

Structural Gatekeepers of Photosynthesis: A Critical Review of CYN38 Dimerization in Chlamydomonas Photosystem II Repair

Bin Guo ^{1,2,3,*}

¹ College of Life Science, Northwest University, Xi'an 710069, China

² Key Laboratory of Biotechnology of Shannxi Province, Xi'an 710069, China

³ Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), Xi'an 710069, China

Commentary on: Yao, Q., Dong, J., Zhang, T., Cao, H., Yu, J., Wang, X., Li, B., Zhu, L., Wang, Y., Fu, A., & Wang, F. (2025). Dimerization of Immunophilin CYN38 Regulates Photosystem II Repair In Chlamydomonas. *Plant, Cell & Environment*, 1–13. [CrossRef]

Abstract

Photosystem II (PSII) repair is a fundamental physiological process governing the resilience of photosynthetic organisms against high light (HL) stress. A recent study by Yao et al. (2025) provides significant mechanistic insights into this process within the model green alga *Chlamydomonas reinhardtii*. The authors characterize the luminal immunophilin CYN38, a homolog of the *Arabidopsis* CYP38, identifying it as a critical auxiliary protein for the biogenesis and stabilization of PSII. Through the characterization of a unique insertion mutant, *cyn38*, which produces a C-terminally extended protein, the study elucidates that homodimerization of CYN38—mediated by its C-terminus—is a

prerequisite for its association with PSII core subunits. This review analyzes the authors' findings regarding the dominant-negative nature of the mutant protein, the evolutionary conservation of immunophilin functions without enzymatic activity, and the structural basis of the PSII repair cycle. We conclude that this study offers a pivotal advancement in understanding the molecular "chaperoning" required for maintaining photosynthetic efficiency under stress.

Keywords: photosystem II repair, CYN38, dimerization, chlamydomonas.

1 Introduction

The harnessing of solar energy by oxygenic photosynthetic organisms comes with an inherent risk: oxidative damage. The reaction center of Photosystem II (PSII) is particularly vulnerable to light-induced damage, primarily due to the generation of singlet oxygen and other reactive oxygen species (ROS) during electron transport. To survive, organisms from cyanobacteria to vascular plants have evolved a

Submitted: 29 December 2025

Accepted: 29 December 2025

Published: 27 January 2026

Vol. 3, No. 1, 2026.

doi:10.62762/ASFP.2025.415498

*Corresponding author:

✉ Bin Guo

guobin@nwu.edu.cn

Citation

Guo, B. (2026). Structural Gatekeepers of Photosynthesis: A Critical Review of CYN38 Dimerization in Chlamydomonas Photosystem II Repair. *Agricultural Science and Food Processing*, 3(1), 1–5.

© 2026 by the Author. Published by Institute of Central Computation and Knowledge. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>).

sophisticated "repair cycle," wherein the damaged D1 reaction center protein is degraded and replaced de novo. While the core proteases (e.g., FtsH) involved in this turnover are well-characterized, the auxiliary proteins that facilitate the disassembly, protection, and reassembly of the PSII supercomplexes remain an active area of investigation.

Immunophilins, a family of proteins originally identified as targets for immunosuppressive drugs (binding FK506 or cyclosporin A), have emerged as key regulators in the thylakoid lumen. In their recent publication in *Plant, Cell & Environment*, Yao et al. [1] investigate the specific role of the cyclophilin CYN38 in *Chlamydomonas reinhardtii*. While its *Arabidopsis* ortholog, CYP38, has been implicated in PSII assembly [2, 3], the precise molecular mechanism—specifically regarding protein oligomerization—has been less clear in algal systems.

This review critically examines the methodology and findings of Yao et al. [1], highlighting their discovery of a C-terminal dimerization motif essential for CYN38 function. By leveraging a serendipitous insertion mutant, the authors provide compelling evidence that CYN38 operates not as an enzymatic isomerase, but as a structural scaffold dependent on dimerization to bind and stabilize PSII during high light stress.

2 Summary of Key Findings

The research centers on the characterization of a *Chlamydomonas* mutant, denoted as *cyn38*, obtained from the CLiP library. The phenotype of this mutant was explicitly high-light sensitive, exhibiting lower Fv/Fm values (maximum quantum yield of PSII) and reduced biomass accumulation under excess light compared to the wild type (WT).

2.1 The Nature of the Mutation

A striking feature of this study is the genetic nature of the *cyn38* mutant. Unlike a standard knockout, the insertion of the APHVIII cassette occurred 7 base pairs upstream of the stop codon. This resulted in a frameshift that replaced the final proline residue with a 51-amino acid extension, creating a larger protein variant named CYN38(L). The authors demonstrated that this was not merely a loss-of-function due to protein instability; rather, CYN38(L) accumulated in the thylakoid lumen but failed to function, acting as a dominant-negative mutation.

