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Abstract

Understanding the dynamic interaction between the
amygdala and the ventromedial prefrontal cortex
(vmPFC) is essential for unraveling the neural
mechanisms underlying emotion regulation. This
study introduces a multidimensional analytical
framework that integrates functional connectivity,
time-lagged correlation, Granger causality analysis
(GCA), and entropy-based complexity metrics to
explore the amygdala—vmPFC relationship during
emotionally aversive tasks using intracranial EEG
(iIEEG) data. Owur findings reveal a significant
negative functional correlation (r = —0.009,
p < 0.05) between the amygdala and vmPFC,
indicating an inhibitory relationship. Time-lagged
correlation analysis further uncovers a temporal
delay ( 30 time points), suggesting that amygdala
activity precedes vmPFC modulation. Entropy
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analysis shows that the vmPFC exhibits higher
signal complexity (H = 4.26) than the amygdala
(H = 3.98), consistent with its role in higher-order
emotional regulation. However, GCA results

yielded no statistically significant directional
influence, highlighting the non-linear and
multifaceted nature of these interactions. This

study is among the first to combine entropy,
time-lag, and causality metrics for analyzing
vmPFC-amygdala dynamics in human iEEG. Our
integrated framework offers deeper insights into
brain region interplay and lays the groundwork
for future research in affective neuroscience and
neuroeconomics.
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1 Introduction

1.1 Background

Research has identified a negative correlation
between amygdala and ventromedial prefrontal cortex
(vmPFC) functional connectivity, which plays a
crucial role in emotion regulation. This relationship
is influenced by factors such as inflammation,
development, and neurofeedback training. Mehta
et al. [1] found that increased inflammation
predicted decreased amygdala-vmPFC connectivity
in depressed patients, correlating with anxiety
symptoms. Motzkin et al. [2] demonstrated that
vmPFC lesions led to heightened amygdala activity,
supporting its regulatory role. Gee et al. [3] observed
a developmental shift from positive to negative
amygdala-prefrontal connectivity during the transition
to adolescence, potentially explaining improvements
in emotional regulation. Paret et al. [4] showed
that voluntary amygdala down-regulation through
fMRI neurofeedback increased amygdala-vmPFC
connectivity, with a bottom-up information flow from
amygdala to vinPFC. These findings highlight the
complex interplay between amygdala and vmPFC in
emotional processing and regulation, offering insights
into potential therapeutic approaches for mood and
anxiety disorders.

1.2 Literature Review

Understanding the neural dynamics among brain
regions has provided neuroscientists with valuable
insights into constructing a robust model for how
the brain regulates emotion and makes economic
decisions [5, 6]. Such study is especially crucial in the
fields of affective neuroscience and neuroeconomics,
notably the investigation of the relationship between
vmPFC and amygdala in rational adults [2, 7-10].
These literatures have shown a negative functional
connectivity between these two regions, indicating a
negative temporal correlation across the two distant
regions. However, correlation in neuroscience alone
does not necessarily prove causation [11]. Most of
these studies primarily rely on using static correlation,
which only records activity at a specific moment in
time, to identify the functional connectivity between
regions.

Other studies, however, have attempted to explore
causality between vmPFC and amygdala using
Granger causality analysis (GCA). For example,
Seth et al. [13] used GCA to interpret Functional
Magnetic Resonance Imaging (fMRI) data, revealing
its potential for inferring causal interaction in neural
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networks.  Still, these analysis methods rely on
low-temporal, high-spatial resolution data from fMRI,
which might undermine the rapid, dynamic causal
interplay between regions (in this case, vmPFC
and amygdala) involved in emotion regulation and
economic decision-making [12].

As Dosenbach et al [14] suggested, a
multidimensional approach is essential to robustly
capture the complexity of neural interactions. Yet,
most studies still tend to utilize one or two methods for
analysis. For instance, Gold et al. [15] concentrated on
connectivity but failed to examine signal complexity
or causal relationships between vmPFC and amygdala,
limiting their understanding of the vmPFC-amygdala
interaction. Hence, in this paper, a multidimensional
approach is utilized to study amygdala-vmPFC
interaction from EEG data.

