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Abstract
In our previous companion papers “On the elliptical
orbit of the Earth and the position of the Sun in the
sky: an engineering approach,” and “Calculation
of solar trajectory in the sky and the solar
analemma as observed from the earth,” published
in The NUCLEUS, we presented the computational
methodology for solar trajectory in the sky and
solar analemmas (as observed from the earth
surface) for New York city. In this paper, the
methodology has been further elaborated and the
results for solar position, as observed from earth,
in the holy city of Mecca, Islamabad and Mexico
city, have been presented. Orbital trajectory of
the real earth, and that of an imaginary earth,
as assumed in simple (clock time) calculations,
are explained. This information is important
for calculation of atmospheric temperatures and
green energy applications. The position vector of
an observer that rotates with the earth has been
employed for observing the solar position at certain
time of the day. A Cartesian coordinate system,
whose origin is located at the center of the earth
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and subsequently transformed to a new system that
rotates with the earth, has been used. The solar
elevation angle and the solar azimuth angle are
obtained by performing further transformations of
the coordinate system. This later transformation
was elaborated in the companion papers, mentioned
above. The results obtained during this work depict
several interesting features of the analemmas derived
from solar position calculations for the whole year,
and its dependence on the coordinates (latitude and
longitude) of the observer on earth. It was evident
from the results that the shapes of analemmas
are quite similar for all locations. However, the
abscissa and ordinates values vary significantly,
corresponding to the latitude and longitude of the
observer on earth.

Keywords: solar position, analemma, declination angle,
azimuth angle, zenith angle.

1 Introduction
The variation in the position of sun in the sky is
a natural phenomenon that can be observed on
daily basis. The phenomenon has served for the
consideration of an approximate measure of local
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time [1]. The solar trajectory as observed on the earth
surface is a result of the combined effects of the rotation
of earth along its axis and the revolution of earth
around sun.

As the rotation axis of the earth is tilted at a certain
angle to the plane of the earth’s orbit around the
sun, and the revolution of the earth around the sun
follows an eccentric elliptical path, the solar trajectory
calculation is not that trivial. The trajectory of the
sun as observed at a specific location on a specific
time of the day (for all days) of a year, is called the
analemma. The difficulty in practically observing
this phenomenon is that it requires a whole year to
collect the data [2]. The structure of an analemma
looks similar to that of the number ”8”. But unlike
the number ”8”, the two loops of the analemma are
unequal in size with one of them larger than the other.
In astronomy, the analemma is considered one of the
most difficult and demanding phenomena to imagine
because it is never present all at once. It requires
a virtual image made with the solar position data
collected at the same time of day, for several days,
throughout the year [2].

Modelling the analemma requires the ability to
determine the position of the sun in the sky at a
given time, date, and location. Another challenge
lies in accurately representing the analemma’s shape
in a way that is easily understandable to viewers,
particularly those unfamiliar with the cartographic
and astronomical projection techniques used by
geographers and astronomers [3]. In this paper an
attempt has been made to bridge this gap so that the
common people, science students and the professional
engineers could make use of this information for solar
insolation and atmospheric temperature calculations.

The solar position algorithms are sophisticated
schemes commonly used to compute the position of
the Sun in ecliptic, celestial and horizontal coordinates.
On the internet it is also possible to find some
computer codes to calculate the position of the
Sun in the sky [4]. The purpose of this paper
and the companion papers [5, 6] is to present
and elaborate a self-contained material suitable for
scientists, engineers and common people to be able
to determine and interpret the solar position in the
sky. In our earlier papers [5, 6], the methodologies
for calculation of the solar elevation angle, the
solar azimuth angle and the Equation of Time were
presented. In this paper, after this Introduction Section
1, the Section 2 presents the position of the sun in the

sky, as observed from the earth. Section 3 presents
the solar trajectory plots and the solar analemmas for
some selected cities, for demonstration purpose, only.
The results are discussed in Section 4, followed by
conclusions in the Section 5.

