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Abstract
The theoretical fundamentals of aerostatics
governing airship flight are revisited and presented
in a simple manner.In the analysis it is assumed
that the airship is flying in a standard atmosphere,
and that both the atmospheric air and the gas
inside the envelope of the airship are governed by a
polytropic thermodynamic process. The equations
formulated in this paper are used to solve some of
the problems that were formulated in 1923 by the
designers of a slide rule. The slide rule was used
by the north-american pilots of the "Blimps" in the
1920s. The models presented in this paper should
be considered not only to calculate the aerostatic
equilibrium of the new generation airships, but
also to evaluate the aerostatic performance of the
balloons, that will be used in the future, to transport
experimental devices to the surface of the terrestrial
planets.
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1 Introduction
The airship technology was born at the end of the XIX
century and reached the stage of "full" development
during the first three decades of the XX century. The
dramatic incident of theGerman airship "Hindenburg",
occurred in Lakehurst, New Jersey, USA, on May 6th,
1937, was the end of the first era of the "giant flyers",
see [1–6].

The recent development of computational systems,
used by scientists and engineers to solve fluid
dynamics equations for predicting atmospheric wind
behavior, now enables finding optimal solutions to
problems faced by thosewho enabled the earlymilitary
and commercial airship flights.

The next generation of airships should be considered
not only as competitors of the conventional air
transportation systems, but due to their inherent
characteristics (secure, low operation costs, stability
and long range flight independence), they must be
considered as aircrafts that can be efficiently used in
applications such as [7–14]:

• Observance: Aerial photograph, police
surveillance, coast guard surveillance, forest
fire detection, vehicular trafic monitoring,
atmospheric contaminants measurement,
surveillance of oil ducts, mineral sources
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detection.
• Communication: Long range high-altitude aerial

platforms for the transmission of radio, TV
stations and internet.

• Transportation: goods, food, rescue of victims.
• Scientific research: Meteorology, geophysics,

oceanography, science balloons soaring, and
research of the animal wild life.

• Military applications: Anti-submarine warfare
and search of maritime mines.

Very recently, the use of balloons (whose aerostatic
behaviour is similar to that of the airships) has
been considered in several spacial missions aimed
to transport sensitive instruments to the surface of
the terrestrial planets (planetary balloon missions).
An understanding of the aerostatic of the balloons
within the atmosphere of the terrestrial planets, is very
important to guarantee the success of the missions, see
for instance http://www.gaerospace.com/space-exploration/p
lanetary-balloons/mars-balloons/ or https://vfm.jpl.nasa.gov/v
enusdesignreferencemission/vdrmballoons2/.
2 Aerostatics of the airships
To understand the aerodynamics of an airship, it is
important to know the theoretical fundamentals that
govern the aerostatics of these aircrafts.
The balance of the forces acting on an airship, in the
vertical direction z (where the positive axis z is directed
upward), can be expressed as

FR = FB − FT , (1)

where FT is the total weight of the aircraft (crew,
ballast, engines, fuel, envelope, etc.), FB is the
buoyancy force (due to the volume occupied by the
gas within the airship, in the atmospheric air), and
FR is the vertical resultant force, or the lifting power
of the ship (as it was named by [15] and [16]). The
vertical force balance is present independently of the
aerodynamic forces acting on the aircraft as a result of
the flight (that is the trust and drag forces).
The aerostatic equilibrium of the airship depends
on the vertical variation of the atmospheric air
temperature dTair/dz, and the balance between the
vertical variation of the atmospheric pressure and the
gravity force, that is

dp

dz
= −ρairg = −γair, (2)

where p [N/m2], ρair [kg/m3] and γair are the
pressure, density and weight per unit volume of
the atmospheric air respectively, and g [m/s2] is the
gravity acceleration.
During the first flights of the american Blimps (that is
at the beginning of the 1920s), the pilots of the airships
used slide rules to calculate the aerostatic equilibrium
of the aircraft, see [16] and [15]. The thermodynamics
fundamentals, on which the design of the slide rules
was based, are presented in this paper, see [15] and
[17].
The mathematical expressions presented in this paper
(which are based on the thermodynamical models
shown by [17]), are successfully validated by solving
eight of the eleven problems that were proposed and
solved by [15].
It may be concluded that the simple mathematical
models revisited and presented in this paper, can
be used (by undergraduate students in physics and
engineering)) to calculate, not only the aerostatic
behaviour of airships, but also the determine the
aerostatic equilibrium of high altitude and outer space
balloons.
In the solution of the problems proposed by [15], it is
assumed in this paper, that the airship is flying in a
standard atmosphere.

