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Abstract
Low Dose Computed Tomography (LDCT) scan
is modern medical imaging diagnostic technique
that provides a detailed projection of internal
human body tissue level structures. Even though
the LDCT image quality is compromised by
Gaussian-noise, which can be generated during
image acquisition, this compromises the accurate
diagnostic precision. The effective denoising is
required to improve image quality in LDCT images.
This study demonstrates that the Discrete Wavelet
Transform(DWT) method shows better results,
both quantitatively and visually, under varying
noise intensities (σ = 10, 20, 30, and 40). The DWT
method decomposes the image to multiresolution
subbands (approximation, and detail) to provide
localized analysis of structural patterns. The
thresholdingmethod is applied to the detail (noisy)
coefficients and then reconstructs the refined image
from these denoised coefficients. The DWT
method achieved superior noise suppression while
preserving edge information. The quantitative
analysis among various methods, including PCA,
MSVD, DCT, and DWT, consistently shows
superior results, achieving a higher PSNR of 33.85
dB, SNR of 28.50 dB, and SSIM of 0.7194 at a noise
level σ = 10. Among all denoising methods, the
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1 Introduction
Image denoising is a crucial preprocessing step in
medical imaging, especially in CT scans, which
influences the image accuracy in necessary tasks such
as segmentation and relevant feature extraction. Since
the development of CT scan in the years 1970s, it
has played a major role in medical imaging diagnosis
[1]. However, subsequent CT scans exposure patients
to higher radiation doses, raising susceptibility to
radiation-related health disorders such as cancer and
hereditary genetic anomalies. To resolve these, safety
concerns such as Low dose CT (LDCT) imaging have
been developed to reduce X-radiation tube voltage and
scan time. However, this results in noise in images
and streak artifacts, degrading diagnostic image
interpretation. LDCT images are often corrupted
with Gaussian noise or Poisson noise during image
acquisition process, resulting blurriness, thereby
reducing diagnostic accuracy. Gaussian noise is
extensively investigated and considered noise model
in medical CT imaging. It proficiently illustrates
electronic sensor-based noise, thermal differences,
and reconstruction errors. Gaussian noise follows
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a mathematical Gaussian distribution, characterized
by its mean and standard deviation, making it
suitable for algorithm design and facilitating a
systematic comparison of various denoising methods.
Furthermore, many other denoising models, such
as Wavelet Shrinkage, CNN frameworks, and deep
learning models, are upgraded and validated using
Gaussian estimations, confirming reliability and
replicability for controlled evaluations.

Therefore, it is necessary to develop denoising
algorithms to mitigate Additive White Gaussian
noise and improve imaging quality. Recent research
mainly focuses on enhancing LDCT imaging quality
using various denoising techniques [2]. LDCT
imaging has emerged as a preferred technique for
lung cancer-screening, cardiovascular examination,
extended monitoring because it reduces radiation
dose compared to other traditional techniques. An
effective clinical solution for precise representation
of Organs-at-risk (OAR) is necessary to provide
safe image guided radiation therapy (IGR) for head
and neck cancer, however, manual contouring is
computationally intensive and tends to inconsistency.
Recent studies have shown that deep learning-based
auto segmentation considerably minimizes contouring
time while elevating inter-observer reliability and
efficacy of treatment planning. ANovel 3D lightweight
architecture was trained and validated using multi
center datasets to enhance clinical workflow and
improve diagnostic outcomes. Effective denoising
provides lesion conspicuity, thereby improving
consistency in radiomic imaging biomarkers and
reducing false positives in clinical screening programs
[3, 4].

