
coffee beans. This camera is seamlessly integrated
with a mixing apparatus that facilitates uniform
heat distribution among the beans. Integrating this
advanced system into the coffee roasting process

Table 1. Application of AI in grading and sorting of raw materials.

Products Species Type Results Reference

Vegetable

Potatoe DL and multispectral imaging Detect and classify defects [35]

Bell pepper ANN Automated sorting [36]

Tomato DL and CV Detect external defects [37]

Citrus
CNN Real-time sorting and weight grading [38]

DL and CV Fast in-line sorting [39]

Mulberry ANN and SVM Classify the ripeness [40]

Apples
DL Identify and classify the ripeness [41]

CV Identify rotten apples from fresh ones [42]

Other

Tea SVM Detect the tenderness grade and quality components [43]

Beverage CNN Classify [44]

Rice CNN Classify damaged rice [45]

Mushroom CNN Classify poisonous and edible mushrooms [46]
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consistently maintains the quality and aroma of the
final coffee product at optimal levels. During the
production of baked goods, AI can help automate
some of these key steps, such as waking and
rising and kneading [3]. AI technology can also
greatly improve productivity and product quality
in meat processing [4]. For example, in beef
carcass cutting systems, sensors combined with
computer-controlled cutting produce accurate carcass
images. In waterjet automated skinning systems for
fish fillets, computerized algorithms determine the
optimal trimming pattern [50]. Ozturk et al. [51]
combined ML with near-infrared spectroscopy (NIR)
to classify food powders under motion conditions,
preventing incorrect powder materials from reaching
the production line. Their research endeavor involved
a comparative analysis of two NIR sensors, each
characterized by distinct wavelength ranges. These
sensors were utilized to gather data, which was
subsequently fed into an ML model tasked with
classifying 25 distinct food powder materials. The
results show that pre-processing using an autoencoder
followed by SVM for all spectral wavelengths of the
two sensors gives the most accurate results.

Employing sophisticated AI methods like ML and DL,
combined with additive manufacturing techniques,
facilitates swift, personalized production and superior
quality production [52]. Silva Cotrim et al. [53]
developed an approach to classify different phases
of bread baking by observing color variations in
bread. This approach utilizes a combined system (HS)
integrating CNN and SVM. Studies show that the HS
CNN-SVM system can independently pinpoint and
categorize baking phases without human involvement,
surpassingmodels dependent only onCNN.Moreover,
the HS CNN-SVM diminishes the need for memory
use and quicker convergence, rendering it ideal for
both mobile and embedded systems. Lastly, the HS
CNN-SVM maintains its ability to extract color map
elements from CNN, facilitating the development
of processing control systems in the food sector,
especially those related to color discrepancies. ANN
also have numerous applications in the field of food
processing, including processes such as extraction,
drying, filtration, canning, baking, and others. They
have proven to be a valuable tool for predicting
outcomes with a high degree of accuracy [15]. In
the coffee industry, ANN can also be used to identify
coffee berries, which can help coffee producers reduce
the rate and instances of defects while increasing the
quantity of the final product. Fuentes et al. [54]

Employed neural networks and artificial vision to
recognize coffee fruits. The DL algorithm was trained
using 196 images and was able to correctly classify
in 41/42 tests with 97.6% efficiency. Nazari et
al. [55] combined artificial neuro-fuzzy system with
other algorithms. The proposed model predicted
the effect of design parameters (including cooking
panel location, bread cooking duration, and weather
conditions) on the causal parameter (i.e., the desired
temperature of the solar bread oven). They further
investigated and developed a technique for making
flat breads using a solar stove. Fabani et al. [56]
developed anANNmodel applied to the production of
flour from watermelon pomace, specifically focusing
on the dehydration/drying process. This model
can help optimize the production process and
potentially improve the quality and yield of the
flour. Sadhu et al. [57] integrated ANN with
differential evolution (DE) and simulated annealing
(SA) algorithms to optimize cooking parameters for
fried fish, with the aim of enhancing its nutritional
composition. The experimental results showed that
this two algorithms were effective in improving the
nutritional parameters of fried fish, specifically the
ω-3/ω-6 and cis/trans-fatty acid ratios, by 33.18% and
79%, respectively. This experiment’s AI modeling
and the parameter adjustment technique, rooted in
optimization principles, are adaptable for diverse food
processing engineering studies, underscoring AI’s
extensive effectiveness in enhancing food production.

