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Abstract
Long non-coding RNAs (lncRNAs) are important
for plant growth, how plants respond to stress,
and their overall development. However, it can be
difficult to identify them accurately because they
come in many structures and can look similar to
coding RNAs. In this study, we introduce DeepPInc
V2.0, a new tool that uses deep learning to analyze
both the sequence and the secondary structure
of RNAs, combining them in a DenseNet-CNN
hybrid model. DeepPInc V2.0 outperforms existing
tools on various plant datasets, achieving an
accuracy of 94.2%, an F1-score of 0.93, and a
Matthews Correlation Coefficient (MCC) of 0.88. It
consistently outperforms seven leading tools in this
area. Importantly, the model still works well even
with incomplete or shortened sequences, which is
a common issue in transcriptome studies. When
we applied DeepPInc V2.0 to the wheat (Triticum
aestivum) transcriptome under heat stress, we
found over 27,000 possible lncRNAs. Of these,
1,830 were expressed differently, suggesting they
may play a role in helping plants adapt to stress.
These results demonstrate that DeepPInc V2.0 is
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a reliable and accurate platform for identifying
lncRNAs in plants, facilitating the study of large
RNAcollections andunderstanding the functions of
non-coding elements.
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1 Introduction
Broadly, RNAs are categorized into coding RNAs and
noncoding RNAs (ncRNAs). Coding RNAs, primarily
messenger RNAs (mRNAs), serve as templates for
protein synthesis and are indispensable for cellular and
organismal functions [1]. In contrast, ncRNAs, though
lacking protein-coding potential, exert essential
regulatory roles in gene expression, development, and
stress responses. These include microRNAs (miRNAs)
that mediate mRNA degradation or translational
repression, long noncoding RNAs (lncRNAs) that
regulate chromatin architecture and transcriptional
programs, small nucleolar RNAs (snoRNAs) that
direct chemicalmodifications of ribosomal and transfer
RNAs, and circular RNAs (circRNAs) that function
as molecular sponges or regulators of gene expression
[2, 3] (Figure 1).
In the 18th century, Felice Fontana’s observations of a
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Figure 1. RNA along with its types and further
classification spaces.

cellular structure in eel epidermis containing ncRNA
laid the groundwork for our understanding of the
nucleus and nucleolus. LncRNAs, initially dismissed
as transcriptional noise, gained biological relevance
following the discovery of the H19 gene during mouse
embryogenesis [4, 5]. Sharing structural features with
mRNAs, lncRNAs are transcribed by RNA polymerase
II in animals and by Pol II, IV, and V in plants,
and encompass diverse subtypes including intergenic
lincRNAs, antisense transcripts, and intronic lncRNAs
[6–9]. Collectively, these discoveries underscore
RNA’s expanded functional repertoire beyond protein
coding, establishing its central role in gene regulation,
development, and disease biology. Modern molecular
biology, aided by technologies like microarrays and
high-throughput sequencing, has since revealed that
vast portions of eukaryotic genomes are transcribed,
leading to the discovery of a myriad of previously
unknown ncRNAs. Initially, many of these were
dismissed as “transcriptional noise” due to a lack
of sequence conservation and observable phenotypic
changes upon their disruption.
However, systematic functional studies over the last
decade have brought attention to the crucial roles of
lncRNAs, which are non-coding transcripts longer
than 200 nucleotides (Figure 2).
LncRNAs are now recognized as key players in
diverse regulatory functions, including chromatin
modification, transcriptional regulation, RNA
processing, and post-transcriptional gene regulation
(Figure 2). For example, in Arabidopsis thaliana,
the lncRNA COOLAIR recruits the PRC2 complex
to repress flowering [10]. Similarly, in maize, the
lncRNA IPS1 regulates phosphate homeostasis by
sequestering miR399 [11].
The identification of plant-specific lncRNAs remains
a challenge, with existing tools often lacking

Figure 2. Functions of lncrna.

reliability and consistency due to their reliance
on properties identified in animal datasets. While
some plant-specific tools like PinePRO, RNAplone,
PreLnc, and CNIT have been developed, they often
underperform when confronted with incomplete
and unannotated sequences, which are common in
real-world transcriptomic data (Figure 3).

Figure 3. Databases of lncRNAs in plants.

This gap highlights the need for advanced methods,
such as deep learning, which can capture the subtle,
transient features that traditional machine learning
approaches often miss.

2 Materials and Methods
2.1 DeepPInc V2.0 Model
The study introduces a novel deep learning
model, DeepPInc V2.0, which combines a
DenseNet-based model with an evolved CNN
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technique. The architecture is designed to handle both
nucleotide sequences and their secondary structural
representations simultaneously. One component
of the DenseNet comprises 121 layers, including
convolutional layers, pooling layers, and dense blocks,
which process the nucleotide sequences (Figure 4).