First, we move beyond static connectivity by applying
time-lagged correlation to explore how these regions
influence each other over time, a technique not
commonly used in previous research. Second, we
employ GCA to investigate predictive relationships,
something often missing in EEG-based studies of these
regions. Third, the entropy metric is implemented
into our analysis to offer insights into the complexity
of signals in both regions. This provides a unique
and dynamic perspective on how the amygdala and
vmPFC might handle different levels of information
processing during tasks involving emotion regulation
or decision-making. Lastly, by combining these
techniques, we offer a holistic analysis that moves
beyond what single-method studies have achieved,
filling critical gaps in literature.

In other words, the following questions are addressed
within this paper:

1. To what extent are the amygdala and vmPFC
functionally connected?

2. Does the interaction between amygdala and
vmPFC abide with a time-lagged pattern?

3. Which brain region displays more complex
activities?

4. Can neural activity of one region predict that of
another region?

In essence, our solution not only maps the connectivity
between the amygdala and vimmPFC but also explores
the temporal dynamics, predictability, and complexity
of their interactions in a way that previous studies have
largely overlooked.
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2 Methodology

2.1 Dataset Collection

The dataset used in this study comprises intracranial
EEG (iEEG) and neuronal data recorded from the
amygdalae of nine human subjects during exposure to

emotionally aversive and neutral visual stimuli [16].

Data collection was performed in a controlled clinical
setting, and the dataset was obtained from OpenNeuro
in the BIDS standard format.

2.2 Dataset Analysis
The electrophysiological data include:

e Intracranial EEG (iEEG): High temporal
resolution signals from electrodes implanted in
the amygdala. Spectral analysis validated the
iEEG signals.

e Neuronal Spike Times
Neuronal firing data, including spike sorting
quality metrics.

e Metadata: Task-related information, subject
details, session information, and electrode
specifications.

This dataset is publicly available through OpenNeuro
under the title “Dataset of neurons and intracranial
EEG from human amygdala during aversive dynamic
visual stimulation” [16]. The dataset underwent
rigorous technical validation, including:

e Spike sorting quality assessment for neuronal
firing data.

e Spectral analysis of iEEG signals to ensure data
integrity.

This comprehensive dataset provides a unique
opportunity to study the amygdala’s role in processing
emotional stimuli at both macroscopic and microscopic
levels. It was instrumental in analyzing the functional
connectivity and causal interactions between the
amygdala and vimPFC in the present study.

2.3 Functional and Correlation

Analysis

Connectivity

Functional connectivity demonstrates the temporal

relationship between spatially distant brain regions.

Functional connectivity, which is usually determined
through EEG and fMRI [17]. In our study, we used the
Pearson correlation coefficient to examine functional
connectivity between the neural activities of amygdala
and vmPFC, as it indicates how synchronized these
two regions are. However, Rousselet and Pernet [20]

and Waveforms:

have pointed out that the Pearson correlation might be
an unrobust metric due to its high sensitivity to outliers.
This indicates that relying solely on Pearson correlation
can yield unreliable conclusions for understanding
the relation between brain and behavior. Despite
this limitation, we included the Pearson correlation
as an initial measure, utilizing it as a preliminary
reference to support further validation of functional
connectivity between the amygdala and vmPFC. This
approach allows us to capture basic connectivity
patterns, potentially helping future research to refine
more robust analytical methods.

2.4 Time-Lagged Correlation

Time-lagged correlation measures how one variable
temporally influences another, allowing us to examine
the stability of the Pearson correlation coefficient in
representing functional connectivity. In this study,
time-lagged correlation is used to test the robustness
of the Pearson correlation by assessing whether the
observed causality between the amygdala and vmPFC
is significant over time. While this approach can hint
at causation across functionally connected regions,
it falls short of providing conclusive evidence of
temporal causation. According to Rykhlevskaia et
al. [19], time-lagged correlation does not provide
adequate information to prove the existence of such
temporal causation. To address this drawback, we
used Granger Causality Analysis (GCA) to corroborate
the directional influences between the amygdala and
vmPFC.