3.2.2 Forecast
Zhou et al. [58] explored peanut protein content
prediction through ML modeling of spectral images
and chemical measurements. This approach yielded
greater predictive precision and reduced the time
spent on fitting compared to conventional ML
algorithm models, indicating that blending spectral
imagination could be effective. Within the realm
of tea studies, Wang et al. [59] merged NIR
spectroscopy with in-house CV for forecasting the
levels of tea polyphenols and catechins during the
processing of black tea. Their research revealed that
this combined spectroscopy and imaging approach
improved the prediction precision for polyphenols,
thereby surpassing previous challenges. Furthermore,
both the indicator displacement array (IDA) and
the SVM regression method are effective in precisely
forecasting crucial tea polyphenol elements in the
fermentation process [60].

CNN is capable of predicting fruit production. Behera
et al. [61] enhanced the fruit detection efficiency of the
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initial Faster R-CNN (FR-CNN) through adjustments
to the joint intersection over union (IoU) metric.
The revised IoU (MIoU) now focuses more on
concurrent zones, tackling the shortcomings. Mu
et al. [62] developed a tomato recognition system
employing DL methods for autonomously spotting
whole green tomatoes, no contingent on their shade
or developmental phase. This tomato detection
model identification model, integrating R-CNN and
ResNet-101, showed impressive performance with
a dataset, securing an average accuracy of 87.83%
and high effectiveness in tomato counting. This
indicates the method’s applicability in both ripening
and predicting yields. Zhang et al. [63] combined
spectral imaging methods with deep convolutional
generative adversarial networks (DCGAN) to estimate
the oil composition of separate corn kernels. DCGAN
was utilized to enhance spectral and oil content data
at once. A pair of models, Partial Least Squares
Regression (PLSR) and SVR, were developed to
compare their efficacy pre and post data augmentation.
The outcomes reveal that this approach not only boosts
the efficiency of both models but also reduces the
requirement for extensive training data. Simply put,
it facilitates quick and non-invasive forecasting of
the oil levels in single corn kernels, regardless of
the significance level. Yang et al. [64] developed
and tested a smart model using ANN to predict the
levels of anthraquinones and antioxidant effects of
co-fermentation products from a mix of two or three
fungi. The researchers deployed back propagation
(BP) and radial basis function (RBF) algorithms for
this aim. After empirically assessing anthraquinone
levels, it was found that the RBF ANN algorithm
showed reduced average absolute and average bias
errors relative to the BP ANN algorithm. This
approach enhances the composition of mushrooms
and betters their anthraquinone levels and antioxidant
properties. ANN models are capable of accurately
forecasting pH levels during cheese fermentation with
just the right amount of data. Li et al. [65] integrated
ANN with a mechanistic model to characterize the
variances in biomass, lactose levels, and lactic acid
concentrations. They addressed the problem of
reduced process efficiency in cheese cultivation, a
consequence of notable discrepancies in the final stages
of various fermentation periods. The suggested hybrid
model can precisely forecast pH levels during cheese
fermentation with scant data. This study’s results can
foresee fermentation’s conclusion and facilitate further
planning, enhancing process efficiency.

3.2.3 Detection
Indeed, the role of AI technology is pivotal in
regulating the quality of baked products, ensuring
inspection accuracy and hygiene. Utilizing AI,
producers are capable of autonomously verifying
the dimensions, volume, and form of baked items,
bypassing manual handling. This process not
only improves output but also upholds superior
hygiene and product quality duringmanufacturing [3].
Mavani et al. [66] demonstrated the potential of
AI in the food industry by suggesting a fuzzy
algorithm to calculate preservative levels in refined
fruits. Their research compared this algorithm with
the Takagi-Sugeno-Kang (TSK) approach, revealing
that fuzzy logic surpassed TSK in these particular
tasks. This indicates that fuzzy logic is a highly suitable
technique for accurately determining the percentage
of food preservatives. This accuracy is crucial for
ensuring both the safety and quality of processed foods.
In the case of meat items, blending ML and NIR-HSI
offers a swift and non-harmful approach to assessing
the level of lipid oxidation in lamb meat. Fan et
al. [67] created PLSR and Least Squares Support Vector
Machine (LSSVM) models to align entire spectra with
the assessed values of thiobarbituric acid reactive
substances (TBARS). The study’s findings indicated
that the refined LSSVMmodel, employing eigenbands
chosen via the CARS, successfully forecasted the levels
of TBARS. This implies the potential of NIR-HSI
in a rapid and non-invasive measurement of lipid
oxidation in mutton, thus confirming its practicality
for use in these contexts. developed a detailed
predictive model for tracking moisture variations in
tea by merging machine vision with near-infrared to
analyze the processing of green tea. The findings
revealed that a blend of intermediate data fusion that
integrates insights from machine vision and NIR can
precisely identify moisture levels in this procedure.
This approach is highly significant as it addresses
the issue of low prediction accuracy associated with
using a single sensor alone [68]. Wang et al. [69]
combined SVM model with NIR, electronic eye and
colorimetric sensing to assess leaf withering in black
tea processing. They used a micro-spectrometer,
custom machine vision, and colorimetric array to
capture data. Comparing low-level and mid-level
data fusion strategies, the SVM model combining
all techniques performed best, with mid-level fusion
outperforming low-level. The highest SVM model
accuracy was 97.50%, demonstrating a cost-effective,
non-destructive method for evaluating black tea
wilting. While Jin et al. [70] combined the SVMmodel
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with Fourier Transform Near Infrared Spectroscopy
and CVS to achieve a rapid assessment of black tea
fermentation. The study integrates the advantages
of Fourier transform NIR and computerized visible
spectroscopy through a mid-level fusion approach.
The results obtained from this integrated method
surpass those achieved using any single method
alone for evaluating black tea fermentation. It is
demonstrated that combining Fourier transform NIR
and principal component analysis feature extraction,
within amid-level fusion strategy, provides an effective
and swift means to assess the degree of black tea
fermentation.