2 Solar Position in the Sky
It can be observed easily, that the sun is not at the
same position in the sky, at the same clock time, every
day along the year. The reason is that the clock time
is based on the consideration of a fictitious earth
that rotates around the sun in a circular trajectory
with constant tangential/angular velocities [7, 8].
Additionally, it is also assumed in the measure of clock
time, that the sun is always located at the equator of
earth.
On the other hand, we know that the trajectory of the
earth is elliptical, and its tangential velocity, vt as well
as the solar position relative to the equator of earth
(the declination angle, β), both are varied in time all
along the year. The difference between the clock time
and the position of sun in the sky (called the solar
time), is known as the correction of time, or simply,
the equation of time [6].
It may be recalled [6], that the solar zenith angle is
calculated by the following equation:

αz = cos−1 [cosβ(t∗) cos δ cos ρ(t∗) + sinβ(t∗) sin δ]
(1)

and the solar elevation angle can be obtained by
subtracting the solar zenith angle from 90°. Similarly,
the solar azimuthal angle is calculated by:

αa = tan−1

(
− sin ρ(t∗) cosβ(t∗)

cos δ sinβ(t∗)− sin δ cos ρ(t∗) cosβ(t∗)

)
(2)

where ρ is Earth’s rotation angle 0 ≤ ρ ≤ 2π, β is the
declination angle between the Earth’s equator and the
vector from the Earth to the Sun (it oscillates from
−23.45◦ to 23.45◦), and δ is the latitude on the Earth’s
surface where the observer is located.
Figure 1 presents for four days (March 20, June 21,
September 19 and December 21) of the year 2013, a
two-dimensional map, in which the solar azimuth
angle αa is the abscissa and the solar elevation angle αe

is the ordinate, corresponding to a latitude δ = 19.4◦

(for Mexico City). The angles αa and αe are calculated
using the declination angle (β). The declination angle
(β) at the beginning of the day and at the end of the
day (see the values of Declin. start and Declin. end), as
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Figure 1. Map of the solar azimuth angle is measured from
north of the observer’s horizon plane αa and the solar
elevation angle αe. The observer is located at a latitude
δ = 19.4◦. Four days along the year 2013 are shown. The
sunrise and the sunset regions are displayed on either side
of the graph. The declination angle β at the beginning of
the day in degrees (Declin. start) and the declination angle
β at the end of the day in degrees (Declin. end) are also
displayed. The legend “Sun is north” (on June 21) means
that the declination angle, β, is higher than the latitude,

δ = 19.4◦, of the place (Mexico City).

well as the sunrise and sunset regions, are displayed
in each panel. It can be observed in Figure 1 that
on some dates of the year, the Sun is north of the
place, hence the physical interpretation of the angles
αe and αa is different. That is, when the Sun is north
of the place, the solar azimuth angle is measured from
north of the observer’s horizon plane in the interval
−90◦ < αa < 90◦. Where, the interval from 90◦ to 0◦

corresponds to the region from sunrise to noon, while
the interval from 0◦ to −90◦ corresponds to the region
from noon to sunset. Then when the Sun is north of
the place under consideration: (i) at noon αa = 0◦,
and (ii) as the Sun is north of the observer’s horizon
plane, the elevation angle αe is measured from north
of this plane. Similar calculations were also performed
for the Holy City of Mecca and Islamabad, and the
data was used in the presentation of analemmas for
these cities (see Section 3).