2.5 Granger Causality Analysis (GCA)

Granger Causality Analysis (GCA) is a statistical
method used to evaluate the predictive relationship
between two time-series variables by assessing
whether the past activity of one variable can predict
the future activity of another. In this study, GCA
was selected as the primary method for exploring
the directional influence between the amygdala and
the ventromedial prefrontal cortex (vmPFC). By
leveraging the high temporal resolution of intracranial
EEG (iEEG) signals, GCA provides insights into how
these regions dynamically influence each other during
emotionally aversive tasks [13].

Why GCA Over Other Statistical Tests? While
several statistical methods exist for analyzing
relationships between time-series data, GCA offers
unique advantages that align with our research
objectives:

e SSR-Based F-Test: Evaluates whether adding the
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past activity of one region significantly improves
the prediction of another’s future activity. While
useful, it primarily identifies reduction in residual
error but does not explicitly model temporal
influence.

e SSR-Based Chi-Square Test: Measures variance
explained by including lagged predictors butlacks
the time-lag-specific modeling offered by GCA.

e Likelihood Ratio Test: Compares the likelihood
of the data under two models (with and without
lagged predictors) but does not address the
directionality of influence.

e Parameter F-Test: Assesses individual regression
coefficients for significance but is less suited
for identifying overall causal patterns in a
time-lagged context.

Although these methods provide robust tools for
testing relationships, they are either limited in their
ability to model temporal directionality or focus
narrowly on specific aspects of causality. GCA, in
contrast, integrates temporal lags directly into its
framework and evaluates the directional predictive
power between time-series variables, making it
particularly relevant for examining the dynamic
interplay between the amygdala and vmPFC.

Using GCA, we tested whether including the
past activity of one region significantly improved
predictions of the other’s future activity. This was
achieved through statistical measures like the F-test
and p-values, where a significant p-value (e.g., below
0.05) would indicate a meaningful Granger causal
relationship.

2.6 Entropy Metrics

To quantify the complexity and randomness of neural
activity in the amygdala and vmPFC, we employed
Shannon Entropy, a widely used metric for assessing
signal variability. Based on Carhart-Harris’s entropy
brain hypothesis, entropy provides a mathematical
framework to evaluate the degree of randomness
within a system, which in this context reflects the

unpredictability of neural signals in each brain region.

Parameters and Calculation:

e Signal Input: The entropy calculation was
performed on pre-processed iEEG signals

recorded from the amygdala and vmPFC.

Pre-processing steps included noise and artifact
removal.
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e Time Windows: Entropy was computed using a
sliding window approach (e.g., 500 ms) to capture
temporal variations.

e Probability Distribution: Signal amplitudes
within each time window were discretized into
bins. The probability p; for each bin was
calculated.

e Shannon Entropy Formula:

K
H=-> pilogy(p;)
=1

where H is the entropy, p; is the probability of the
i-th amplitude bin, and & is the number of bins.

Outputs:

e Regional Entropy: Separate entropy values were
computed for the amygdala and vmPFC.

e Temporal Trends: Changes in entropy over time
were analyzed to assess variability.

Entropy metrics provided critical insights into the
functional dynamics between the amygdala and
vmPFC:

e Complexity Analysis: Comparing entropy
across regions highlighted differences in signal
unpredictability.

e Dynamic Interactions: Aligned temporal entropy
patterns helped infer excitatory or inhibitory
interactions.

e Causal Insights: Synchrony in entropy
fluctuations hinted at potential directional
influence.

Incorporating entropy into our methodology allowed
us to go beyond conventional connectivity metrics,
offering a nuanced view of how the amygdala and
vmPFC manage information under emotional stimuli.
Combined with time-lagged correlation and GCA, this
creates a multidimensional framework for analyzing
brain region interactions.

3 Results

3.1 Functional
Analysis

Connectivity and Correlational

The Pearson correlation analysis revealed a significant
negative correlation of r = —0.009 (p-value < 0.05)
between the amygdala and the vimPFC, as shown
in Figure 1. This suggests an inverse relationship:
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when one region becomes more active, the other
tends to become less active. Such an inhibitory
interaction supports the vimPFC’s role in regulating
the amygdala’s emotional reactivity.

This negative correlation confirms functional
connectivity between the two regions, which
concludes our first research objective successfully, i.e.,
Avre these regions functionally connected?