Based on DL, Jie et al. [71] developed a rapid
and non-destructive technique for detecting citrus
granulation. Their study constructed various models
using preprocessed transmission spectra derived
from hyperspectral imaging as input data. Among
these models, the CNN demonstrated the highest
training accuracy of 88.02%, outperforming both
the Back Propagation Neural Network (BP-NN)
and the Least Square Support Vector Machine
(LS-SVM). Furthermore, after incorporating a batch
normalization layer into the CNN, the experimental
results revealed that the detection model achieved
remarkable accuracies of 100% and 97.9% on the
training and validation sets, respectively. Using
hyperspectral transmittance images (HSTIs) and
a DL-based fully convolutional network (FCN)
approach, internal bruising in blueberries can be
accurately detected even after mechanical damage.
The outcomes of the tests reveal that using the DL
technique, segments of bruises and calyx terminals
(blueberry’s stem) can be successfully isolated
from the fruit within 30 minutes after damage,
proving its proficiency in identifying internal
blueberry bruises [72]. Zhao et al. [73] developed
a methodology employing visible/near-infrared

spectroscopy (vis-NIR) and Artificial Neural
Networks to measure bacterial levels in real-time
throughout the kombucha fermentative procedure.
The team formulated and refined three varieties of AI
models: BP-ANN, Extreme Learning Machine ANN,
and RBF-ANNmodels, which utilizes meta-heuristic
algorithms specifically for this. After optimization,
the ANN models were significantly improved, with
RBF-ANN having the best results. The findings
suggest that this online detection method can be
effectively used to monitor the bacterial concentration
in kombucha, providing a viable strategy for the
real-time monitoring of specific indicators during food
fermentation processes. Wang et al. [74] developed
two intelligent models, PLSR and BP-ANN, for
accurately detecting the oil absorption of French fries
based on their surface features. The prediction set
coefficients for both the PLSR and BP-ANN models
exceeded 0.93, suggesting that the integration of
surface characterization and chemometrics offers
a swift and precise method for determining the
oil content in French fries. And experiments show
that CNN-based features show better performance
than manual features or features extracted by ML
algorithms, showing great potential. Liu et al. [75]
combined CNN with NDT techniques and CVS to
achieve effective and efficient detection and analysis
of complex food matrices. They found that traditional
ML algorithms relying on handcrafted features have
limited capabilities and generally perform inferior to
this combined approach.

In addition to the above, Table 2 showcases the
application of ML and DL in various other
products, demonstrating the widespread use of
these technologies across different fields.

Table 2. Application of AI in food processing.