Image denoising techniques can be categorized into
conventional denoising methods and nonconventional
denoising methods [5]. Conventional denoising
methods such as Spatial domain, Transform domain
and the Hybrid methods. Spatial filters are applied
to image raw pixel values, including Mean, median,
Bilateral, Gaussian filters, which smooth the image
by applying average neighborhood pixels but may
often blur fine image details. The Transform
domain methods transform the CT image into
a different domain (multiresolution, frequency)
in which the noise and signal can be separated
in a better way. Initially, CT image is split
into approximation (smooth or coarse) and detail
coefficients(high frequency or noisy) to suppress the
noise. Then, hard or soft thresholding is applied
on detail coefficients to mitigate noise effectively.

Thresholding is the main denoising phase to remove
small noisy coefficients while preserving significant
details. Finally, inverse wavelet transform is used to
reconstruct the denoised image. Transform domain
methods such as Discrete Wavelet transform [6], PCA
[7], Discrete Cosine transform [8], Curvelet transform
[9], andMultiresolution singular value decomposition
(MSVD) [10]. The hybrid methods [11] combine
the spatial and transform-domain denoising methods
to leverage complementary strengths, such as Total
variation, and BM3D, and other denoising methods
to provide locally smooth images and structural
preservation. These transforms effectively suppress
noise while preserving fine details in LDCT images.

Deep learning-based denoising methods train the
neural-network to automatically learn from the noisy
CT image to its equivalent clean image by observing
a vast number of paired datasets [12, 13]. These
methods include CNNs, GANs, and ResNets etc.
CNNs are used in extracting spatial image features
to reconstruct the clean images. A GAN network,
including a generator network to generate denoised
CT images, and a discriminator network to analyze
authenticity. The system is trained in an adversarial
way, has the ability to produce realistic output
images by reducing differences between generated
CT and true CT images. ResNet denoises the CT
images using skip connections for easier training of
the data. Transformer-based denoising models [14,
15] utilize self-attention mechanisms to extract long
range associations and global contextual data. The
transformer models such as ViT and Swin transformer
are used to capture global and local dependencies in
CT image.

2 Methodology
2.1 DWT Algorithm
The overall workflow of the proposed DWT-based
denoising approach is illustrated in Figure 1. Let Xi,j

denote the noisy input image.

Step1:Wavelet decomposition

Decompose the Noisy CT image Xi,j using two
dimensional 2D Wavelet transform (DWT) up to the
level L′{

fAL, { fHl, fVl, fDl}L
′

l=1

}
= DWT

(
Xi,j, ψ, L

′
)
(1)

where fAL is the Approximation coefficients of level
L, {fHl, fVl, fDl} are the Horizontal , Vertical, and
Diagonal detail-coefficients at level L′.
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Figure 1. Flowchart of the DWT methodology.

Step 2: Estimate the noise level from High frequency
subbands

Utilize the fine level diagonal coefficients fDL to
estimate the standard deviation of noise in LDCT
image

σesti =
median(|fDl|)

0.6745
(2)

Step 3: Calculate Adaptive soft-threshold

Determine the soft thresholding value using the
evaluated noise level

Tn = K · σesti (3)

where the constant K controls how significantly the
wavelet-coefficients are shrunk.

A standard universal threshold method where:

K =
√
2 ln(N) (4)

N- Number of pixels in the CT image

K- Thresholding constant

K is adaptively adjusted for each subband or noise
intensity level. A higher K value suppresses more
noise but often leads to over-smoothing of the images,
while smaller K values preserve image features but
may retain residual noise. In order to generalizability,
K is optimized using Stein’s Unbiased Risk Estimate
(SURE) or a cross-validation method, making it robust
over various noise types and CT image datasets.

Step 4: Utilize soft thresholding to the detail
coefficients

For each level (l = 1) to L, apply the soft thresholding
for all detail-subbands

fH
′
l = soft (fHl, Tn) ,

fV
′
l = soft (fVl, Tn) ,

fD
′
l = soft (fDl, Tn)

(5)

where Soft thresholding can be computed as:

Soft(Xi,j , Tn) =

{
sign(Xi,j) · (|Xi,j | − Tn), if |Xi,j | > Tn

0, otherwise
(6)

Step 5: Wavelet reconstruction

Reconstruct the denoised CT image using inverse DWT
transform

Ỹi,j = DWTInv

({
fAL, { fHl, fVl, fDl}L

′

l=1

})
(7)

where Yi,j is the reconstructed denoised CT image,
DWTInv is the inverse Discrete Wavelet Transform.