Figure 1. Correlation Calculation between Amygdala and
vmPFC. The negative correlation suggests that as the
activity of one region increases, the other decreases.

3.2 Time-Lagged Correlation

Time-lagged correlation analysis revealed the strongest
negative correlation at a lag of approximately —30
time points, indicating that the amygdala’s activity
leads the vmPFC by this delay, as seen in Figure 2.
This temporal pattern suggests a sequential process,
with the amygdala initiating neural responses and the
vmPFC following to modulate emotional processing.

This time lag indicates a sequential interaction with
the amygdala leading, which concludes our second
research objective successfully, i.e., Do their interactions
follow a time-lagged pattern?

Time-lagged Correlation between Amygdala and vmPFC

—0.005 -

—0.006 -

—0.007 -

Correlation

—0.008 -

—0.009 -

—0.010 A

—20 o 20 a0
Lag (time points)

—a0

Figure 2. Time-lagged Correlation: Plot showing the
correlation values at different time lags between the
amygdala and vmPFC. The strongest negative correlation
occurs at ~30 time points, indicating a delay in the
vmPFC’s response to the amygdala.

3.3 Entropy Metrics

Entropy analysis revealed that the vimPFC had higher
entropy (H = 4.26) compared to the amygdala (H =
3.98), indicating more complex and unpredictable
activity in the vmPFC, as shown in Figure 3. This aligns
with its role in integrating higher-order cognitive

functions, such as decision-making and emotional
regulation.

These outputs conclude that the vmPFC’s higher
entropy reflects its more complex neural activity, which
concludes our third research objective successfully, i.e.,
Is one region’s activity more complex than the other?

def calculate py(signal):
histogram, _ = np.histogram(signal, bins=10@, density=True

return entropy(histogram)

# Calculate entropy fo
amygdala_entropy = calculate_entropy(amygdala_data
vmpfc_entropy = calculate_entropy(vmpfc_data

r both regions

print(f"entropy for Amygdala: {amygdala_entropy

print(f"entropy for vmPFC: {vmpfc_entropy

Entropy for Amygdala: 3.986388976249173
Entropy for vmPFC: 4.256761498098482

Figure 3. Entropy Values of Amygdala and vinPFC. The
vmPFC exhibits higher entropy, reflecting its greater
complexity in processing and regulating neural activity.

3.4 Granger Causality

Granger causality testing did not reveal statistically
significant predictive relationships between the
amygdala and vmPFC (all p-values > 0.05), as shown
in Figure 4. This suggests that the regions’ interactions
may not follow a simple linear causal pattern but
could involve more complex dynamics influenced by
external factors or other brain regions.

These outputs conclude that the weak evidence for
predictive influence between the amygdala and vmmPFC
suggests that their interactions may involve more
complex, non-linear dynamics. This addresses our
fourth research objective, i.e., Can we predict one
region’s activity based on the other?, by indicating that a
straightforward causal relationship is unlikely in this
context.

4 Discussion

This study aimed to clarify the dynamic relationship
between the amygdala and the ventromedial
prefrontal cortex (vmPFC) in regulating emotions.
By employing a multidimensional analysis that
integrated functional connectivity, time-lagged
correlation, Granger causality, and entropy metrics,
we provided a nuanced understanding of how these
regions interact during emotionally aversive tasks.
Below, we discuss our findings in the context of
prior literature and highlight their implications for
neuroscience and neuroeconomics.
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Granger Causality

number of lags (no zero) 3

ssr based F test: F=0.0138
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Granger Causality
number of lags (no zero) 4
ssr based F test:

ssr based chi2 test:

» p=0.8618 , df_denom=51987,
, p=0.8618 , df=4
, p=0.8618 , df=4
3 , p=0.8618 , df_denom=51987,

df_num=4

parameter F test: df_num=4
Granger Causality

number of lags (no zero) S

ssr based F test:
ssr based chi2 test:

F=0.2794
chi2=1.3973
likelihood ratio test: chi2=1.3972

, p=8.9246
, p=0.9246
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, df_denom=51984,
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parameter F test: F=0.2794 df_num=5

Figure 4. Granger Causality Results: Statistical results of
Granger causality tests at different lags. The lack of
significant p-values indicates weak evidence for direct
causal relationships between the amygdala and vmPFC.