It was shown in our previous paper [6] that, in a fixed
coordinate system, the position vector of the Earth,
xE(t), the position of an observer, xobs(t), and the
vector, xE–obs, which is the relative vector from the

center of the fictitious Earth to the observer (that is
xE–obs(t) = xobs(t)− xE(t)), are as below:

xE(t) = R cos(Ωcirct)i1 +R sin(Ωcirct)I2 (3)
xobs(t) = rf cos((ωcirc +Ωcirc)t)j1+

rf sin((ωcirc +Ωcirc)t)i2 (4)
xE–obs(t) = −rf cos((ωcirc +Ωcirc)t)i1+

rf sin((ωcirc +Ωcirc)t)I2 (5)

In the case of the true Earth, which moves in
an elliptical trajectory, it has an angular velocity(
ΩEll(t) =

dθ(t)
dt

)
, which is not constant over time and

position. In our earlier papers [5, 6], by making use of
two Cartesian coordinate systems, one with origin at
the focus of the ellipse (at the solar position), and the
other with origin at the center of the Earth (moving in
an elliptical orbit), we derived a relation like that for a
true Earth.
xobs(t) = xE(t)− xobs(t)

= (r∗(t) cos θ(t)− rt cos (ωcirct+ θ(t))) I1

+ (r∗(t) sin θ(t)− rt sin (ωcirct+ θ(t))) I2
(6)

Figure 2. Circular trajectory of the fictitious Earth. Vectors
xE(t), xobs(t) and xE–obs(t) for three selected days. Top

row: 1st day, middle row: 17th day, and bottom row: 99th
day. At noon or initial time (first column, from left) and
after 24 hours or 1440 minutes (fourth column, from left)
the three vectors are collinear. Second column (from left):
after 432.09 minutes (0.3 of the day) from noon. Third
column (from left): after 1296.2 minutes (0.9 of the day)
from noon. The time, t, is given in minutes and days. The
angle ωcirc t is given in degrees, while the angle Ωcirc t is

given in degrees.

A graphical representation of the position vectors,
xE(t), xobs(t) and xE–obs, calculated by equations
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(3)–(6) is shown in Figure 2, which illustrates the three
selected days (top row: 1st day, middle row: 17th day
and bottom row: 99th day) the vectors, xE(t), xobs(t)
and xE–obs(t). It is observed that at noon or initial
time (first column) and after 24 hours or 1440 minutes
(fourth column) the three vectors are collinear, i.e., the
Sun is at the observer’s zenith. Panels in the second
and third columns show the three vectors after 432.09
minutes (0.3 of the day) and after 1296.2 minutes (0.9
of the day) from noon or initial time (see first column)
respectively. Note that for each of the selected days,
the difference between the angles ωcirct, shown in the
second, third and fourth columns, and the angle ωcirct
at noon (see first column) is the same—108.02 degrees,
324.06 degrees and 360 degrees respectively. This
confirms the fact that, in the fictitious Earth model,
an observer sees the Sun at the same position, at the
same hour of the day (for the whole year).
In order to understand the effect of the difference
(at a certain time t) between the angle spanned by
the fictitious Earth moves along its circular trajectory
with constant angular velocity Ωcirc, and the angle θ(t)
spanned by the true Earth along its elliptical path with
an angular velocity ΩEll(t) (which on some dates of
the year is higher and on other dates is lower than
the constant angular velocity of the fictitious Earth,
Ωcirc), the following scenario is formulated: Let us
assume that there exists an imaginary Earth that travels
with constant angular velocity ΩEll along an elliptical
trajectory with eccentricity ε = 0.1. The angular
velocity ΩEll of the imaginary Earth for this exercise is
given as:

ΩEll =
360

1
= 36 [Degrees/day],

or 360

10
× 1

24
× 1

60
= 0.025 [Degrees/min] (6)

Then, the constant angular velocity ΩEll of the
imaginary Earth is obtained by considering that it
travels along the whole ellipse (360 degrees) in 10
days. That is, ΩEll = 0.025 Degrees/minute, which is
much higher than the fictitious Earth angular velocity,
Ωcirc = 0.0006849315 Degrees/minute (see Eq. (3)).
Note that the θ(t) angle spanned by the imaginary
Earth is given as θ(t) = ΩEllt. The first component
of the Equation of Time is obtained if it is assumed
that: (i) the imaginary Earth travels along the elliptical
path with a constant angular velocity ΩEll; (ii) the
moving coordinate system (0, x1, x2) does not rotate
as θ̇(t) = ΩEll, but as Ωcirc (the angular velocity of the
fictitious Earth); (iii) the radius of the fictitious Earth

rf and the radius of the true Earth rt are unitary, hence
we can interchange them in the expressions. Then, the
position vector of the observer, xobs, is modified as:

xobs(t) = (r∗(t) cos θ(t)− rf cos ((ωcirc +Ωcirc)t)) I1 + ψ

+ (r∗(t) sin θ(t)− rf sin ((ωcirc +Ωcirc)t)) I2
(7)