Products Species Type Results Reference

Meat

Cod ML Predict liquid loss [76]

Chicken sausages CV Predict meat traits [77]

Pork ML and HSI Assess the content of monounsaturated and polyunsaturated fatty acids [78]

Salmon
CV Detect residues [79]

Machine vision-based neural network Detect residual bone [80]

Fruit Mango SVR Predict the shelf life [81]

Other

Coffee ANN and EN Predict quality and flavor [82]

Garlic ANN Predict optimal drying conditions [83]

Raw milk ML Detect antibiotic residues [84]
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3.3 Ensure food safety and quality
The core concerns in the food processing sector
are food safety and quality. AI technology offers
strong support for food quality monitoring and safety
testing via rapid, non-destructive detection methods.
Figure 3 summarizes several AI applications in
ensuring food safety and quality, including pathogen
detection, food adulteration identification, and quality
indicator prediction. These technologies can not only
swiftly detect potential food safety hazards but also
ensure food safety and superior quality throughout
production, processing, and storage phases through
real-time monitoring and preemptive alerts.

Figure 3. Application of AI in ensuring food safety and
quality.

3.3.1 Safety testing
ML can utilize readily available data to predict
food insecurity and issue early warnings [85]. By
utilizing CVS and ML, physical contaminants in
food (such as foreign objects or particles) can
be identified, thus preventing contaminated food
from entering the market and reaching consumers.
Additionally, AI algorithms can analyze DNA and
RNA sequences, enabling the accurate identification
and classification of pathogens that cause foodborne
illnesses. This is essential for ensuring food
safety [86]. Wang et al. [87] effectively utilized ML
to identify various food pathogens. They developed a
cell-printed electrochemical impedance sensor capable
of both qualitative and quantitative identification of
three pathogens: Escherichia coli, Staphylococcus

aureus, and Vibrio parahaemolyticus. Scientists
derived six distinct parameters from electrochemical
impedance spectroscopy (EIS), forming a dataset
that served as the key inputs for the ML model.
They selected and refined the Random Forest (RF)
algorithm to develop a bacterial classifier capable
of recognizing and detecting three types of bacteria.
Furthermore, by applying normalization-weighted
concentration classification, they achieved highly
accurate, efficient, and effective identification of
samples from the original dataset, unattributable
sources, and actual samples. This promising, simple,
and direct detection approach is crucial for the quick
identification and diagnosis of harmful bacteria in
food safety applications. Du et al. [88] proposed an
innovative technique for identifying and classifying
foodborne pathogens. This method integrates Raman
spectroscopy with Generative Adversarial Networks
(GAN) and multi-class SVM. This approach addresses
the issue of requiring numerous samples for training
by using GAN to generate artificial data, thereby
enhancing the training dataset.

The integration of GAN and SVM improves the
precision of detection and classification. This
integration offers an innovative approach to bacterial
identification, enhancing food safety by streamlining
and improving the precise recognition of foodborne
pathogens [88]. Whole-cell biosensor arrays based on
ML prediction models can accurately monitor mold
contamination in foods. Ma et al. [89] created an
innovative whole-cell biosensor array to track mold
contamination in food sources. The optimal classifier
identified through the comparison of six machine
learning algorithms. Utilizing the RF classifier, they
attained a perfect 100% accuracy rate in differentiating
between healthful peanuts and corn. Moreover,
distinguishing infected peanuts from corn prior to
molding was 95% and 98% accurate, respectively.
Sparse partial least squares decision analysis showed
an 83% success rate in identifying moldy peanuts
versus corn. Utilizing sparse partial least squares
decision analysis, an 83% accuracy rate was recorded
in differentiating moldy peanuts from moldy corn.
The findings indicate that integrating the whole-cell
biosensor array with an ML classifier results in
superior precision and usability in managing food
molds. Liu et al. [90] utilized MSI alongside diverse
ML strategies to swiftly identify zearalenone (ZEN) in
corn, employing a genetic algorithm and GA-BPNN to
pinpoint wavelengths most closely linked with ZEN
concentrations in corn. The GA-BPNN technique
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attained a 93.33% accuracy rate in identifying levels
of contamination in ZEN. The results imply that
combining multispectral imaging with ML is an
effective method for quick tracking of ZEN levels
in maize, presenting a hopeful resource for the
food safety sector. Jiang et al. [91] employed
hyperpectral NIR in tandem with PLSR for identifying
Pseudomonas spp. and Enterobacteriaceae, key agents
in spoilage during the cold storage of chicken meat to
swiftly evaluate the spoilage level. In their research,
the spectra were pre-processed using a standard
normal variate (SNV), Savitzky-Golay convolutional
smoothing (SGCS), and multiplicative scattering
correction (MSC), spanning a complete wavelength
spectrum of 900-1700 nm. These pre-processed
spectra were then correlated with the total counts of
Pseudomonas spp. and Enterobacteriaceae bacteria
(PEC) in fresh chicken breast meat, employing the
PLS algorithm for swift forecasting. The outcomes
showed that the MSC-PLS model, developed with
spectra preprocessed through MSC, outperformed the
PLS models developed using different spectra. The
study concluded that using both NIR spectroscopy
and the PLS algorithm for quick and harmless
identification of PEC in chicken meat is efficient.
Li et al. [92] engineered adaptable paper-based
surface-enhanced Raman scattering (SERS) detectors
to amplify the Raman emission of chloramphenicol
from food specimens. Additionally, they crafted
an AI-based prediction framework for the swift
identification of chloramphenicol in food items. Within
the array of AI instruments used, the multivariate
scattering correction integrated adaptiveweighted PLS
model demonstrated superior predictive efficiency.
The analysis of actual samples showed recovery rates
between 90% and 102%, featuring a 3.3% RSD. This
data suggests that the SERS sensor, in conjunction
with the AI forecasting model, is rapid, consistent, and
dependable in identifying chloramphenicol residues
in food samples. In addition to rapid identification
of pathogens, combining face recognition technology
with ML methods can detect heavy metal mercury
stress in tobacco plants [93].