2.2 Explanation
Initially, the denoised process starts with an Additive
Gaussian noisy image.

Xi,j = Yi,j + ε (8)

where Yi,j is the clean image, and ε = N(0, σ2) is the
Additive Gaussian noise, and N represents the normal
distribution, with a mean value of 0, and σ2 represents
noise variance.

In the DWT transform, the noisy CT image
Xi,j is decomposed into a low frequency
(approximation-fAL), and high frequency
(detail-fHl, fVl, fDl) coefficients. Noise primarily
exists in the detail coefficients. After that, estimate
the noise variance using median absolute deviation
method. To mitigate the estimated noise, the threshold
method Tn is applied in each detail coefficients
({fHl, fVl, fDl} ,Horizontal, Vertical, and Diagonal)
to preserve fine details in LDCT images. After
the thresholding process, the denoised coefficients
are transferred to the inverse DWT transform to
reconstruct the denoised image Ỹi,j , specifically in the
spatial domain. The DWT multiresolution approach
provides localized noise reduction and fine structural
preservation. The quality of the denoised CT image
is assessed using PSNR,SNR, and SSIM metrics.
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Figure 2. CT image dataset.

Figure 3. Noisy CT1 image from dataset with Additive
Gaussian noise variance (σ)= (a) (10), (b) 20,

(c) 30, (d) 40.

This method is especially effective in clinical images
due to its capability to improve overall diagnostic
imaging quality and clarity. DWT-based denoising is
easily interpretable and computationally efficient for
practical diagnostic applications.

3 Experiments
The clean CT images are taken from SARS-CoV-2
CT dataset [16] and are shown in Figure 2. The
SARS-CoV2 dataset is used in this study to represent
low dose CT scenarios. This publicly available
dataset consists of a total of 2482 CT scan images,
comprising 1252 COVID-19 positive cases and 1,230
are noninfected cases, collected from hospitals in
Sao, Paulo, and Brazil. This dataset is mainly used
to support research studies on AI-based techniques
for COVID-19 detection in LDCT images. Figure 3
indicates the Gaussian noisy images of CT image1
with noise variance (σ = 10, 20, 30, 40) to analyze the
denoising capability of the DWT algorithm.

3.1 Quantitative analysis
The Quantitative evaluation metrics [17] are
represented as follows:

Peak signal to noise ratio (PSNR) :

PSNR is used to compare the peak possible power of a
clean image’s signal with the distorting power of the
noise.

PSNR(Ya, Ŷa) = 20 · log10

(
MAXi

RMSE(Ya, Ŷa)

)
(9)

Root mean squared error (RMSE):

RMSE is used to measure the absolute difference
between original clean and the denoised CT image.
Lower MSE represents a better denoised image, i.e,
lower discrepancies between reference and denoised
images.

RMSE =

√√√√ N∑
i=1

(
Ya(i, j)− Ŷa(i, j)

)2
(10)

where MAXi represents maximum pixel intensity
values of 255 for 8-bit images. Ya represents clean
image. Ŷa represents denoised image. N Total number
of pixel values in the image.

Signal to Noise ratio (SNR):

SNR is a quantitative measure to assess the image
quality using the power of the clean image and the
noise generated after denoising process.

SNR(Ya, Ŷa) = 20 · log10

(
‖Ya‖2

‖Ya(i, j)− Ŷa(i, j)‖2

)
(11)

where ‖Ya‖2 is the L2 norm of the clean image
(signal-power amplitude), ‖Ya(i, j)− Ŷa(i, j)‖2 is the
noise amplitude.