Figure 3. An imaginary scenario. Circular trajectory of the
fictitious Earth (left column), and elliptical trajectory of an

imaginary Earth (middle and right columns). The
eccentricity of the ellipse is ε = 0.1. Vectors xE(t), xobs(t),
and xE–obs(t) for two selected days are shown. Top row:
initial position (t = 0minutes), the Sun is at the zenith of
two observers. Left column for the fictitious Earth, right
column for the imaginary Earth. Middle row: left column
after 1440 minutes (24 hours) in the fictitious Earth, Sun is
at the zenith. Middle column after 1440 minutes in the

imaginary Earth, the Sun is not at the zenith. Right column
after 1595.84 minutes (1.108 days) in the imaginary Earth,
Sun is at the zenith. Bottom row: left column after 5761.1
minutes (4 days) in the fictitious Earth, Sun is at the zenith.

Middle column after 5761.1 minutes in the imaginary
Earth, the Sun is not at the zenith. Right column after

6380.48 minutes (4.43 days) in the imaginary Earth, Sun is
at the zenith.

Figure 3 shows (see the middle and right columns) for
two selected days, the three vectors: xE(t), xobs(t) and
xE–obs, referred to the fixed coordinate system whose
origin is located at the focus of the ellipse (at the solar
position). Left column of the Figure 3 shows the results
for the fictitious Earth. Top row shows that at the initial
time, t = 0 minutes, in the fictitious Earth and in the
imaginary Earth, the Sun is at the zenith of the two
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Figure 4. Analemmas for Mexico City located at the latitude δ = 19.4◦. The solar azimuth angle measured from north, αa

(degrees), is used as the abscissa, and the solar elevation angle, αe (degrees), as the ordinate. Left panel: Analemma at
10:00 A.M. Middle panel: Analemma at noon. Right panel: Analemma at 4:00 P.M.

Figure 5. Analemmas for Islamabad, located at the latitude δ = 33.74◦. The solar azimuth angle measured from north, αa

(degrees), is used as the abscissa, and the solar elevation angle, αe (degrees), as the ordinate. Left panel: Analemma at
10:00 A.M. Middle panel: Analemma at noon. Right panel: Analemma at 4:00 P.M.

Figure 6. Analemmas for the holy city of Mecca in Saudi Arabia, located at the latitude δ = 21.42◦. The solar azimuth
angle measured from north, αa (degrees), is used as the abscissa, and the solar elevation angle, αe (degrees), as the
ordinate. Left panel: Analemma at 10:00 A.M. Middle panel: Analemma at noon. Right panel: Analemma at 4:00 P.M.

observers. In the middle row, left column, it is shown
that when the fictitious Earth has spanned Ωcirc t =
0.9863 degrees (i.e., after t = 1440.2 minutes or 24
hours), the Sun is again at the zenith of the observer.
However, in the middle column, it is observed that
in the imaginary Earth, with elliptical trajectory, the
Sun is not yet at the zenith of the observer—that is,
the Sun is delayed and it is at the east of the observer.
In the right column (middle row), it is observed that
after t = 1595.8 minutes (or 1.108 days), the Sun is
at the zenith of the observer located on the imaginary

Earth. If the elapsed time is calculated since the Sun
is at the zenith of the observer on the fictitious Earth
(see left column, t ≈ 1440.29 minutes) until the Sun is
at the zenith of the observer on the imaginary Earth
(see right column, t ≈ 1595.84 minutes), we obtain
∆t ≈ 1440.29− 1595.84 ≈ −55.55 minutes.