Figure 4. Detailed pipeline of the DenseNet V2.0.

The other component processes the dot-bracket
secondary structural representations of the RNAs.
This structural data is obtained using RNAfold [12],
which provides the Dot-Bracket representation of RNA
secondary structures (Figure 5). The Dot-Bracket
notation is then encoded using “one-hot” encoding.
Each character in the Dot-Bracket representation (‘.’, ‘(’,
and ‘)’) is converted into a binary vector, representing
the presence of unpaired bases (‘.’), left-hand
paired bases (‘(’), and right-hand paired bases
(‘)’). By integrating both sequence and structural
data, DeepPInc V2.0 ensures a comprehensive
representation of RNA molecules, which is essential
for accurate classification of lncRNAs in plants. The
model’s architecture undergoes continuous refinement
to enhance its ability to characterize plant lncRNAs.
The features generated by both components are
concatenated and processed through additional layers,
including batch normalization and a final output
layer, to yield a confidence probability for lncRNA
identification in 400-base windows.

2.2 Hyper-parameter Optimization
Hyper-parameter optimization is critical in achieving
the best performance for DeepPInc V2.0. This
process involves Bayesian optimization methods
to ensure a thorough and efficient exploration of
the hyper-parameter space. Bayesian optimization
builds on the results of the random search by
creating a probabilistic model of the objective function.
This model is used to predict the performance
of different hyper-parameter sets, allowing for

Figure 5. RNA secondary structure (Folding) prediction
using RNAfold.

a more focused and efficient search. Bayesian
optimization iteratively refines the hyper-parameters
by balancing exploration (testing new configurations)
and exploitation (focusing on configurations known to
perform well), ultimately converging on the optimal
set [13].
The hyper-parameters optimized for DenseNet 2.0
approach include:
• Number of Layers: The total number of layers in

the DenseNet architecture.
• Filter lengths: The size of the convolutional filters

used in the dense blocks.
• Kernel sizes: The dimensions of the filter or
window used in convolutional operations in
CNNs.

• Strides: The step size for convolutional operations.
• Activation Functions: Functions such as ReLU
(Rectified Linear Unit) and Leaky ReLU that
introduce non-linearity into the network.

• Dense Block Configuration: The architecture and
arrangement of layers within a dense block in a
DenseNet.

• Transition Layers: Transition layers are inserted
between consecutive dense blocks. These
transition layers serve to down sample feature
maps and reduce the number of channels,
effectively compressing information before
passing it to the next dense block.

• Growth Rate: The growth rate in DenseNet
refers to the number of additional feature maps
(channels) that are added to the output of each
layer within a dense block.
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• Compression Factor: The factor by which the
number of featuremaps is reduced between dense
blocks.

Each hyper-parameter plays a crucial role in
determining the performance and efficiency of
the DeepPInc 2.0 model. By optimizing these
hyper-parameters using Bayesian optimization
algorithm, we ensured that the model achieved
the best possible performance while maintaining
efficiency and generalizability [14]. The optimization
process involved adjusting settings such as activation
functions, loss functions, optimizers, and the number
of channels in the CNN (Figure 6) and max-pooling
layers. Automated search methods, including grid
search, random search, and Bayesian hyper-parameter
search, were utilized to overcome the limitations of
manual search.

Figure 6. Architecture of CNN (Convolution Neural
Network).

2.3 Performance Evaluation Criteria
The model’s performance was assessed on test
sets using standard evaluation metrics. Confusion
matrices were constructed to differentiate between
correctly and incorrectly identified instances in the
test set. Sensitivity indicates the proportion of
positive instances correctly identified, while Specificity
denotes the proportion of negative instances correctly
identified. Precision assesses the ratio of correctly
identified positives to the total of true and false
positives [15]. F1-score, which balances precision and
recall, was also calculated. Additionally, Matthews
Correlation Coefficient (MCC) was used, considering
all four confusion matrix classes. A higher MCC score

indicates a more robust and balanced model with
greater consistency in performance.

Performance metrics were computed using the
following formulas:

Acc =
TN + TP

TN + TP + FN + FP
(1)

Specificity(Sp) =
TN

TN + FP
(2)

Sensitivity(Sn) = Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1− Score = 2×
(
Precision×Recall

Precision+Recall

)
(5)

AUC =

∫ 1

0
Pr[TP ](v)dv (6)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7)

Where: TP = True Positive, TN = True Negatives, FP =
False Positives, FN = False Negatives, Acc = Accuracy,
AUC = Area Under Curve (AUC) from receiver
operating characteristic (ROC) curves, F1-score is a
harmonic average of sensitivity and precision. MCC
indicates a correlation coefficient between the true
classes and the predicted classes.