2.1 The Universal Standard Atmosphere
The Universal Standard Atmosphere is considered as
an hypothetical vertical distribution of the pressure,
temperature and density of the atmospheric air. In the
Universal Standard Atmosphere model, it is assumed
that the atmospheric air: (i) is an ideal gas, hence
its thermodynamics behaviour is governed by the
following state equation

p

ρairg
=

Rair

g
Tair, (3)

or
p

γair
= pvair = Bair Tair, (4)

and (ii) it satisfies the hydrostatic equilibrium, see Eq.
(2). In Eqs. (3) and (4), Tair [K] is the temperature
of the atmospheric air, Rair=287.053 J/kg-K is the
constant of the air, which is evaluated from Rair =
R/Mair, R is the universal gas constant, that is 8314.51
J/(kgmole-K) and Mair is the average molar mass of
the air, that is 28.965 kg/kgmole,Bair = Rair/g=29.271
m/K, where g=9.80665 m/s2. Notice that vair = 1/γair
[m3/N].
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In the Universal Standard Atmosphere model, it is
assumed that the air is free of humidity, and that the
gravity acceleration g does not change with respect
to the vertical direction z. In the definition of the
Universal Standard Atmosphere, several physical
parameters are considered, however for the analysis
of the buoyancy of the airships (and for the solution
of the problems proposed by [15]), the values of the
parameters that we use are the following:

1. Constant of the air (without humidity),
Rair=287.053 J/kg-K.

2. Gravity acceleration, g=9.80665 m/s2.

3. Variation of the temperature with respect to the
vertical direction z (environmental lapse rate)
−dTair/dz=0.0065 K/m.

4. The polytropic coefficient of the air (n) is
calculated from

n =
1

1 +Bair
dTair
dz

=
1

1 + [(29.271) (−0.0065)]

= 1.2349

(5)

2.2 The atmospheric air as a simple compressible
substance

In the analysis, it is assumed that the atmospheric
air is a simple compressible substance, that is the
only permissible (reversible) works are expansion or
compression. The thermodynamics state of a simple
compressible substance, is fully determined from the
specification of two independent thermodynamical
properties [18].

In this paper, it is assumed that the thermodynamic
behaviour of the atmospheric air is governed by a
polytropic process (in which there exists a hydrostatic
equilibrium and the temperature gradient dTair/dz
is constant) which is defined by the following
relationship

p

(
1

ρairg

)n

= p

(
1

γair

)n

= pvnair = const. (6)

Then, if the ideal gas equation (see Eq. (3)) is used
together with the hydrostatic equation, see Eq. (2), it is
obtained that the variation with respect to the vertical
coordinate z of the pressure p , temperature T and
specific weight γ of the air is given as, see [17]

p = p1

[
1 +

dTair

dz

z

Tair1

] n
n−1

= p1 [1− az]
n

n−1 , (7)

Tair = Tair1 +
dTair

dz
z = Tair1(1− az) (8)

and

γair = γair1

[
1 +

dTair

dz

z

Tair1

] 1
n−1

= γair1 [1− az]
1

n−1 ,

(9)
where it is observed that the coefficient a is defined as

a = − 1

Tair1

dT

dz
, (10)

p1, Tair1 and γair1 are known values of the atmospheric
air at the reference height z1.
In the aerostatic analysis of an airship, the buoyancy
force, in Eq. (1), is given as

FB = (γair − γgas)V, (11)

where V is the volume of gas confined within the
envelope of the airship. Notice that the subscript
gas refers to the gas properties. In the analysis, it is
assumed that the gas (either hydrogen or helium),
behaves also as an ideal gas, then Rgas is defined as

Rgas =
R

Mgas
≡ J/kg-K, (12)

where for hydrogen Mgas=2.016 kg/kgmole, while for
heliumMgas=4.003 kg/kgmole.
The specific weights of the air and the gas that appear
in Eq. (11) are defined as γair = ρairg and γgas = ρgasg,
respectively.
Two aerostatic conditions of the airship are analyzed
in this paper, in the first condition, it is assumed that
airship is in the "taut" state, that is the airship is full
of gas. In the second condition, it is assumed that the
airship is in the flexible "limp" state, that is the airship
is partially filled with gas. The "limp" word was taken
by the British and the USA Navy, to give name to the
flexible airships as "Blimps".
In the aerostatic analysis of the "taut" and "limp"
conditions, it is assumed that the pressure of the gas
is equal to the local pressure (at the height z) of the
atmospheric air (hence, pgas = pair = p, see Eqs. (6)
and (7)), and that the expansion of the gas is also
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governed by a polytropic process, hence the gas satifies
the following equation

p

(
1

γgas

)k

= const, (13)

where k is the gas polytropic coefficient. From the
relationship

p

p1
=

(
ρgas
ρgas1

)k

, (14)

it is obtained

γgas = γgas1

[
1 +

dTair

dz

z

Tair1

] n
k(n−1)

= γgas1 [1− az]
n

k(n−1)

(15)

2.3 Aerostatics of an airship in "taut" condition
In this condition, it is assumed that the aircraft is
totally full of gas, and that the volume of the airship
remains constant, independently of the ascending or
descending maneuverings, however, the mass of the
gas confined within the envelope may change (for
instance when gas is released to the atmosphere). The
hydrostatic stability of the airship is obtained when Eq.
(1) is derived with respect to the vertical direction
z (and considering that the volume of the airship
remains constant), that is (see [17])

dFR

dz
=

dFB

dz
− dFT

dz
. (16)

In the analysis, it is assumed that the total weight of the
airship FT does not change with respect to the vertical
direction, then its derivative with respect to z is equal
to zero. Hence from Eq. (16), and deriving Eq. (11),
we may write

dFR

dz
=

dFB

dz
= V

d

dz
(γair − γgas) , (17)

which can be written as (using the hydrostatic
equation, see Eq. (2))

dFB

dz
= V

dp

dz

d

dp
(γair − γgas)

= −V γair
d

dp
(γair − γgas) .