Structural Similarity Index Measure (SSIM) :

It defines how well the reconstructed or denoised CT
image preserves visual features of the ground-truth
or clean CT image. The possible range of SSIM
value is between 0 and 1. A high SSIM value of 1
indicates perceptually better quality between a clean
and denoised image.

SSIM(Ya, Ŷa) =
(2µY µŷ + C1)(2σY σŷ + C2)

(µ2Y + µ2
Ŷ
+ C1)(σ2Y + σ2

Ŷ
+ C2)

(12)
where (Ya, Ŷa) represents ground-truth and predicted
denoised CT image. µY µŷ represents mean values
of the ground-truth and predicted denoised CT
images. σY σŷ represents variances of ground truth and
predicted denoised ones. C1, C2 are small constant
values for stabilizing the division operation.

3.2 Zooming Analysis
4 Discussion
Table 1 shows a comparative analysis of four CT
imaging denoising techniques, such as PCA [7],
MSVD [10], and DCT [8] and DWT [6] at Gaussian
noise intensities 10, 20 ,30 , and 40. The denoising
performance is assessed using PSNR metric, among

47



Biomedical Informatics and Smart Healthcare

Table 1. PSNR values of different denoising methods at
Noise variance (σ = 10, 20, 30, 40).

Denoising technique Noise Variance
10 20 30 40

PCA[7] 30.84 25.19 22.02 19.85
MSVD[10] 20.49 19.58 18.99 17.85
DCT[8] 31.82 25.93 22.57 20.19
DWT[6] 33.85 29.40 26.82 24.99

Table 2. SNR values of different denoising methods at
Noise variance (σ = 10, 20, 30, 40).

Denoising technique Noise Variance
10 20 30 40

PCA[7] 25.95 20.30 17.13 14.96
MSVD[10] 12.89 12.20 11.99 11.87
DCT[8] 26.93 21.04 17.68 15.30
DWT[6] 28.50 24.54 21.90 20.10

Table 3. SSIM values of different denoising methods at
Noise variance (σ = 10, 20, 30, 40).

Denoising technique Noise Variance
10 20 30 40

PCA[7] 0.57 0.44 0.34 0.28
MSVD[10] 0.56 0.52 0.51 0.50
DCT[8] 0.60 0.57 0.45 0.30
DWT[6] 0.72 0.62 0.57 0.53

Figure 4. Graphical representation of PSNR values of
various denoising methods at Noise variance (σ =10,20,30

and 40).

all standard denoising methods, DWT obtains highest
PSNR value at all noise levels (σ =10 (PSNR 33.85
dB), σ =20 (29.40 dB), σ =30 (26.82 dB), and σ =
40 (PSNR 24.99 dB) results in strong noise reduction
while maintaining structural details effectively. DCT
performs better, with a noise variance ranging from
10 to 40, achieving 31.82 dB to 20.19 dB to preserve
low frequency components. PCA achieves moderate
noise reduction at σ=10, with a PSNR of 30.84 dB,

Figure 5. Graphical representation of SNR values of various
denoising methods at Noise variance (σ =10,20,30 and 40).

Figure 6. Denoised outcomes of various denoising methods
(a) DCT result, (b) PCA result, (c) MSVD result, (d) DWT

result.

Figure 7. Graphical representation of SSIM values of
various denoising methods at Noise variance (σ =10,20,30

and 40).

reducing PSNR value as the noise increases, where as
MSVD achieved less denoising performance compared
to other denoisingmethods. Overall, the DWTmethod
achieves high PSNR value compared to other existing
methods. Table 2 depicts quantitative analysis of
SNR, where a higher SNR indicates better noise
suppression, resulting in better quality. Among all
these methods, DWT achieves the highest SNR value
at noise level σ=10 (28.50 dB), providing better noise
reduction and edge preservation. Table 3 shows a
comparative analysis of SSIM metric using various
denoising methods, SSIM method shows superior
perceptual results, it is ranging from 0 to 1. A value of 1
indicates the denoised output is similar to clean image.
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Figure 8. LDCT images with rectangular Region of interest (ROI) marked for Zooming analysis (a) Clean CT1 image, (b)
Gaussian Noisy CT1 image (Noise variance σ =10), (c) DCT method, (d) PCA method, (e) MSVD method, (f) DWT

method.