DL has gained widespread application in food
germ identification. Park et al. [94] utilized the
automatic segmentation of foodborne bacteria in
chicken rinses using DL and image processing
techniques. This advanced technology offers accurate
and robust automated segmentation, which facilitates
the detection of pathogenic bacteria using FPI-HMI.
Significantly, this method markedly decreases the

duration from raw hypercube capture to categorization
by 15 seconds. It not only simplifies the identification
process but also improves the efficiency of food
safety surveillance. Identifying the proliferation
of Aspergillus flavus in peanuts through ANN
and SVM. Ziyaee et al.’s [95] research involved
analyzing peanut seed images treatedwithAspergillus
flavus via three distinct ML instruments: SVM,
ANN, and ANFIS. The findings revealed that ANN’s
precision in identifying fungal proliferation in peanuts
carrying Aspergillus flavus infection post-72 hours
reached 99.7% with a distinct color backdrop and
lighting. ANFIS demonstrated an impressive 99.9%
precision in identifying fungal proliferation on peanuts
within a mere 48-hour period of Aspergillus flavus
infection. The outcome unmistakably demonstrates
the efficacy of ML methods in identifying the
presence and proliferation of Aspergillus flavus in
peanuts, establishing its importance in food safety
and quality assurance. Gao et al. [96] developed
a strategy utilizing HSI and 1D CNN-based for
rapid and accurate analysis of aflatoxins in cereal
crops, particularly peanuts and maize. Their
research also involved an assessment of the 1D-CNN’s
efficacy against feature selection and various other
techniques. The results indicated that neural
networks significantly enhanced detection efficiency
compared to feature selection. This study is of
positive significance for pre-production detoxification
in food processing and foreign trade enterprises.
DL algorithms can also utilize metabolomics data
to rapidly detect pathogenic and non-pathogenic
microorganisms. Wang et al. [97] apply DL algorithms
to achieve rapid detection of both pathogenic
and non-pathogenic microorganisms through the
utilization of metabolomics data. The study revealed
that the ANN achieved an average accuracy of 99.2%
in predicting unknownmicroorganisms in a controlled
laboratory environment. When compared to other
prevalent data analysis methods, such as the RF
Model and SVM, the ANN consistently outperformed
them, highlighting the substantial potential of deep
learning in metabolomics data analysis. Kolosov
et al. [98] used multispectral imaging and deep
CNN to estimate microbial populations in meat
samples. The DL models were run on an embedded
platform and the researchers used different meat
sample storage conditions and evaluated various DL
models and embedded platforms. Experimental
results indicate that the XavierNX platform excels
in latency and throughput, whereas the Nano and
RP4 platforms offer advantages in efficiency and
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cost-effectiveness, respectively. DL is additionally
applicable in identifying residues, as demonstrated
by its integration with SERS and a 1D-CNN, enabling
swift characterization of pesticide residues in tea.
In relation to conventional identification techniques
like SVM, PLS-DA, K-NN, and RF, the 1D-CNN
approach showed enhanced precision, reliability,
and sensitivity in identification. In summary, this
innovative analytical method capitalizes on the
advantages of SERS and the DL technique (1D CNN),
offering a hopeful solution for quickly detecting
pesticide remnants in field tea leaves [99]. Seo et
al. [100] combined 1D-CNN, near-infrared HSI, and
DL technology to carry out non-invasive identification
of organic residues in vegetables. The outcomes
of the experiments showed that the efficacy of the
1D-CNN method was superior to the validation
precision realized by the SVM classifier. As a result,
employing near-infrared imaging along with DL
techniques offers possibilities for swift and harmless
identification and categorization of organic matter in
food processing sites. Sha et al. [101] employed SERS
in conjunction with CNN for rapid identification of
benzodiazepines (diazepam and midazolam). They
trained the CNN for both qualitative and quantitative
identification of these two drugs in water and
beverage samples. The proposed method creates
an intelligent identification model for SERS spectra,
leveraging DL techniques. This model allows for
a rapid and sensitive differentiation between the
two benzodiazepine drugs. Salam et al. [102]
developed three classification algorithms utilizing
Linear Discriminant Analysis (LDA), SVM and ANN
methods to detect immature seeds and foreign matter
in chickpea mixtures. ANN and LDA outperformed
SVM in terms of classification accuracy of detection.
The image processing techniques developed in this
study can be incorporated into vision-based real-time
systems, and the newly devised algorithms are
effective in identifying undesirable elements, such
as foreign objects and ripe chickpea kernels, within
chickpea mixtures.