(18)

Using Eqs. (6) and (13) it is possible to write

lnγair =
1

n
lnp (19)

and
lnγgas =

1

k
lnp. (20)

Taking the derivatives of Eqs. (19) and (20) we get

d lnγair =
1

n
d lnp (21)

and
d lnγgas =

1

k
d lnp. (22)

Using the derivative rules
d lnγ
dγ

=
1

γ
and d lnp

dp
=

1

p
, (23)

in Eqs. (21) and (22), we obtain
dγair
dp

=
1

n

γair
p

(24)

and
dγgas
dp

=
1

k

γgas
p

. (25)

Substituting Eqs. (24) and (25) into Eq. (18), we get
[17],

dFB

dz
= −V

γair
p

(γair
n

− γgas
k

)
. (26)

or∫ ∆z

zo

dFB = −V

n

∫ ∆z

zo

γ2air
p

dz +
V

k

∫ ∆z

zo

γairγgas
p

dz

(27)
Using Eqs. (7), (9) and (15) in Eq. (27), we get

∫ ∆z

zo

dFB =− V

nzo
γairo

∫ ∆z

zo

[1− az]
2−n
n−1 dz

+
V

kzo
γgaso

∫ ∆z

zo

[1− az]
k(1−n)+n
k(n−1) dz

(28)

where zo = po/γo. Integrating Eq. (28), we have

∫ ∆z

zo

dFB =
V γairo
nzo

(n− 1)

a

[
(1− az)

1
n−1

]∆z

zo

− V γgaso
kzo

k(n− 1)

an

[
(1− az)

n
k(n−1)

]∆z

zo
(29)

If it is assumed that zo = 0, we get∫ ∆z

zo

dFB =
V γairo
nzo

(n− 1)

a

[
(1− a∆z)

1
n−1 − 1

]
− V γgaso

kzo

k(n− 1)

an

[
(1− a∆z)

n
k(n−1) − 1

]
.

(30)
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It is observed that
n− 1

nzoa
= 1. (31)

Using Eq. (31) in Eq. (30), we obtain

FB∆z
− FBo =

[
γairo (1− a∆z)

1
(n−1)

− γgaso (1− a∆z)
n

k(n−1)

]
V

− (γairo − γgaso)V,

(32)

whereFB∆z
andFBo are the buoyancy forces at a height

∆z and at the ground z = 0, respectively. If in Eq. (32),
it is assumed that k = n we obtain
FB∆z

− FBo =(γairo − γgaso) (1− a∆z)
1

(n−1) V

− (γairo − γgaso)V.
(33)

From Eq. (33), the ballast formula proposed by [17]
is obtained. Let’s assume that at the ground z = 0, the
airship is in equilibrium, hence from Eq. (1) we have
FRo = 0, then FBo = FTo . However at z = 0, the pilot
of the airship drops the ballast∆FT . Then, at a certain
height ∆z the airship will be again in equilibrium,
hence FR∆z

= 0, then FB∆z
= FT∆z

. Where
FB∆z

= FT∆z
= FTo −∆FT . (34)

Using Eq. (34) in Eq. (33) we have

(FTo −∆FT )− FTo = FBo (1− a∆z)
1

(n−1) − FBo (35)
where

FBo = (γairo − γgaso)V. (36)
Then Eq. (35) is reduced to

−∆FT = FBo

[
(1− a∆z)

1
(n−1) − 1

]
(37)

Where the height ∆z that the airship will rise after
dropping the ballast can be obtained, that is

∆z =
1

a

[
1−

{
1− ∆FT

FBo

}n−1
]
, (38)

remember that FBo is equal to the initial weight of the
airship FTo .
An interesting situation appears when the airship is
moored on the earth surface, or it is in takeoff or
landing conditions. Under these conditions,∆FT , in
Eq. (38), corresponds to the force that the crew must
exerts to maintain the airship on land, that is when
FRo=0. Then the force ∆FT exerted by the crew gives
an idea about the height that the airship will attain
once the airship is released.

2.3.1 Effect of temperature changes in the "taut" state
From the buoyancy force equation at a given height z

FB = (γair − γgas)V, (39)

and from the state equation, see Eq. (4)

γair =
p

BairTair
and γgas =

p

BgasTgas
, (40)

we may write

FB =
pV

Bair

[
1

Tair
− σ

Tgas

]
, (41)

where

σ =
Bair

Bgas
=

(
p

γairTair

)(
γgasTgas

p

)
=

γgasTgas

γairTair

(42)
In Eq. (42) it has been assumed that the pressure p
of both the air and the gas is the same. Taking the
derivative of Eq. (1) with respect to Tgas, keeping the
volume V , the pressure p and the weight of the airship
FT as constants, and using Eqs. (41) and (42) we have

∂FR

∂Tgas
=

∂FB

∂Tgas
=

V γgas
Tgas

. (43)

Notice that the product V γgas can be written as

V γgas = V

(
γair − γgas
γair − γgas

)
γgas

=

[
(γair − γgas)V

γair
γgas

− 1

]