2.2 Dimerization and PSII Association

Using Blue Native PAGE (BN-PAGE) and Yeast Two-Hybrid (Y2H) assays, the authors established that wild-type CYN38 forms a homodimer. This dimerization is mediated exclusively by the C-terminal domain. In the *cyn38* mutant, the 51-amino acid extension on the C-terminus sterically or structurally hinders this interaction, locking CYN38(L) in a monomeric state. Crucially, the study correlates this oligomeric state with function: only the dimeric CYN38 can associate with the PSII complex.

2.3 Disruption of the PSII Repair Cycle

The physiological consequence of the monomeric CYN38(L) is a failure in the PSII repair cycle. Immunoblotting revealed that under high light, the core PSII subunits (D1, CP43, and CP47) were rapidly depleted in the mutant, and the re-accumulation of functional PSII supercomplexes was severely impaired. The authors propose that CYN38 binds to the luminal loops of CP43 and D1, stabilizing the complex during the vulnerable stages of D1 replacement. The failure of CYN38(L) to bind these targets exposes PSII to unchecked photo-oxidative damage or failed reassembly.

2.4 Lack of PPIase Activity

Consistent with its *Arabidopsis* homolog [2], the *Chlamydomonas* CYN38 was found to lack peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro. Despite possessing a cyclophilin-like domain, the evolutionary trajectory of this protein has favored a structural chaperone role over catalytic activity, a transition also reflected in its unique structural fold [4].

3 Critical Analysis

3.1 Methodological Strengths and Innovations

The strength of the Yao et al. [1] study lies in its robust use of biochemical assays to validate genetic observations. The identification of the dominant-negative mechanism is particularly elegant. Often, insertion mutants are assumed to be null alleles. By rigorously characterizing the transcript and protein size (identifying the "L" variant), the authors uncovered a specific structural requirement (the C-terminus) that a simple knockout might have obscured.

The use of 2D SDS-PAGE following BN-PAGE provided a clear visual demonstration of the physical

association—or lack thereof—between CYN38 isoforms and the PSII supercomplex. Furthermore, the rescue experiments were designed meticulously. Complementation of the *cyn38* mutant with wild-type CYN38 (strain *cyn38C*) failed to fully restore the phenotype because the mutant CYN38(L) protein was still present and likely interfering with the dimerization of the introduced wild-type protein. Conversely, expressing CYN38(L) in a WT background (*cyn38L* strain) recapitulated the defect, confirming the dominant-negative hypothesis. This genetic proof is highly convincing.

3.2 Structural Insights via AlphaFold

In the absence of a crystal structure for *Chlamydomonas* CYN38, the authors utilized AlphaFold predictions to model the C-terminal extension. The prediction showed a random coil interfering with the α -helical dimerization interface. While wet-lab structural biology (e.g., X-ray crystallography) remains the gold standard, the integration of high-accuracy AI predictions with Y2H interaction data is an acceptable and increasingly standard approach in modern molecular biology. The Y2H data mapped the interaction specifically to the C-terminal domains and further identified the luminal loops of D1 (CD-loop) and CP43 (E-loop) as binding partners, providing a low-resolution but functionally relevant structural map of the complex.

3.3 Evolutionary Implications

The discussion provided by Yao et al. [1] places CYN38 in a compelling evolutionary context. The protein has evolved from a multifunctional chaperone in cyanobacteria (*anaCyp40*) to a specialized PSII-specific factor in chloroplasts. The loss of PPIase activity is a recurring theme in thylakoid immunophilins, as demonstrated in *Arabidopsis* CYP38 [2]. This suggests that during the endosymbiotic transition to chloroplasts, the selection pressure shifted from catalytic isomerization to steric stabilization, a shift potentially encoded in its unique immunophilin fold [4].

The authors highlight that unlike the cyanobacterial homolog which targets phycobilisomes and PSI/PSII broadly, CYN38 is highly specific to PSII core subunits. This specialization likely evolved to cope with the complex regulatory needs of the eukaryotic thylakoid membrane, particularly the lateral heterogeneity of PSII (grana) and PSI (stroma lamellae), although the paper focuses primarily on the biochemical association

rather than spatial localization within thylakoid sub-domains.

3.4 Limitations

While the study is comprehensive, a few questions remain. The authors demonstrate that CYN38 binds to the luminal loops of D1 and CP43. However, the exact timing of this binding during the repair cycle is inferred rather than directly tracked in real-time. Does CYN38 bind to the damaged PSII to facilitate disassembly, or does it bind to the D1-depleted complex to facilitate the insertion of nascent D1? The data suggests it stabilizes the complex, implying a role in preventing disintegration during the vulnerable "gap" phase of repair, but precise pulse-chase kinetics regarding the complex assembly intermediates could refine this model.

Additionally, the authors note that the *cyn38* mutant exhibits a phenotype even under low light (though less severe), suggesting that CYN38 aids in housekeeping biogenesis, not just stress repair. The review would benefit from a deeper exploration of whether CYN38 is constitutively bound to PSII or recruited upon stress. The current data shows accumulation under HL, supporting a stress-response model, but the basal interaction under LL warrants further investigation.

4 Discussion and Broader Significance

The findings by Yao et al. [1] have significant implications for plant physiology and biotechnology.