3.3.2 Quality testing
ML can be effectively used for food quality monitoring.
For example, Sánchez et al. [103] used ML techniques
in conjunction with CVS to perform multivariate
analysis of beef color variation and thus determine
beef quality. By utilizing CVS to capture the beef
slices’ color, the researchers tested the predictive
capabilities of three classifiers: DT, logistic regression,
andmultivariate normal distribution, in distinguishing

between fresh and non-fresh beef colors. The outcomes
revealed that all three models demonstrated high
accuracy. These findings emphasize the superiority of
multivariate analysis in predicting beef color over the
conventional method of analyzing each color channel
independently. AI is indeed extensively utilized in the
realm of tea quality inspection, often in conjunction
with diverse techniques. Tang et al. [104] illustrate this
by employing a combination of first-order derivative
(FD), principal component analysis (PCA), and SVM
to construct a discriminantmodel specifically designed
for the recognition of tea leaf quality grades. In
the training set, an outstanding 98.2% accuracy was
achieved, and this impressive performance continued
with a remarkable 98.2% in the test set. These findings
clearly illustrate the effectiveness of the FD-PCA-SVM
model in recognizing and presenting tea quality
distinctions. Moreover, the research highlights the
appropriateness of hyperspectral imaging technology
in evaluating the quality of green tea. Ren et
al. [105] employed near-infrared HSI and multiple
DT methods in ML to accurately identify and grade
the quality of black tea. Their study contrasted
three unique supervised decision tree algorithms:
fine, medium, and coarse. The findings indicated
that the fine tree model, grounded in data fusion,
exhibited the most superior predictive capabilities.
During the prediction phase, this model demonstrated
an impressive correct classification rate (CCR) of
93.13% when assessing black tea quality. The
study highlights that combining human-computer
interaction methodologies with intelligent algorithms
constitutes a rapid and effective approach for precisely
identifying the grade quality of black tea. Li et
al. [106] conducted a study to both qualitatively
and quantitatively evaluate the fermentation quality
of black tea using HSI. Their research findings
revealed that the developed model could successfully
distinguish the degree of fermentation, achieving a
correct classification rate of 83.33% for the prediction
set. Moreover, the quantitative predictive model
showcased exceptionally high accuracy in projecting
catechin levels. This research conclusively illustrated
the practicality of leveraging hyperspectral imaging for
assessing the fermentation quality of black tea. Wang
et al. [107] iemployed aNIR spectrometer connected to
a smartphone for tea quality assessment. The primary
objective was to forecast the catechin and caffeine
concentrations in both green and black teas. The
results of their study revealed that the model based
on SNV preprocessing and SVR exhibited precise
predictive performance for both catechins and caffeine.
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They utilized different spectral preprocessing methods
in tandemwith both linear PLSR and nonlinear SVR to
construct precise predictive models [108]. ML can also
effectively deployed to swiftly and efficiently detect
food adulteration, thereby ensuring the preservation
of food quality. Pradana-López et al. [109] introduced
an AI-based method for the quick detection of
adulterated lentil flour in real-time scenarios. They
formulated a mathematical model utilizing CNN and
transfer learning, particularly employing the ResNet34
architecture, to discern samples of lentil flour that are
tainted with minuscule amounts of pistachios (nuts)
or wheat (gluten). Experimental results demonstrated
the model’s robust performance, showcasing an
impressive 99.1% accuracy inmisclassifying lentil flour
samples that contained ground pistachios, and a 96.4%
accuracy in inaccurately classifying samples with
wheat flour. These findings underscore the model’s
efficacy and its prospective utility for two distinct
cohorts: individuals diagnosed with celiac disease
and those affected by nut allergies. Kalinichenko
et al. [110] carried out a study aimed at evaluating
the genuineness and identifying any adulteration
in soy protein sausages. They integrated EN with
chemometric techniques to detect and quantify soy
proteins. In their research, they employed the
attributes obtained from the EN as input data for
refining PNN. Specifically, they extracted area values
and maximum response values from the EN readings
to serve as features for evaluating and comparing
their effectiveness in differentiating between various
sausage types. The findings of their study indicated
that using the raw maximum response values as
input vectors for the PNN resulted in a 100%
classification reliability. This meant that themodel was
capable of accurately classifying all types of sausages
without any misclassifications, effectively thwarting
label fraud. AI can also be utilized for damage
detection purposes. Yang et al. [111] employed an
EN method combined with chemometrics to quickly
and non-destructively assess if yellow peaches are
compromised or intact. They compared various
models using samples collected at different time points
post-damage occurrence. Their findings revealed
that within 24 hours of the peaches sustaining
damage, the accuracy in identifying the damaged
fruits reached 93.33%. This indicates that the EN has
significant potential for detecting compression damage
in yellow peaches. Munera et al. [112] found that HSI
combined with ML, particularly the XGBoost classifier,
demonstrates exceptional effectiveness in identifying
typical defects in loquat fruits. Across three different