=
FB

γgas
γair

1− γgas
γair

=
FBσ

Tair
Tgas

1− σ Tair
Tgas

(44)

hence

∂FR

∂Tgas
=

∂FB

∂Tgas
=

(
FB

Tgas

)( σ Tair
Tgas

1− σ Tair
Tgas

)
. (45)

Similarly, taking the derivative of Eq. (1) with respect
to Tair, and keeping the volume V , the pressure p and
the weight of the airship FT as constants, and using
Eqs. (41) and (42) we get

∂FR

∂Tair
=

∂FB

∂Tair
= −

(
FB

Tair

)(
1

1− σ Tair
Tgas

)
. (46)

The change of the buoyancy force is calculated as

dFB =
∂FB

∂Tgas
dTgas +

∂FB

∂Tair
dTair. (47)
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For finite small temperature differences, Eq. (47) can
be written as, see [17],

∆FB =
∂FB

∂Tgas
∆Tgas +

∂FB

∂Tair
∆Tair. (48)

Using Eqs. (45) and (46) in Eq. (48) it is obtained

∆FB
FB

=

(
1

1−σ
Tair
Tgas

)[
σ
(
∆Tgas

Tgas

)(
Tair
Tgas

)
− ∆Tair

Tair

]
.

(49)
If in Eq. (49), it is considered that Tgas = Tair = T , we
obtain

∆FB

FB
=

σ∆Tgas −∆Tair

T (1− σ)
(50)

Notice that either Eq. (49) or Eq. (50) can be used in
the ballast equation, Eq. (38) (that is, when k = n)
to obtain the height ∆z that the airship will change
with respect to the height z at which Tgas, Tair,∆Tgas

and ∆Tair are evaluated. Hence, the ballast equation
Eq. (38), when Tgas = Tair = T (and ∆FB/FB =
∆FT /FBo), is written as

∆z =
1

a

[
1−

{
1−

(
σ∆Tgas −∆Tair

T (1− σ)

)}n−1
]
, (51)

2.4 Aerostatics of an airship in flexible "limp"
condition

In this operational condition, the gas within the
envelope of the airship is free to expand or to compress
(following a polytropic thermodynamical process)
without the need to release gas. Then, the volume
occupied by the gas can change, however the amount
of gas inside the airship remains constant. If theweight
of the gas inside the airship is calculated as

Wgas = γgasV, (52)

where V is the volume occupied by the gas.
Using Eq. (52) in Eq. (1) we write

FR = (γair − γgas)V − FT

= (γair − γgas)

(
Wgas

γgas

)
− FT

= Wgas

[
γair
γgas

− 1

]
− FT

(53)

The hydrostatic stability of an airship in a "limp" state
is obtained by taking the derivative of Eq. (53) with
respect to the vertical coordinate z, and keeping Wgas

and the total weight of the airship FT as constant
values, that is

dFR

dz
=

dFB

dz
= Wgas

d

dz

(
γair
γgas

− 1

)
= Wgas

dp

dz

d

dp

[
γair
γgas

− 1

] (54)

Following the same procedure from which it was
obtained Eq. (26), it is possible to write the following
expression [17],

dFB

dz
= −Wgasγ

2
air

γgasp

(
1

n
− 1

k

)
. (55)

Using Eqs. (7), (9) and (15) in Eq. (55) we get∫ ∆z

zo

dFB = −Wgasγairo
γgasozo

(
1

n
− 1

k

)
×
∫ ∆z

zo

(1− az)
k(2−n)−n
k(n−1) dz.

(56)

Integrating Eq. (56), we get∫ ∆z

zo

dFB =
Wgasγairo
γgasozo

(
1

n
− 1

k

)
×
(
k(n− 1)

a(k − n)

)
×
[
(1− az)

k−n
k(n−1)

]∆z

zo

(57)

If it is assumed that zo=0, we get

∫ ∆z

zo

dFB =
Wgasγairo
γgasozo

(
1

n
− 1

k

)
×
(
k(n− 1)

a(k − n)

)
×
[
(1− a∆z)

k−n
k(n−1) − 1

] (58)

From Eq. (31) it is observed that a = (n − 1)/(nzo),
then we can write the following expression

k(n− 1)

a(k − n)
=

knzo
(k − n)

, (59)

Using Eq. (59) in Eq. (58), we get

FB∆z
− FBo =

knWgasγairo
(k − n)γgaso

(
1

n
− 1

k

)
×
[
(1− a∆z)

k−n
k(n−1) − 1

]
=

Wgasγairo
γgaso

[
(1− a∆z)

k−n
k(n−1) − 1

]
,

(60)
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where FB∆z
and FBo are the buoyancy forces at the

height ∆z and at the ground z = 0. Equation (60) can
also be written as

FB∆z
− FBo = Wgas

[
γairo (1− a∆z)

1
(n−1)

γgaso (1− a∆z)
n

k(n−1)

]

− Wgasγairo
γgaso

(61)

Using Eqs. (9) and (15) in Eq. (61) we have

FB∆z
− FBo = Wgas

(
γair
γgas

)
−Wgas

(
γairo
γgaso

)
. (62)

Resting and summing Wgas in the first and in the
second terms on the right hand side of the Eq. (62), it
is obtained

