

Synergizing Algorithms and Appetite: A Computational Leap Toward Precision Nutrition in Diabetes Management

Chunming Xu ^{1,2,*}

¹ School of Light Industry, Beijing Technology and Business University, Beijing 100048, China

² Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China

Commentary on: Liu, R., et al. (2025). "Chemical Properties-Based Deep Learning Models for Recommending Rational Daily Diet Combinations to Diabetics Through Large-Scale Virtual Screening of α -Glucosidase Dietary-Derived Inhibitors and Verified In Vitro." *Journal of Agricultural and Food Chemistry*, 73, 15165–15177. [1]

1 Introduction

The global escalation of Diabetes Mellitus (DM) has necessitated a paradigm shift from purely pharmacological interventions to holistic lifestyle management, wherein diet plays a pivotal role. While the pharmacological inhibition of α -glucosidase—a key enzyme in carbohydrate digestion—remains a standard therapeutic strategy, synthetic inhibitors like acarbose are frequently associated with gastrointestinal distress. This has spurred interest in dietary-derived α -glucosidase inhibitors (AGIs). However, the "dark matter" of nutritional science remains the vast, uncharacterized chemical space of

food and the complex, often non-linear interactions between bioactive compounds. In their recent publication, Liu et al. [1] address this complexity by bridging the gap between deep learning (DL) and food chemistry, offering a compelling workflow for identifying synergistic dietary combinations for hyperglycemia management.

2 The Move to Computational Gastrology

The study by Liu et al. [1] represents a significant maturation in the field of "computational food science." historically, the discovery of functional foods relied on serendipity or ethnopharmacological knowledge, followed by laborious in vitro screening. Liu et al. [1] invert this process, employing a "virtual-first" approach. By leveraging Chemprop for molecular property prediction and a Graph Convolutional Network (DDI-GCN) for interaction prediction, the authors successfully mined the FooDB database of approximately 70,000 compounds.

The robust nature of their workflow is evident in their filtration criteria. The decision to screen not only for biological activity but simultaneously for

Submitted: 22 December 2025

Accepted: 27 December 2025

Published: 29 December 2025

Vol. 2, No. 4, 2025.

 10.62762/ASFP.2025.185047

*Corresponding author:

 Chunming Xu

xucm@btbu.edu.cn

Citation

Xu, C. (2025). Synergizing Algorithms and Appetite: A Computational Leap Toward Precision Nutrition in Diabetes Management. *Agricultural Science and Food Processing*, 2(4), 173–175.

© 2025 by the Author. Published by Institute of Central Computation and Knowledge. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>).

toxicity (via ClinTox) and intestinal permeability (via GSK rules) demonstrates a clinical mindset often missing in early-stage cheminformatics. This multi-objective optimization resulted in the identification of 75 potential AGIs, 59 of which were previously unreported, highlighting the untapped potential of legacy databases when interrogated by modern AI architectures.

3 Synergy Over Singularity

The most scientifically profound contribution of this work is its focus on combinatorial effects. Nutritional science has long suffered from reductionism—isolating single nutrients and expecting them to replicate the health benefits of whole foods. Liu et al. [1] challenge this by explicitly modeling Drug-Drug Interactions (DDI) as a proxy for Nutrient-Nutrient Interactions.

The application of the Chou-Talalay method to quantify the interactions between betulinic acid and other triterpenoids (betulin, lupeol, and taraxasterol) provides a rigorous biochemical basis for "food pairing." The finding that betulinic acid acts synergistically with these compounds (Combination Index < 1) suggests that specific food combinations—such as rosemary (rich in betulinic acid) paired with lettuce or black tea (sources of taraxasterol and lupeol)—could theoretically offer superior glycemic control compared to consuming these items in isolation. This moves the concept of a "balanced diet" from a vague guideline to a molecularly optimized prescription.

4 Methodological Rigor and Validation

The authors must be commended for not relying solely on *in silico* predictions. The transition from virtual screening to 200 ns Molecular Dynamics (MD) simulations, and subsequently to wet-lab validation, provides a necessary reality check.