approaches—categorizing fruit pixels as sound or
defective, distinguishing internal from external defects,
and separately identifying specific defect types—the
XGBoost classifier achieved success rates of 97.5%,
96.7%, and 95.9%, respectively. These results highlight
the technique’s capability to enhance the quality
control of loquat fruit. Furthermore, the integration of
HSI with PLSR models in ML has diverse applications.
It can predict the robustness of intramuscular fat in
lambs [113], nondestructively determine the inosinic
acid (IMP) content of chicken [114], and detect
the freshness of frozen meat in real-time without
thawing it out [115]. These capabilities underscore
the adaptability and promise of HSIs and ML
techniques in the domain of food quality evaluation
and management.

DL also has numerous applications in food quality
testing. For example, An et al. [116] successfully
applied CNN to detect the wilting humidity of black
tea. TThey compared the prediction performance
of the CNN model with traditional methods such
as PLS and SVR. The results indicated that the
CNN-based model, which leveraged confidence
intervals for quantitative prediction of dead leaf
moisture content, outperformed the conventional
models. This demonstrates the power of DL in
providing accurate and reliable predictions for food
quality attributes, potentially leading to improvements
in food safety and quality control. DL can facilitate the
detection of quality attributes in roasted coffee beans,
including the prediction of their roasting degree [117].
Thazin et al. [118] used EN and ANN to predict
the acidity level of freshly roasted coffee. Their
study incorporated an array comprising eight diverse
semiconductor gas sensors, designed to analyze the
aroma of the coffee. The EN was able to clearly
categorize the acidity of roasted coffee at different
roast levels with nearly identical scoring results to
those obtained using artificial neural networks and
manual scoring. The study shows that the e-nose
has shown the ability to integrate with gourmet
robots. Rong et al. [119] used DL and machine
vision to perform rapid impurity detection of chocolate.
The proposed DL method is simple and effective,
which avoids manual feature extraction, not only
overcomes the aggregation phenomenon of foreign
objects and impurities in the image, but also adapts to
the interference caused by wear and tear damages on
the surface of the drive belt, and avoids detection errors
in the actual factory environment. The outcomes of
the experimental analysis indicate that the proposed
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Table 3. Application of AI in grading and sorting of raw materials.

Products Species Type Results Reference

Meat
Pork

ML and HSI Identify jaw meat adulteration [121]

HSI and PLSR Detect homologous fats [122]

Fish fillets HSI and DL Predict total volatile basic nitrogen content [123]

Vegetable Oilseed rape leaves DL and fluorescence hyperspectral Detect heavy metal lead (Pb) content [124]

Cereals Corn ML and HSI Detect aflatoxin [125]

Other

Tea

SERS Detect pesticide residues in tea leaves [126]

CNN and PLS and ELM Detect thiram and pymetrozine [127]

SVM and PLS and NIR Assesse tea quality [128]

CVS Evaluate the quality [129]

SVM and MV and HSI Assesse quality [130]