FB∆z
− FBo = Wgas

[(
γair
γgas

)
− 1

]
−Wgas

[(
γairo
γgaso

)
− 1

]
,

(63)

which are the expressions for the buoyancy forces at
the height ∆z and z = 0, see Eq. (53).
A ballast formula can also be obtained from Eq. (60).
Again, let’s assume that at the ground, z = 0, the
airship is in equilibrium, hence we have FRo = 0, then
FBo = FTo . At z = 0 the crew drops the ballast ∆FT ,
in such away that at the height∆z the airship will be
again in equilibrium, then FR∆z

= 0, hence FB∆z
=

FT∆z
, but FB∆z

= FT∆z
= FTo −∆FT . Using these last

relationships in Eq. (60) we have

(FTo −∆FT )− FTo = Wgas

(
γairo
γgaso

)
×
[
(1− a∆z)

k−n
k(n−1) − 1

]
.

(64)

from which it is obtained

∆z =
1

a

1−
1− ∆FT

Wgas

(
γairo
γgaso

)


k(n−1)
k−n

 . (65)

2.5 Effect of temperature changes in the "limp" state
Using Eq. (42) in Eq. (53) the resultant force FR in
the limp state is written as

FR = Wgas

[
1

σ

Tgas

Tair
− 1

]
− FT . (66)

Taking the derivative of Eq. (66) with respect to Tair,
and keeping the weight of the gasWgas, the pressure p
and the weight of the airship FT as constants we have

∂FR

∂Tair
=

∂FB

∂Tair
= −WgasTgas

σT 2
air

. (67)

Using Eqs. (42) and (52) in Eq. (67) we get
∂FB

∂Tair
= −V γair

Tair
, (68)

where V γair is written as

V γair = V
(γair − γgas)

(γair − γgas)
γair =

FB

1− γgas
γair

=
FB

1− σ Tair
Tgas

.

(69)
Using Eq. (69) in Eq. (68), it is obtained

∂FB

∂Tair
= − FB

Tair

[
1

1− σ Tair
Tgas

]
(70)

Similarly, taking the derivative of Eq. (66) with respect
to Tgas, and keeping the weight of the gas Wgas, the
pressure p and theweight of the airshipFT as constants
we have

∂FB

∂Tgas
=

Wgas

σTair
=

Wgas(
γgas
γair

Tgas

Tair

)
Tair

=
V γgasγair
γgasTgas

=
V γair
Tgas

.

(71)
Using Eq. (69) in Eq. (71), we get

∂FB

∂Tgas
=

FB

Tgas

[
1

1− σ Tair
Tgas

]
. (72)

For finite small temperature differences (see Eq. (47)),
and using Eqs. (70) and (72) in Eq. (48), we get

∆FB

FB
=

(
1

1− σ Tair
Tgas

)[
∆Tgas

Tgas
− ∆Tair

Tair

]
. (73)

If in Eq. (73) it is considered that Tgas = Tair = T , we
obtain

∆FB

FB
=

∆Tgas −∆Tair

T (1− σ)
. (74)

Notice that either Eq. (73) or Eq. (74) can be used
in the ballast equation, Eq. (65), where the term
Wgasγair/γgas, can be written as (see Eq. (69))

Wgas

(
γair
γgas

)
= V γgas

(
γair
γgas

)
= V γair =

FB

1− γgas
γair
(75)
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Using Eq. (75) in the ballast formula Eq. (65) (when
∆FB/FB = ∆FT /FB), we have

∆z =
1

a

1−{1− ∆FB

FB

(
1− γgas

γair

)} k(n−1)
k−n

 . (76)

When Tgas = Tair = T , the height ∆z that the airship
will change with respect respect to the height z at
which Tgas, Tair, ∆Tgas and ∆Tair are evaluated, is
obtained when Eq. (74) is used in Eq. (76), hence we
have

∆z = 1
a

[
1−

{
1− (∆Tgas−∆Tair)

T (1−σ)

(
1− γgas

γair

)} k(n−1)
k−n

]
(77)

3 Results and Discussion
In this section we present the solution of the Weaver
and Pickering (1923) proposed set of hydrostatic
problems that were solved using the "slide rule", by
the pilots of the US "Blimps", as a part of their training.
The use of slide rule was required by the USA Navy,
due to the success of a previous slide rule named the
Scott-Teed rule, that was used by the British airships
pilots [15].
The solution of these real life situations/problems has
been explained below as case studies. It is assumed
that the gas within the envelope of the airship is
hydrogen and that the atmosphere is a standard one.
In the problems, it is assumed that the airship has a
total volume of 6880.9 m3 (243,000 cubic feet).
Case study 1
To calculate the total lifting power of an airship of
V=6880.99 m3 (243,000 cubic feet) capacity at an
altitude of 1524m (5,000 feet), if the barometer reading
at the ground is 101305.5 Pa (30 inches) and the air
temperature 288.7 K (60 oF) and the hydrogen is 95
per cent pure.
It is assumed that the airship is in the "taut" state. The
polytropic coefficients of the air and gas are n=1.2349
and k =1.4, respectively. The value of the coefficient a
is evaluated from Eq. (10), then

a = − 1

To

dT

dz
= − 1

288.7
(−0.0065) = 2.251×10−5 1/m.