Figure 9. Zooming Comparison of ROI using various denoising methods (a) Clean CT1 image , (b) Gaussian Noisy CT1
image (Noise variance σ =10), (c) DCT method, (d) PCA method, (e)M SVD method, (f) DWT method.

The SSIM value of DWT method at σ=10, 0.7194, and
DCT method shows moderate structural preservation
in LDCT images. The PCA and MSVD shows lower
SSIM values, indicating less structural preservation.
Overall, DWT method shows better noise suppression
in terms of PSNR,SNR and SSIM, resulting in better
structure retention in LDCT images.

The graphical notation of PSNR,SNR, and SSIMmetric
values as shown in Figures 4, 5 and 6. The visual
quality of denoised outcomes is depicted in Figure
7. The PCA method depicts moderate denoising
performance, but face difficulty in preserving
finer-textures at higher noise levels. The MSVD
denoised images result in over-smoothing, and loss
of fine structural details. DCT method performs
better noise suppression, drops at higher noise levels
but shows better structural preservation at lower

noise intensities. Overall, DWT method provides
better visual quality and clarity compared to all
other methods. The zooming analysis of different
transform domain denoising techniques such as PCA,
MSVD, DCT, and DWT, is shown in Figures 8 and
9. Among these methods, the DWT demonstrates
superior denoising performance in maintaining edge
features and structural clarity compared to zooming
analysis. The DCT method preserved image textures
moderately, but often introduced blocking artifacts
at higher zooming levels. MSVD and PCA methods
demonstrated noticeable blurring and loss of fine
details, thereby restricting their efficiency for fine
structural visualization. Overall, the DWT method
was confirmed to be a valid approach for examining
zoomed CT images, providing the best trade-off
between noise suppression and detail preservation.
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In addition to CT image denoising efficiency,
computational efficiency was analyzed. The
computational cost of transform-based denoising
techniques plays a major role in assessing their
applicability for healthcare-related and real-time
CT-imaging applications. From the perspective of
computational cost, the DWT method demonstrates
higher efficiency because of its linear time complexity
O(N) for each decomposition level, making it
suitable for large scale image datasets. The PCA
method involves computing the image’s covariance
matrix after eigen-value decomposition, which is
accompanied by cubic complexity of , where N
represents the dimensionality (number of features)
of the data. This step becomes a limitation for
higher resolution CT images. The MSVD denoising
method is computationally more challenging than
other denoising methods. This method applies
singular value decomposition in an iterative way
across multiresolution levels. Each SVD process
has a computational complexity of nearly for each
image matrix size (M × N) times, and repeated
decomposition throughout scales increases runtime
drastically. In practice, this method results in
longer processing times for 2-Dimensional slice
CT image datasets. The DCT method obtains a
better computational efficiency due to the use of
faster algorithms, such as Fast Fourier transform,
and its time complexity is , where n denotes a total
number of image pixels. This method provides
rapid-transformation, and the inverse transformation
is effectively useful for CT image denoising. However,
this method may generate blocking artifacts at
increased noise intensity levels. Overall, the MSVD
denoising method has the lowest computational cost
and higher accuracy compared to other standard
denoising methods such as PCA, MSVD, and DCT.