Wolfberry ANN and GA and RSM Determine pesticide residues [131]

Mayonnaise ML and CV Quickly screen the quality [132]

Coffee EN and ANN Predict the quality and flavor [82]

Nut HSI and DL Assess quality [133]

Olive oil
CNN Detect and quantify adulteration [134]

SERS and LSTM Detect phthalates in olive oil [135]

Sea cucumbers SVM and HSI Detect adulteration of salty sea cucumbers [136]

methodology achieves a high degree of accuracy in
segmenting object regions, with a success rate of 99.4%
in the test images. Furthermore, it demonstrates
robust performance in classifying foreign objects,
correctly identifying 96.5% of them in the verification
images. Notably, the methodology achieves perfect
detection accuracy, with a 100.0% success rate in the
test images. These results suggest that the proposed
approach holds promise for applications requiring
rapid and precise detection of impurities in chocolate
products. Kong et al. [120] explored the detection of
adulteration inmarine fishmeal using a combination of
near-red light hyperspectral imaging and CNN. Their
objective was to quantitatively identify adulterated
feather meal and fish by-product meal within the
fish meal samples. Additionally, the researchers
compared the PLS and SVMmodels with the proposed
CNN model. The comprehensive analysis unveiled
that the CNN model outperforms both PLS and
SVM in terms of classification and regression tasks.
Specifically, theCNNachieves an outstanding accuracy
of 99.37% across six classifications. This pioneering
integration of NIR imaging and CNN calibration
presents a groundbreaking approach to detecting fish
meal adulteration with low-cost processed animal
proteins, notably fish by-product meal.

Additional examples of ML and DL applications used
to ensure the quality and safety of food products are
shown in Table 3.

4 Conclusion
This review paper has provided a comprehensive
overview of the diverse applications of AI, particularly
ML and DL, within the food processing sector. By
automating raw material grading and sorting, these
technologies have enabled more efficient and accurate
classification of various food items. In production, AI
can optimizes parameters, enhancing food safety and
preserving nutritional value. Additionally, the ability
of AI to predict and forecast parameters like shelf life,
nutrient content, and quality changes has empowered
food manufacturers to make informed decisions.
Moreover, AI-based detection methods provide rapid
and non-invasive ways to evaluate food quality and
safety. However, it must be acknowledged that the
application of AI in the food industry also has certain
limitations. The primary challenge is the difficulty
and high cost of acquiring high-quality data. The
complexity of the industry leads to time-consuming
data collection, and unethical data collection also
involves privacy and security issues. Incomplete or
inaccurate data can cause model bias and incorrect
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Table 4. Abbreviations and their corresponding full names appearing in the text.

Abbreviation Full name Abbreviation Full name

AI Artificial intelligence CNN Convolutional neural network

ML Machine learning NIR Near-infrared

DL Deep learning DE Differential evolution

SVM Support vector machine SA Simulated annealing

DA Discriminant analysis IDA Indicator displacement array

NB Naive bayes IoU Intersection over union

K-NN K-Nearest Neighbors PLSR Partial least squares regression

GLM Generalized linear model BP Back propagation

SVR Support vector regression RBF Radial basis function

LR Linear regression TSK Takagi-Sugeno-Kang

GPR Gaussian process regression TBARS Thiobarbituric acid reactive substances

DT Decision tree HSTLs Hyperspectral transmittance images

FCM Fuzzy C-means FCN Fully convolutional network

FL Fuzzy logic EIS Electrochemical impedance spectroscopy

RNN Recurrent neural network RF Random forest

DNN Deconvolution neural network GAN Generative Adversarial Networks

FNN Feed-forward neural network SNV Standard normal variate

MNN Modular neural network SGCS Savitzky-Golay convolutional smoothing

MPNN Multilayer perceptron neural network MSC Multiplicative scattering correction

GAN Generative adversarial network SERS Surface-enhanced Raman scattering

IMF Intramuscular fat content LDA Linear discriminant analysis

PLS Partial least squares FD First-order derivative

CVS Computer vision system PCA Principal component analysis

predictions, potentially impacting quality and safety
decisions.

In conclusion, although AI brings innovative
opportunities for food processing, addressing its
limitations is crucial. There is a need for continuous
improvement of ML and DL algorithms to enhance
data quality and manageability, research interpretable
AI models, and reduce enterprise usage costs. Only
in this way can the food industry better leverage AI
to meet consumer needs and achieve sustainable
development.

The abbreviations and their corresponding full names
appearing in the text can be found in Table 4.
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