(78)
On the surface of the earth (zo=0 m) where
po=101305.5 Pa and To=288.7 K, the specific weights

of the air and the gas are calculated from the state
equation, see Eq. (3), hence

γairo =
pog

RairTo
=

(101305.5)(9.80665)

(287.04)(288.7)
= 11.98 N/m3,

(79)
and

γgaso =
pog

RgasTo
=

pog
R

Mgas
To

=
(101305.5)(9.80665)(

8314.51
2.016

)
(288.7)

= 0.834 N/m3.

(80)

The buoyancy force FB∆z
at the height ∆z = 1524 m

is calculated from Eq. (32), hence

FB∆z
=
[
γairo (1− a∆z)

1
(n−1)

− γgaso (1− a∆z)
n

k(n−1)

]
V

= 66061.458 N.

(81)

[15] suggest to modify the buoyancy force by 0.95
(percent of the hydrogen purity) hence FB∆z

=
(0.95)(66061.458)=62758.386 N. [15] reported a value
of FB∆z

= 62453 N (14,040 pounds). Then we have a
percentage error equal to 0.48%.
Case study 2
We calculate the initial gas mass in an airship in order
to reach an altitude of 2438.4 m (8,000 feet) without
losing gas.
As the airship is assumed to be in the "limp" state,
the amount of gas (that is the weight of the gas Wgas)
within the airship remains constant. From Eq. (52),
the weight of the gas at the surface z=0, and at the
height ∆z= 2438.4 m, is given by

Wgas = γgasoVo and Wgas = γgas∆zVgas∆z , (82)

respectively. Equating both Eqs. (82) we get

γgasoVo = γgas∆zVgas∆z , (83)

from which the ratio Vo/Vgas∆z is obtained, that is
Vo

Vgas∆z

=
γgas∆z

γgaso
. (84)

Taken the values of the parameters at the start to be the
same as the values at the ground (z=0) of the problem
1, we obtain γgaso=0.834N/m3, and γgas∆z is calculated
from Eq. (15)

γgas∆z = γgaso [1− a∆z]
n

k(n−1) = 0.6749 N/m3. (85)
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Hence
Vo

Vgas∆z

=
γgas∆z

γgaso
= 0.809. (86)

The initial volume of the airship is 80.9% of the volume
that it will have at an altitude of 2438.4 m (without lost
of gas). [15] report 78 %. This means that we have a
percentage error equal to 3.71%.

Case study 3

An airship is in equilibrium at a height of 609.6 m
(2,000 feet). The pilot estimates that the ship is 90 per
cent full and that the total weight of the ship and its
load is 48930.4 N (11,000 pounds). We calculate how
much ballast must be dropped to rise to a height of
1828.8 m (6,000 feet).

The airship is in the "limp" state. Then, the weight of
the gas Wgas in the airship remains constant. From
the balance force equation, see Eq. (53), at the height
z1= 609.6 m, the airship is in equilibrium FR=0, then
FB = FT , hence we have

(γair1 − γgas1)V1 = FT1 (87)

The airship is flying in a standard atmosphere. The
parameters at the surface have the following values
To=288.15 K, po=101325 Pa, g=9.80665 m/s2, a=2.255
× 10−5 1/m. Hence from the state equation the specific
weights of the gas and the air are γairo=12.012 N/m3

and γgaso=0.836 N/m3, respectively.

where

γair1 = γairo [1− az1]
1

(n−1)

= 12.012
[
1− (2.255× 10−5)(609.6)

] 1
(1.2349−1)

= 11.32 N/m3.
(88)

γgas1 = γgaso [1− az1]
n

k(n−1)

= 0.836
[
1− (2.255× 10−5)(609.6)

] 1.2349
1.4(1.2349−1)

= 0.7937 N/m3.
(89)

Then V1 can be obtained as

V1 =
FT1

(γair1 − γgas1)
=

48930.4

(11.32− 0.7937)

= 4720.733 m3.

(90)

From Eq. (63), it is possible to write

FB2 − FB1 = Wgas

[(
γair2
γgas2

)
− 1

]
−Wgas

[(
γair1
γgas1

)
− 1

] (91)

or

(FB1 −∆FT )− FB1 = Wgas

[(
γair2
γgas2

)
−
(
γair1
γgas1

)]
= γgas1V1

[(
γair2
γgas2

)
−
(
γair1
γgas1

)]
,

(92)
or

∆FT = −V1

[
γgas1

(
γair2
γgas2

)
− γair1

]
, (93)

where

γair2 = γairo [1− az2]
1

(n−1) = 10.04 N/m3. (94)

γgas2 = γgaso [1− az2]
n

k(n−1) = 0.7137 N/m3. (95)

Substituting the values ofV1, γair1 , γgas1 , γair2 and γgas2
in Eq. (93), it is obtained ∆FT=901.8 N. [15] report
934.12 N (210 pounds). Hence we have a percentage
error equal to 3.45%.
Case study 4
To calculate then the lifting power of a balloon (airship)
with total load (in equilibrium) being 60050.97 N
(13,500 pounds). It is assumed that the temperature
of the air is 272.03 K (30oF) and the temperature of the
gas is 280.37 K (45oF). It is also assumed that no gas
is lost until after sunset, when the temperature of gas
and air will become equal.
It is assumed that the airship is in "limp" state. From
Eq. (73)