2.4 Dataset and Benchmarking Criteria
DeepPInc V2.0 was trained and validated on a
meticulously curated dataset (Dataset “A”) (Figure
7) containing experimentally validated lncRNA and
non-lncRNA sequences sourced from comprehensive
databases like Ensembl Plants, PncStress, and PIncDB
V2.0. (Table 1) The model was benchmarked against
seven existing tools.
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Table 1. List of databases for lncRNAs.

S.No. Databases Data reported (lncRNA) Years
1 PNRD Computationally predicted 2014
2 PLNlncRbase Experimentally validated 2015
3 Ensembl plants Computationally predicted and Experimentally validated 2016
4 CANTATAdb V2.0 Computationally Predicted 2019
5 PreStress Experimentally validated 2020
6 GreeNC 2.0 Computationally Predicted 2022

Figure 7. Construction of Dataset ’A’ for training and
evaluation.

2.5 Application on Wheat Transcriptomes
Todemonstrate its practical application, DeepPIncV2.0
was used to identify lncRNAs from the transcriptome
of winter wheat (Triticum aestivum), a species
with no existing information regarding lncRNAs.
Transcriptomic data was downloaded from the ENA
Browser (Project ID: PRJNA963171), consisting of 24
samples (Figure 8) from the winter wheat cultivar
“Shiluan02-1” at various stages of vernalization (Table
2).

The NGS pipeline (Figure 9) involved quality checks
with FastQC and Multiqc. (Figures 10A and 10B) This
step helps in identifying any potential issues such as
adapter contamination, over-represented sequences, or
low-quality reads thatmay affect downstream analyses.
FastQC generates detailed reports for each sample,
highlighting areas that require attention. Multiqc [16]
is being done after this step for getting a single report
of the separated reports generated by fastqc.

Figure 8. Number of raw reads in each sample.

lncRNA candidates were identified. After filtering for
sequences with a minimum length of 200 bases, 34,597
sequences were used as input for DeepPInc V2.0.

Proceeding further we did trimming with
Trimmomatic, (Figure 11) which employs various
parameters to filter out reads below a certain quality
threshold and trim any residual adapter sequences,
ensuring that only high-quality reads (quality score
>30) are retained for further analysis.

Adding on we performed alignment with Hisat2.
(Figure 12) HISAT2 aligns the reads to the reference
sequences, allowing for accurate mapping and
quantification of gene expression levels. The
aligned reads were assembled into transcripts using
Strawberry. From the assembled transcriptome, which
contained 81,879 transcript sequences, 40,430 potential
lncRNAs were identified.

Lastly, Transcriptome profiling during vernalization
in winter wheat identified 80,442 expressed genes,
with 41,449 ubiquitously expressed across all samples.
Differential expression analysis revealed extensive
transcriptional reprogramming, with 37,615 DEGs
after vs before vernalization, highlighting major shifts
from vegetative to reproductive states. Stage-specific
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Figure 9. Flowchart of NGS Pipeline for transcriptomic data.

Table 2. List of the samples considered at 8 timepoints in
the vernalization phase.

Run accession Description
SRR24351037 Before vernalization
SRR24351036 Before vernalization replicate 1
SRR24351025 Before vernalization replicate 2
SRR24351023 After vernalization
SRR24351022 After vernalization replicate 1
SRR24351020 After vernalization replicate 2
SRR24351019 Vernalization 7 days
SRR24351018 Vernalization 7 days replicate 1
SRR24351021 Vernalization 7 days replicate 2
SRR24351017 Vernalization 14 days
SRR24351016 Vernalization 14 days replicate 1
SRR24351015 Vernalization 14 days replicate 2
SRR24351014 Vernalization 21 days
SRR24351035 Vernalization 21 days replicate 1
SRR24351034 Vernalization 21 days replicate 2
SRR24351033 Vernalization 28 days
SRR24351032 Vernalization 28 days replicate 1
SRR24351031 Vernalization 28 days replicate 2
SRR24351030 Vernalization 35 days
SRR24351029 Vernalization 35 days replicate 1
SRR24351028 Vernalization 35 days replicate 2
SRR24351027 Vernalization 42 days
SRR24351026 Vernalization 42 days replicate 1
SRR24351024 Vernalization 42 days replicate 2

responses included up to 41,774 DEGs during

Figure 10. A) MultiQC before trimming, B) MultiQC after
trimming.

mid-vernalization and dynamic changes across early
(7–14 h), middle (21–35 h), and late (42 h)
stages. Comparisons showed both upregulated (6,707)
and downregulated (5,335) genes, reflecting robust
regulation. Overall, results underscore dynamic,
stage-specific transcriptional adjustments enabling
adaptation to prolonged cold and transition toward
flowering (Table 3) (Figure 13).
These volcano plots display differentially expressed
genes (DEGs) with log2 fold change on the X-axis
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Figure 11. Graph of trimmed output. Dark blue bar
indicates both surviving paired end reads.