Critically, the authors validated their findings using both yeast and rat small intestine α -glucosidase. This is a vital methodological distinction. Yeast α -glucosidase is the standard for high-throughput screening due to cost, but it shares low homology with the mammalian enzyme. Compounds potent against yeast enzymes often fail in mammalian models. By confirming activity in rat intestinal homogenates, Liu et al. [1] significantly de-risk the translational potential of their findings. The results indicated that while IC₅₀ values were slightly higher in mammalian enzymes, the triterpenoids remained potent, often outperforming

acarbose in the yeast model and showing comparable utility in the mammalian model.

5 Limitations and the Translational Gap

Despite the study's innovative design, several hurdles remain before these "rational diet combinations" can be translated into clinical practice.

First, the "Food Matrix Effect" remains an unaddressed variable. The study predicts intestinal absorption based on chemical structure (GSK rules), treating compounds as if they are ingested in pure solution. In reality, these triterpenoids are embedded within complex plant matrices containing fibers, lipids, and proteins, which can significantly inhibit or enhance bioavailability. For instance, the lipophilic nature of triterpenoids suggests their absorption requires co-ingestion with fats, a nuance a structural screen might overlook.

Second, there is the question of "Dosage Realism." The study identifies rosemary as a key source of betulinic acid (102 mg/g). However, rosemary is typically consumed as a garnish or spice in milligram quantities, whereas the experimental assays utilize concentrations that might require the consumption of unrealistic amounts of the raw herb to achieve therapeutic levels in the gut. While the study proves mechanism, it does not yet prove nutritional feasibility.

Finally, while the interaction models successfully predicted synergy *in vitro*, the *in vivo* environment introduces metabolic variables—specifically, the gut microbiome. Triterpenoids are subject to extensive biotransformation by gut bacteria, which can convert them into metabolites with vastly different biological activities. A "rational combination" predicted by deep learning might be rendered inert, or conversely, more potent, by the host's microbiome.

6 Conclusion

Liu et al. [1] have provided a landmark proof-of-concept that establishes deep learning as a viable tool for dissecting the chemical complexity of the human diet. By successfully identifying novel AGIs and accurately predicting their synergistic interactions, they have laid the groundwork for a future where dietary advice is generated not just by empirical observation, but by predictive molecular modeling.

Future research should focus on bridging the gap between the computational predictions and

physiological reality. This entails moving from enzyme assays to cell-based transport models (e.g., Caco-2 cells) to assess true bioavailability, and ultimately to in vivo feeding studies to verify if these "rational combinations" lower postprandial glucose in living systems. Nevertheless, this work stands as a testament to the power of interdisciplinary research, merging computer science and food chemistry to tackle the global burden of diabetes.

Data Availability Statement

Not applicable.

Funding

This work was supported without any funding.

Conflicts of Interest

The author declares no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

References

[1] Liu, R., Gan, J. W., Sun, M. J., Chen, H. X., Zou, W. Y., Zou, S. D., & Liu, S. (2025). Chemical Properties-Based Deep Learning Models for Recommending Rational Daily Diet Combinations to Diabetics Through Large-Scale Virtual Screening of α -Glucosidase Dietary-Derived Inhibitors and Verified In Vitro. *Journal of Agricultural and Food Chemistry*, 73(24), 15165–15177. [CrossRef]

Chunming Xu received the B.S. and M.S. degrees in Bio-engineering and Ecology from Northwest A&F University and the Ph.D. degree in Biochemical Engineering from Institute of Process Engineering, Chinese Academy of Sciences. Chunming-Xu is a professor at the School of Light Industry Science and Engineering at Beijing Technology and Business University. He is a green factory evaluation expert of the Ministry of Industry and Information Technology of China, a project expert of the China National Light Industry Council, and a reviewer of many journals such as Journal of Chinese Institute of Food Science and Technology and Science and Technology of Food Industry. His research focuses on agricultural intelligent systematics, food big data technology, multi-omics analysis. He has published over 50 relevant papers in areas such as metagenomics, transcriptomics, screening of resistance genes, screening of bioactive peptides, and virtual screening of enzyme inhibitors. He has also filed 8 related patents and serves as a reviewer for multiple journals. (Email: xucm@th.btbu.edu.cn)