4.1 Functional and Non-Linear

Dynamics

Connectivity

Consistent with previous studies [7, 21, 23], our
results confirmed a significant functional connection
between the amygdala and vmPFC, evidenced by
a statistically significant negative correlation. This
aligns with the established role of the vmPFC
in inhibiting amygdala-driven emotional reactivity.
However, Pearson correlation, which only captures
linear relationships, may oversimplify the complexity
of brain interactions, as neural communication often
involves non-linear dynamics [18, 24]. This limitation
underscores the need for advanced methods that
account for such complexity, as functional connectivity
alone cannot fully explain the causal dynamics
between brain regions.

4.2 Time-Lagged Correlation and Causality

The time-lagged correlation analysis revealed a
temporal delay of approximately —30 to —40 time
points, with the amygdala leading and the vinPFC
following. This finding supports the hypothesis that
the amygdala initiates emotional responses, which
are subsequently modulated by the vmPFC. However,
Granger causality analysis provided weak evidence
for a direct causal relationship between the regions,
contradicting some previous findings [2]. This
discrepancy may stem from GCA’s inherent limitations,
including its reliance on linear assumptions and
sensitivity to noise in high-variance neural systems
[22]. These results highlight the possibility that the
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amygdala-vmPFC interaction involves more intricate,
non-linear dynamics than can be captured by GCA
alone.

4.3 A Novel Approach to Causality Analysis

Entropy metrics introduced a novel dimension to our
understanding of the amygdala-vmPFC relationship.
The vinPFC exhibited higher entropy values compared
to the amygdala, reflecting its greater complexity
and integration of diverse neural inputs. This
finding complements prior studies showing that
the vmPFC’s activity correlates with emotional
regulation [25]. By combining entropy metrics with
time-lagged correlation and functional connectivity,
our analysis suggests a regulatory mechanism where
the vinPFC modulates amygdala activity over time.
This integrated approach offers a robust framework
for exploring causality in neural systems and addresses
the limitations of linear causality methods like GCA.

4.4 Limitations and Future Directions

While our study achieved significant and novel
insights into the dynamics of the amygdala-vmPFC
relationship, there remain opportunities to expand
upon this work. The integration of functional
connectivity, time-lagged correlation, Granger
causality, and entropy metrics provides a powerful
and innovative framework that advances the
understanding of brain region interactions. However,
the complexities of neural systems and the limitations
of current methodologies invite further exploration to
build upon our novel findings.

5 Conclusion

This study investigated the dynamic neural
relationship between the amygdala and the
ventromedial prefrontal cortex (vmPFC) during
emotionally aversive tasks using a multidimensional
analysis framework. We confirmed a statistically
significant negative functional correlation (r = —0.009,
p < 0.05), indicating inhibitory connectivity.
Time-lagged correlation analysis revealed that
amygdala activity precedes vmPFC response by
approximately 30 time points, suggesting sequential
emotional regulation. Entropy analysis showed that
the vimPFC exhibited greater signal complexity (H =
4.26) than the amygdala (H = 3.98), supporting its
role in higher-order cognitive processing. Granger
causality analysis, however, did not detect a significant
predictive relationship, implying the presence of more
complex or nonlinear dynamics.
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Key Contributions:

Proposed a novel, multidimensional methodology
combining functional connectivity, time-lagged
correlation, Granger causality, and entropy
metrics on human iEEG data.

Demonstrated that vmPFC-amygdala interactions
are temporally ordered and functionally
connected, but not linearly causal.

Introduced entropy-based complexity analysis
as a valuable metric to complement traditional
connectivity and causality tools.

Provided a reproducible framework for studying
emotion-related neural circuits with implications
for neuroscience, affective computing, and
neuroeconomics.

These findings offer a richer understanding of the
amygdala-vmPFC axis and emphasize the need
to move beyond linear models in neuroscience.
Future work may explore nonlinear causal inference
techniques, integrate multimodal data, or apply this
framework to clinical populations to assess psychiatric
or decision-making disorders.
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