Figure 12. Graph of mapping samples output indicating
overall alignment rate.

and − log10 adjusted P-value on the Y-axis. Gray
dots represent non-significant genes, while red
and blue dots denote significantly upregulated
and downregulated genes, respectively, based on
thresholds of log2 fold change ≥ 2 or ≤ −2 and
adjusted P-value < 0.05. Threshold lines highlight
significance, and key genes may be labeled for
emphasis on their biological relevance.
To clearly represent the stepwise workflow of our
approach, the pseudo-code of DeepPInc V2.0 is
presented in Algorithm 1.

3 Results
DeepPInc V2.0 consistently outperformed seven
leading lncRNA prediction tools, achieving 92.4%
accuracy and 0.88 MCC, compared to the best baseline

(a)

(b)
Figure 13. Volcano plots of differentially expressed

genes (DEGs).

accuracy of 84.7% (MCC = 0.71) (Figures 14 and
15). Notably, its performance remained stable
(> 80% accuracy) even on truncated transcripts,
where competing methods showed significant drops,
confirming its robustness [17, 18].
The benchmarking results demonstrated that
DeepPInc V2.0 consistently outperformed seven
existing tools, with a superior accuracy and Matthews
Correlation Coefficient (MCC). (Figures 14 and 15)
Its ability to handle truncated sequences highlighted
its robustness and precision. The application of
DeepPInc V2.0 to the wheat transcriptome successfully
identified lncRNAs in a species where no such
information was previously available. From the 34,597
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Table 3. List of the DEGs within different pairs of
conditions.

Conditions Total DEGs Upregulated Downregulated
after_vs_before 6707 5335 12042
after_vs_during14 1127 1250 2377
after_vs_during28 394 323 717
after_vs_during35 452 345 797
after_vs_during42 3307 3435 6742
after_vs_during7 2045 2963 5008
before_vs_during14 6215 5433 11648
before_vs_during21 6094 6176 12270
before_vs_during28 7013 5334 12347
before_vs_during35 7554 5489 13043
before_vs_during42 3109 2282 5391
before_vs_during7 5596 6211 11807
during14_vs_21 735 1683 2418
during14_vs_28 906 798 1704
during14_vs_35 1952 1253 3205
during14_vs_42 4204 4070 8274
during21_vs_28 2064 748 2812
during21_vs_35 2079 923 3002
during21_vs_42 4767 4117 8884
during28_vs_35 766 541 1307
during28_vs_42 3643 3731 7374
during35_vs_42 3342 3962 7304
during7_vs_14 1932 639 2571
during7_vs_21 839 786 1625
during7_vs_28 3633 2079 5712
during7_vs_35 4101 2228 6329
during7_vs_42 4102 4588 8690

Figure 14. Comparative benchmarking on Dataset “A” test
datasets.

filtered sequences, DeepPInc V2.0 identified 29,061 as
lncRNAs and 5,536 as non-lncRNAs. Approximately
84% of the identified lncRNA transcripts were
correctly classified with a confidence probability of
≥ 0.50. This demonstrated a significantly lower false
characterization rate compared to other tools.

The study successfully developed DeepPInc V2.0,
a significant advancement in the computational

Algorithm 1: Pseudo-code of DeepPInc V2.0
Data: RNA sequences (FASTA), RNA secondary

structure (Dot-Bracket)
Result: Classification label: lncRNA /

non-lncRNA
Step 1: Preprocessing;
for each RNA sequence do

Encode nucleotides as one-hot vectors;
Predict secondary structure using RNAfold;
Convert dot-bracket notation into one-hot
encoding;

end
Step 2: Model Architecture;
Sequence branch: Input→ DenseNet-121→ Feature
vector;
Structure branch: Input→ CNN (Conv + Pool +
Dense)→ Feature vector;