A similar value is obtained from Figure 3, middle
row, right column, in which the angles spanned by
the two Earths along their orbits are written. That is,
θ(t) = ΩEll t ≈ 39.9◦ andΩcirc t ≈ 1.09◦. The difference
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between these two angles, Ωcirc t− θ(t) = −38.81◦. If
this value is divided by the angular velocity of the
Earth about its rotation axis, we obtain: Ωcirc t−θ(t)

ωcirc
=

−38.81◦

0.25degrees/minute ≈ −155.24minutes. Note that this is
theway to calculate the first component of the Equation
of Time due to the eccentricity of the trajectory of Earth.
In the bottom row, left column of Figure 3, it is shown
that after t = 5761.15 minutes (or four days), the
Sun is at the zenith of the observer located on the
fictitious Earth. However, in the middle column (for
the imaginary Earth), it is noted that after the same
time, t = 5761.15 minutes, the Sun is not at the
zenith—hence it is delayed and is at the east of the
observer. Note that on the right column of the bottom
row, after t = 6380.48minutes, the Sun is at the zenith
of the observer located on the imaginary Earth. From
this, it is possible to calculate the elapsed time, since
the Sun is at the zenith of the observer on the fictitious
Earth (see left column, t = 5761.15 minutes) until the
Sun is at the zenith of the observer on the imaginary
Earth (see right column, t = 6380.48 minutes), we
obtain: ∆t ≈ 5761.1− 6380.4 ≈ −619.3minutes.
A similar value is obtained from the bottom row,
right column, in which the angles spanned by the
two Earths along their orbits are written. That is,
θ(t) = ΩEll t = 159.5◦ and Ωcirc t = 4.3◦. The
difference between these two angles is Ωcirc t− θ(t) =
−155.2◦. If this value is divided by the angular
velocity of Earth about its rotation axis, we obtain:
Ωcirc t−θ(t)

ωcirc
= −155.0◦

0.25degrees/minute ≈ −620.0minutes. The
results obtained in this imaginary exercise allow us
to conclude that when the angular velocity ΩEll of the
true Earth is higher than the constant angular velocity
Ωcirc of the fictitious Earth, the Sun is delayed—hence it
will be at the east of the observer. On the other hand, it
is possible to demonstrate through a similar imaginary
scenery that when the angular velocity ΩEll of the true
Earth is smaller than the constant angular velocity
Ωcirc of the fictitious Earth, the Sun being ahead of
the observer will be at the west of the observer.

3 Solar Analemmas for Some Selected Cities
An analemma is a diagram showing the position of the
Sun in the sky as seen from a fixed location on Earth
at the same mean solar time. As the solar position
varies over the course of a year, a line joining the solar
position, for the same date and time of every month
of the year resembles a number like “8” [2, 3]. In this
section solar analemmas for some selected cities in
the Northern Hemisphere are presented. The cities

include: Mexico city, Islamabad and the Holy city of
Mecca.
Figure 4 displays the 2025 analemmas for Mexico
City (latitude δ = 19.4◦), with panels showing their
positions at 10:00 A.M., noon, and 4:00 P.M. local time.
Figure 5 shows the analemmas calculated for an
observer located in Islamabad city, at the latitude
δ = 33.74◦ for the year 2025. Again, the left panel
shows the analemma at 10:00 A.M., the middle panel
shows the analemma at noon, and the right panel
shows the analemma at 4:00 P.M., local time at the
location.

Figure 7. Analemmas for the holy city of Mecca (latitude,
δ = 21.42◦). The solar azimuth angle measured from north,

αa (degrees), is used as the abscissa, and the solar
elevation angle, αe (degrees), as the ordinate. Middle

Analemma shown at 180◦ azimuth angle is at local noon.
On its left is the Analemma from 6:00 A.M. to 11:00 A.M.,
whereas on its right is the Analemma from 1:00 P.M. to

6:00 P.M.