The "Dimer Checkpoint": The discovery that dimerization is a prerequisite for function acts as a regulatory checkpoint. This mechanism ensures that only properly folded and assembled chaperones interact with the delicate PSII machinery. It also raises the possibility that the cell could regulate PSII repair efficiency by modulating the monomer-dimer equilibrium of CYN38, perhaps via redox status or pH changes in the lumen, which are known triggers for other immunophilins (e.g., AtFKBP13). Although this specific paper did not test redox sensitivity, the structural data opens the door for such hypotheses.

Target for Crop Improvement: Enhancing photosynthesis is a major goal for food security. High light stress leads to photoinhibition, which caps crop yield. Since CYN38 is a limiting factor in the repair rate (as evidenced by the drastic failure of repair in its absence), it represents a potential target for genetic engineering. Overexpression of stabilized, obligate-dimer variants of CYN38/CYP38 might

enhance High Light tolerance in crop plants, allowing them to recover faster from midday photodamage.

Understanding Dominant-Negative Mutations: The characterization of the cyn38 allele (CYN38(L)) serves as an important case study for algal genetics. It reminds the community that insertional mutagenesis can generate complex protein products rather than simple knockouts. The methodology used here to distinguish between loss-of-function and interference effects should serve as a template for characterizing future CLiP library mutants.

5 Future Directions

Based on the conclusions of Yao et al. [1], several avenues for future research are evident:

Crystal Structure: Obtaining the actual crystal or Cryo-EM structure of the CYN38 dimer bound to the PSII luminal loops would definitively prove the steric hindrance model of the CYN38(L) extension and allow for a direct comparison with the known structure of its *Arabidopsis* ortholog [4].

Cross-Species Validation: While the homology with *Arabidopsis* is strong, introducing the specific "L" type mutation into *Arabidopsis* CYP38 would confirm if this dimerization requirement and the dominant-negative mechanism are universally conserved in land plants.

Signal Transduction: Investigation into how the expression of CYN38 is upregulated by High Light would link this structural repair mechanism to the broader retrograde signaling pathways of the chloroplast.

6 Conclusion

In conclusion, "Dimerization of Immunophilin CYN38 Regulates Photosystem II Repair In Chlamydomonas" is a high-quality contribution to the field of photosynthesis research. Yao et al. [1] successfully combine genetic, biochemical, and structural prediction tools to unravel the function of a key thylakoid protein. By identifying the critical role of the C-terminal domain in dimerization and subsequent PSII binding, they provide a clearer picture of the molecular choreography required to sustain life under excess light. The study not only advances our basic understanding of the PSII repair cycle but also underscores the complex evolutionary history of immunophilins as they transitioned from enzymes to structural chaperones. This paper will undoubtedly serve as a foundational reference for

future studies on chloroplast proteostasis and stress adaptation.

Data Availability Statement

Not applicable.

Funding

This work was supported without any funding.

Conflicts of Interest

Bin Guo is affiliated with the Key Laboratory of Biotechnology of Shannxi Province, Xi'an 710069, China and Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), Xi'an 710069, China. The author declares that these affiliations had no influence on the study design, data collection, analysis, interpretation, or the decision to publish, and that no other competing interests exist.

AI Use Statement

The author declares that no generative AI was used in the preparation of this manuscript.

Ethical Approval and Consent to Participate

Not applicable.

References

- [1] Yao, Q., Dong, J., Zhang, T., Cao, H., Yu, J., Wang, X., Li, B., Zhu, L., Wang, Y., Fu, A., & Wang, F. (2025). Dimerization of Immunophilin CYN38 Regulates Photosystem II Repair In Chlamydomonas. *Plant, Cell & Environment*, 1–13. [\[CrossRef\]](#)
- [2] Fu, A., Park, S., Rodermel, S., & Cheng, N. (2007). A Chloroplast Cyclophilin Functions in the Assembly and Maintenance of Photosystem II in *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences*, 104(40), 15947–15952. [\[CrossRef\]](#)
- [3] Sirpiö, S., Khrouchtchova, A., Allahverdiyeva, Y., Hansson, M., Fristedt, R., Vener, A. V., ... & Aro, E.-M. (2008). AtCYP38 Ensures Early Biogenesis, Correct Assembly and Sustenance of Photosystem II. *Plant Journal*, 55(4), 639–651. [\[CrossRef\]](#)
- [4] Vasudevan, D., Fu, A., Luan, S., & Swaminathan, K. (2012). Crystal Structure of *Arabidopsis* Cyclophilin38 Reveals a Previously Uncharacterized Immunophilin Fold and a Possible Autoinhibitory Mechanism. *Plant Cell*, 24(6), 2666–2674. [\[CrossRef\]](#)

Bin Guo Associate Professor, College of Life Sciences, Northwestern University, China. He received the Ph.D. degree from the State Key Laboratory of Biochemicals, Institute of Process Engineering, Chinese Academy of Sciences, China, in 2008. His research interests include the application of bioinformatics and molecular biology to investigate the evolution of terrestrial adaptations in stone pine plants. (Email: guobin@nwu.edu.cn)