5 Conclusion
CT scan images are often compromised by Gaussian
noise in LDCT images. The DWT-based transform
domain denoising method performs better than other
standard denoising methods, such as PCA, MSVD,
and DCT methods, in CT image noise reduction
and fine structural preservation. The quantitative
results in terms of PSNR, SNR, and SSIM under
varying noise variances. The DWT method has
multi-resolutional decomposition extracts local and
global features to obtain visually more detailed
accurate image reconstructions. Compared to other
denoising methods, DWT shows fewer artifacts and
fine texture preservation. Therefore, the DWT method

is a robust and visually coherent denoising method
among all other techniques.

5.1 Limitations
The present research study has identified some
limitations. The quantitative and qualitative analysis
was carried out using a single dataset that included
synthetic noise, which may not fully exhibit the
authentic LDCT noisy images and patient-caused
artifacts. Transform based denoising techniques, such
as MSVD and PCA, are computationally demanding,
which can restrict the scalability of high-resolution
images in real-time clinical settings. The inclusion of
recent state-of-the-art learning-based noise reduction
methods would provide a more extensive benchmark
to enhance diagnostic accuracy.

Data Availability Statement

Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable. This study is based on a publicly
available dataset (SARS-CoV-2 CT-scan dataset) and
does not involve any new collection of human
or animal data, patient interactions, or ethical
interventions requiring approval from an institutional
review board.

References
[1] Sadia, R. T., Chen, J., & Zhang, J. (2024). CT image

denoising methods for image quality improvement
and radiation dose reduction. Journal of applied clinical
medical physics, 25(2), e14270. [Crossref]

[2] Abuya, T. K., Rimiru, R. M., & Okeyo, G. O. (2023). An
image denoising technique using wavelet-anisotropic
gaussian filter-based denoising convolutional neural
network for CT images. Applied sciences, 13(21), 12069.
[Crossref]

[3] Kumar, R. R., & Priyadarshi, R. (2025). Denoising
and segmentation in medical image analysis: A
comprehensive review on machine learning and deep
learning approaches.Multimedia Tools and Applications,
84(12), 10817-10875. [Crossref]

50

https://doi.org/10.1002/acm2.14270
https://doi.org/10.3390/app132112069
https://doi.org/10.1007/s11042-024-19313-6


Biomedical Informatics and Smart Healthcare

[4] Zhang, F., Liu, J., Liu, Y., & Zhang, X. (2023).
Research progress of deep learning in low-dose CT
image denoising. Radiation protection dosimetry, 199(4),
337-346. [Crossref]

[5] Mao, J., Sun, L., Chen, J., & Yu, S. (2025). Overview
of Research on Digital Image Denoising Methods.
Sensors, 25(8), 2615. [Crossref]

[6] Zhou, Y., Kong, Z., Huang, T., Ahn, E., Li, H., &
Ding, L. (2024). WaveletDFDS-Net: A Dual Forward
Denoising Stream Network for Low-Dose CT Noise
Reduction. Electronics, 13(10), 1906. [Crossref]

[7] Esfahani, E. E., & Gouran, A. (2025). Low-dose CT
using a nonlocal and nonlinear principal component
analysis for image restoration. IEEE Transactions on
Radiation and Plasma Medical Sciences. [Crossref]

[8] Hosen, M. A., Moz, S. H., Kabir, S. S., Adnan, M. N.,
& Galib, S. M. (2024). In-depth exploration of digital
image watermarking with discrete cosine transform
and discrete wavelet transform. Indonesian Journal
of Electrical Engineering and Computer Science, 33(1),
581-90. [Crossref]

[9] Katageri, G. S., & Swamy, P. S. (2025). Denoising
and analysis of synthetic aperture radar images using
improved weight threshold technique in curvelet
transform frequency domain. Multimedia Tools and
Applications, 84(12), 10173-10194. [Crossref]

[10] Bhosekar, S., Singh, P., & Garg, D. (2025, January). A
Comparative Analysis of Multi-Modal Medical Image
Fusion Techniques usingMSVD,WPD, PCA, andDWT.
In 2025 International Conference on Cognitive Computing
in Engineering, Communications, Sciences and Biomedical
Health Informatics (IC3ECSBHI) (pp. 923-927). IEEE.
[Crossref]