∆FB = FB

(
1

1− σ Tair
Tgas

)[
∆Tgas

Tgas
− ∆Tair

Tair

]
(96)

where Tair=272.03 K, Tgas=280.37
K, ∆Tgas=272.03-280.37=-8.33 K,
∆Tair=0 K, FB=60050.97 N and
σ=Bair/Bgas=29.271/420.557=0.0696. Then,
∆FB =-1913.38 N. Hence the buoyancy force is
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FB=60050.97+(-1913.38)=58137.59 N. [15] report
56803.76 N (12,770 pounds). Hence we have a
percentage error equal to 2.34%.
Case study 5
When an airship of 6880.99 m3 (243,000 cubic feet)
capacity reaches the summit of its flight, the barometer
is observed to read 74301.33 Pa (22 inches), the
temperature of the gas is 272.04 K (30oF), and its purity
98 per cent. For the above situation lifting power of the
ship is calculated when the air temperature is 283.15 K
(50oF) and the gas temperature is 291.48 K (65oF).
Assuming that the airship is in the "limp" state, the
height where the airship reaches the summit of its
flight, the temperature of the gas is equal to the
temperature of the air, that is Tgas=Tair=272.03 K.
From the state equation, the specific weights of the
gas and the air, at this height are calculated as

γgas =
p

BgasT
=

74301.33

(420.55)(272.04)
= 0.649 N/m3,

(97)
γair =

p

BairT
=

74301.33

(29.271)(272.04)
= 9.33 N/m3.

(98)
The weight of the gas at this height is calculated as

Wgas = V γgas = (6880.99)(0.649) = 4468.78 N. (99)

At the summit the buoyancy force is calculated as

FB = Wgas

[
γair
γgas

− 1

]
= 4468.78

[
9.33

0.649
− 1

]
= 59735.40 N

(100)

From Eq. (74)

∆FB = FB

(
∆Tgas −∆Tair

T (1− σ)

)
, (101)

where ∆Tgas=291.48-272.04=19.44 K,
∆Tair=283.15-272.04=11.11 K and σ=0.0696. Then
from Eq. (74)

∆FB = 59730.79

(
19.44− 11.11

272.04 (1− 0.0696)

)
= 1966.67 N.

(102)
Hence the buoyancy force is
FB=59735.40+1966.67=61702.075 N. However
the purity of the gas is 98%, the we have

FB=0.98(61702.075)=60468.035 N. [15] report
60629.23 N (13630 pounds). Hence we have a
percentage error equal to 0.26%.
Case study 6
To calculate the height of an airship of 6880.99 m3

(243,000 cubic feet) capacity rise with a load of
40033.99 N (9,000 pounds) if it filled with 98 per cent
hydrogen, the barometer reads 84433.33 Pa (25 inches),
and the air temperature is 299.81 K (80oF).
It is assumed the airship is in "limp" state. From Eq.
(63),

FB∆z
= Wgas

[(
γair∆z

γgas∆z

)
− 1

]
. (103)

At the height z at which the measurements were taken
and the volume is 98% of the total volume VT=6880.99
m3, that is Vz=(0.98)VT=(0.98)(6880.99)=6743.37 m3,
the gas specific weight is

γgasz =
pz

BgasTz
=

84433.33

(420.557)(299.80)
= 0.6696 N/m3,

(104)
while the air specific weight is

γairz =
pz

BairTz
=

84433.33

(29.271)(299.80)
= 9.62 N/m3.

(105)
The weight of the gas Wgas, which remains constant,
is evaluated at the height z as
Wgas = γgaszVz = (0.6696)(6743.37) = 4515.64 N.

(106)
The specific weight of the gas at the new vertical
position∆z is calculated as

γgas∆z =
Wgas

VT
=

4515.64

6880.99
= 0.656 N/m3 (107)

At the height ∆z the buoyancy force of the airship
FB∆z

is in equilibrium with the load 40033.99 N, then
Eq. (103) can be written as

40033.99 = 4515.64
[(γair∆z

0.656

)
− 1
]
, (108)

from which, γair∆z=6.474 N/m3. Using this value of
γair∆z in Eq. (9), we get

γair∆z = γairz [1− a∆z]
1

n−1 , (109)

The height ∆z is given as

∆z =
1

a

[
1−

(
γair∆z

γairz

)n−1
]

=
1

2.251× 105

[
1−

(
6.474

9.62

)1.2349−1
]

= 3946.96 m.

(110)
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[15] report 4023.36 N (13200 feet). Hence we have a
percentage error equal to 1.89%.
Case study 7
The total weight of the ship of 6880.9 m3 (243,000 cubic
feet) capacity and its load is 66723.3N (15,000 pounds).
It is just in equilibrium at a barometric pressure of
104697.33 Pa (31 inches) and an air temperature of
283.15 K (50oF). The purity of the hydrogen is 94 per
cent. We calculate the increase in liting power of the
ship if pure hydrogen is used to fill the bag.
The airship does not change its vertical position and it
is assumed to be in "limp" state. It is further assumed
that the gas and the air have the same temperature, that
is Tgas1=Tair1=T=283.15 K. Hence the specific weights
are calculated as

γgas =
p

BgasT
=

104697.33

(420.557)(283.15)
= 0.8792 N/m3,

(111)
and

γair =
p

BairT
=

104697.33

(29.271)(283.15)
= 12.631 N/m3.