Fusion: Concatenate features (sequence +
structure)→ Fully connected layers→ Softmax
classifier;
Step 3: Training;
Use Dataset A (plant lncRNA/non-lncRNA);
Optimize hyperparameters via Bayesian
optimization;
Loss function: Binary Cross-Entropy;
Optimizer: Adam;
Step 4: Evaluation;
Compute Accuracy, Precision, Recall, F1-score,
MCC, AUC;
Compare with baseline tools;
Step 5: Application (Case Study: Wheat
Transcriptome);
Input: Filtered transcripts from RNA-seq pipeline;
Predict lncRNA/non-lncRNA labels;
Identify differentially expressed lncRNAs;

identification of plant lncRNAs. By leveraging
a DenseNet architecture and incorporating both
sequence and secondary structure information, the
model provides a powerful and reliable resource for
the scientific community. The successful application
to winter wheat transcriptomes underscores the
model’s potential for genome annotation and the
study of developmental processes in plants, offering a
foundation for future advancements in plant lncRNA
research and functional genomics.

When applied to the wheat transcriptome, DeepPInc
V2.0 classified 29,061 out of 34,597 transcripts
as lncRNAs, with ∼84% predictions assigned a
probability ≥ 0.50, reducing false characterizations
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Figure 15. Comparative tools benchmarking on their
respective dataset.

compared to existing tools. Importantly, several
identified lncRNAs were differentially expressed
under heat stress, highlighting their potential
regulatory roles in stress adaptation.
Overall, these results demonstrate that DeepPInc V2.0
is more accurate, resilient to incomplete data, and
biologically informative, providing a valuable resource
for plant transcriptomics and functional genomics.

4 Conclusion and Key Contributions
lncRNAs have become crucial elements of eukaryotic
transcriptomes and regulatory systems. Increasingly,
lncRNAs are being discovered to play key roles in plant
growth, development, and maintenance. Although
several tools have been developed to identify lncRNAs
in plants, their inconsistency and performance
shortcomings highlight the need for improved
methods. In this study, we developed DeepPInc
V2.0 which represents a significant advancement in
the identification of plants through deep learning
techniques. Leveraging the DenseNet architecture,
the model was trained and validated on Dataset
“A,” which includes experimentally validated lncRNA
and non-lncRNA sequences from comprehensive
databases such as Ensembl Plants, PncStress, and
PIncDB V2.0. The results demonstrated that DeepPInc
V2.0 outperformed seven existing state-of-the-art
tools, exhibiting superior accuracy and MCC. The
model’s robustness was evident as it maintained
high classification performance even when applied
to truncated sequences, highlighting its versatility and
precision.
The application of DeepPInc V2.0 in real-world

biological research, particularly in studying
transcriptomic changes during the vernalization
process in winter wheat (Triticum aestivum),
showcased its practical utility. The model effectively
identified DEGs at various time points, providing
valuable insights into the gene expression dynamics
involved in plant adaptation to prolonged cold
exposure. This study underscores the potential
of DeepPInc V2.0 not only as an advanced tool
for lncRNA identification but also as a significant
contributor to the broader understanding of plant
genomics and developmental processes. The
successful deployment of DeepPInc V2.0 paves
the way for future advancements in plant lncRNA
research and functional genomics, offering a powerful
resource for the scientific community.
In this work, we presented DeepPInc V2.0, a
deep learning framework designed to address key
challenges in plant lncRNA identification. By
fusing sequence and structural information through
a bi-modal encoding strategy and employing a
DenseNet-CNN hybrid architecture, the tool delivers
accurate and robust predictions, even when transcripts
are incomplete—a frequent scenario in de novo
assemblies.
Our benchmarking demonstrated that DeepPInc
V2.0 outperforms seven state-of-the-art predictors
across multiple plant datasets, consistently achieving
higher accuracy, F1-scores, and MCC values. To
showcase its real-world applicability, we applied
the model to the wheat transcriptome under heat
stress, identifying over 27,000 candidate lncRNAs and
pinpointing stress-responsive differentially expressed
ones, underscoring its biological relevance.

Key Contributions of DeepPInc V2.0
• Bi-modal encoding with biological depth –

Integrates sequence and secondary structure to
capture richer biological signals.

• Smarter deep learning design – DenseNet-CNN
hybrid efficiently learns complex features for
superior performance.

• Dependable on incomplete data – Maintains
accuracy even on truncated transcripts common
in plant assemblies.

• Proven benchmarking superiority – Outperforms
seven existing tools in accuracy, F1, and MCC.

• Validated on real data – Revealed> 27, 000wheat
lncRNAs, including heat stress–responsive ones.
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Taken together, these advances make DeepPInc V2.0
a powerful and practical tool for the plant research
community. Beyond lncRNA identification, its
robustness and design principles pave the way for
applications in functional genomics, stress biology, and
crop improvement, where understanding noncoding
regulation is critical.
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