[11] Alnuaimy, A. N., Jawad, A. M., Abdulkareem, S. A.,
Mustafa, F. M., Ivanchenko, S., & Toliupa, S. (2024,
April). Bm3d denoising algorithms for medical image.
In 2024 35th Conference of Open Innovations Association
(FRUCT) (pp. 135-141). IEEE. [Crossref]

[12] Choi, K. (2024). Self-supervised learning for CT image
denoising and reconstruction: a review. Biomedical
Engineering Letters, 14(6), 1207-1220. [Crossref]

[13] Lei, Y., Niu, C., Zhang, J., Wang, G., & Shan, H.
(2023). CT image denoising and deblurring with
deep learning: current status and perspectives. IEEE
Transactions on Radiation and Plasma Medical Sciences,
8(2), 153-172. [Crossref]

[14] Zhang, B., Zhang, Y., Wang, B., He, X., Zhang, F., &
Zhang, X. (2024). Denoising swin transformer and
perceptual peak signal-to-noise ratio for low-dose CT
image denoising.Measurement, 227, 114303. [Crossref]

[15] Yuan, J., Zhou, F., Guo, Z., Li, X., & Yu, H. (2023).
HCformer: hybrid CNN-transformer for LDCT image
denoising. Journal of Digital Imaging, 36(5), 2290-2305.
[Crossref]

[16] Soares, E., Angelov, P., Biaso, S., Froes, M. H., &
Abe, D. K. (2020). SARS-CoV-2 CT-scan dataset: A
large dataset of real patients CT scans for SARS-CoV-2
identification. MedRxiv, 2020-04. [Crossref]

[17] Zubair, M., Helmi, B., Ullah, F., Al-Tashi, Q., Faheem,
M., & Khan, A. A. (2024). Enabling predication of the
deep learning algorithms for low-dose CT scan image
denoising models: A systematic literature review.
IEEE Access, 12, 79025-79050. [Crossref]

Swapna Katta is currently pursuing her
Ph.D. in Computer Science and Artificial
Intelligence at SR University, Telangana,
India. Her research interests focus on medical
image processing, particularly CT image
denoising and enhancement techniques. She
is exploring advanced transform-domain
methods to improve image quality in
low-dose computed tomography. (Email:
swapnakondam1@gmail.com)

Deepak Garg Deepak Garg received his Ph.D.
in Computer Science with a specialization in
Efficient Algorithm Design. He has over 25
years of academic and research experience. His
current research interests include algorithm
optimization, computational intelligence,
and their applications in medical image
processing. He is currently a faculty member
at SR University, Telangana, India. (Email:
deepak.garg@sru.edu.in)

51

https://doi.org/10.1093/rpd/ncac284
https://doi.org/10.3390/s25082615
https://doi.org/10.3390/electronics13101906
https://doi.org/10.1109/TRPMS.2024.3523366
https://doi.org/10.11591/ijeecs.v33.i1.pp581-590
https://doi.org/10.1007/s11042-024-19304-7
https://doi.org/10.1109/IC3ECSBHI63591.2025.10990897
https://doi.org/10.23919/FRUCT61870.2024.10516419
https://doi.org/10.1007/s13534-024-00424-w
https://doi.org/10.1109/TRPMS.2023.3341903
https://doi.org/10.1016/j.measurement.2024.114303
https://doi.org/10.1007/s10278-023-00842-9
https://doi.org/10.1101/2020.04.24.20078584
https://doi.org/10.1109/ACCESS.2024.3407774

	Introduction
	Methodology
	DWT Algorithm
	Explanation

	Experiments
	Quantitative analysis
	Zooming Analysis

	Discussion
	Conclusion
	Limitations
	Swapna Katta
	Deepak Garg