(112)
In equilibrium the buoyancy force is equal to the load
(FT=66723.3 N) then we have

FB = V (γair − γgas) = FT = 66723.3 N, (113)

Then, the volume occupied by the gas when it is 94%
pure is obtained by

V94% =
FB

0.94 (γair − γgas)

=
66723.3

0.94 (2.631− 0.8792)

= 6039.675 m3.

(114)

If the airship is going to be filled now with pure
hydrogen until the bag is full, the increment in volume
must be ∆V100%=VT -V94%=6880.9-6039.675=841.314
m3. Then the increment in buoyancy should be

∆FB = ∆V100% (γair − γgas)

= 841.314 (12.631− 0.879)

= 9887.685 N.

(115)

[15] report that the number of volume of pure
hydrogen added is ∆V100%=849.5 m3 (30,000 cubic
feet), while the amount by which the lifting power

has been increased is 9986.25 N (2,245 pounds). Then
for the volume of pure hydrogen added we have a
percentage error equal to 0.963 %, whereas for the
increment in the buoyancy, the percentage error is
equal to 0.987 %.
Case study 8

A balloon in the hangar is to be filled to rise to a
total altitude of 1524 m (5,000 feet) in bright sunshine.
The observed temperature of the air is 294.2 K (70oF).
Assumeing that bright sunlight heats the gas to a
temperature of 11.11 K (20oF) above that of the
surrounding air, we calculate the amount of hydrogen
to be filled in the balloon in order that it will attain the
desired altitude.
It is considered that the airship is in a "limp" state,
then the weight of the gas Wgas remains constant.
It is assumed that the total volume of the airship is
VT=6880.9 m3 (243,000 cubic feet). At the ground the
weight of the gas is given as

Wgas = γgasoVo, (116)

where γgaso and Vo (unknown value) are the gas
specific weight and the initial volume of the airship
at the ground (z=0 m ), respectively. At the height
z=1524 m, the weight of the gas is given as

Wgas = γgaszVz, (117)

where γgasz (unknown value) and Vz=VT=6880.9 m3

are the gas specific weight and the total volume of the
airship at the height z=1524 m. Equating Eqs. (116)
and (117), it can be obtained the value of the initial
volume, that is the volume at the hangar Vo, hence we
have

Vo =

(
γgasz
γgaso

)
VT . (118)

From the state equation γo is obtained as

γgaso =
po

BgasTgaso

=
101320

(420.557)(294.2 + 11.11)

= 0.788 N/m3

(119)

The atmospheric pressure of the air (which the same
as the gas) at the height z=1524 m, is calculated as, see
Eq. (7)
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pz = po

[
1 +

dTair

dz

z

Tairo

] n
n−1

= 101320

[
1 +

(−0.0065)(1524)

294.1

] 1.2349
(1.2349−1)

= 84627.53 N/m2

(120)

The temperature of the air at the height z=1524 m, is
calculated as, see Eq. (8)

Tairz = Tairo +
dTair

dz
z

= 294.2 + (−0.0065)(1524)

= 284.35 K.
(121)

Then, the gas temperature at the height z=1524 m,
is Tgasz=Tairz+11.11=295.463 K. With the values of
pz and Tgasz it is possible to evaluate the gas specific
weight at the height z=1524 m, that is

γgasz =
pz

BgasTgasz

=
84627.53

(420.557)(295.463)

= 0.681 N/m3.

(122)

Using this value in Eq. (118), the volume at the hangar
can be evaluated as

Vo =

(
0.681

0.788

)
6880.9 = 5940.038 m3. (123)

[15] report 5691.68 m3 (201,000 cubic feet) as the
volume of hydrogen required. Hence we have a
percentage error equal to 4.36%.

4 Conclusion
In this paper we presented several case studies that
compare the results of our thermodynamicmodel with
the "slide rule" results that were used by the US pilots
of the airships at the beginning of twentieth century.
The variations in the results went between less than
1% to slightly more than 4%. Which shows not only
the accuaracy of our thermodynamic model but also
confirms that the model included in the slide rule was
quite reliable.
Along the history of the airships (since 1783), several
tragic incidents have been present. It can be said that
the airships born before time. However, with the new
materials (such as titanium, kevlar, mylar, etc.), as well

as the capabilities of the new computers to calculate
the deformation of solid bodies and to successfully
predict the behaviour of the atmospheric flow fields, it
is hope that a new era of the giant airships is comming
soon.
The hydrostatic theory shown in this paper is very
simple and easy to understand, then it is doubtless that
undergraduate students of physics and engineering,
or the practicing engineers, after reading this paper
can perform the calculation of the aerostatic behaviour
of airships and outer space balloons. Some problems
that were proposed to the North-American pilots of
the "Blimps" by the designers of a slide rule have been
successfully solved in the case studies.
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