Figure 8. Same as above, but for Islamabad city (latitude,
δ = 33.74◦).

Figure 6 shows the analemma calculated for an
observer located in the Holy city of Mecca, at latitude
δ = 21.42◦ for the year 2025. Here, the left panel
shows the analemma at 10:00 A.M., the middle panel
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shows the analemma at noon, and the right panel
shows the analemma at 4:00 P.M., local time at the
location. Whereas, Figure 7 shows several analemmas
for the Holy city of Mecca with a time difference of
one hour from 6 A.M. to 11 A.M. (towards the left
of Figure 7) and from 1 P.M. to 6 P.M. The central
analemma is for local noon. It is observable that the
analemmas before local noon are tilted towards the left,
and those after local noon are tilted towards the right.
The size of the analemma increases with the increasing
angle of elevation, i.e., towards local noon. Figure 8
presents the analemmas for Islamabad. For the reason
of similarity with Figure 7, the hourly analemmas for
Mexico City are not presented. It may be recalled that
the latitudes of Mexico and Mecca are 19.4 and 21.42
degrees, respectively.

4 Results and Discussion
In our earlier companion papers [5, 6], diverse
computational methodologies were presented to
calculate the position of the Sun in the sky of an
observer located on Earth that is revolving around
the Sun in an elliptic orbit, as well as rotating around
its axis. After precisely locating the North Star, the
azimuthal angle, the position vector from the Earth
to the Sun, γ(t), the elevation angle, α(t), and the
declination angle, β(t), as a function of time, were
obtained by using a numerical approach and the PSA
algorithm [8–12].
In this paper, we have calculated the solar position for
all days of the year 2025. It may bementioned here that
the analemmas for all the years having 365 days are
the same; hence, the analemmas for leap years having
366 days would be different (not presented here).
The calculations were done for an observer located
at three distinct locations in the northern hemisphere,
viz. Mexico City, Islamabad, and the holy city ofMecca
(corresponding to the latitudes δ = 19.4◦, 33.74◦, and
21.42◦, respectively).
Our study examines solar analemma patterns
across three representative cities spanning different
latitudes: Mexico City (19.4◦N), Islamabad (33.7◦N),
and Mecca (21.4◦N). Initial analysis focuses on
three key observation times—morning (10:00 A.M.
local time), local noon, and afternoon (4:00 P.M.
local time)—revealing characteristic number-eight
trajectories for each location. For enhanced temporal
resolution, Figures 6 and 7 present comprehensive
hourly analemma progressions from 6:00 A.M. to
6:00 P.M. specifically for Mecca and Islamabad,
illustrating the continuous evolution of solar azimuth

and elevation angles throughout the day. Although
Mexico City exhibits analogous diurnal patterns
(demonstrated in Figure 4), we deliberately exclude its
hourly plots to prevent redundancy, given their close
similarity to Mecca’s profiles in Figure 6. Of particular
astronomical significance is the Islamabad dataset
(Figure 7), where the Sun’s maximum elevation
always remains below the zenith (θ < 90◦), a direct
consequence of the city’s position north of the Tropic
of Cancer (23.5◦N) where the solar declination
never equals the local latitude. This latitudinal effect
creates unique observational constraints compared to
lower-latitude locations.

5 Conclusions
From the results presented in this work, it could be
concluded that the shapes of the analemmas are quite
similar at all the locations in the northern hemisphere.
The shape at local noon resembles like the symbol “8”
with upper part much smaller than the lower one [2, 8].
The analemmas before noon are tilted towards left and
those for the afternoon are tilted towards right. Our
results also confirm the fact that when the sun reaches
the zenith position (directly overhead) for an observer
located at a latitude lower than the Tropic of Cancer
(23.5°N), at local noon on the solstice day i.e. June 21,
for the northern hemisphere.

The information included in this paper should be
considered as an important source of reference for
the solar energy engineers, who need to accurately
know the position of sun throughout the year, for
calculating the incoming solar irradiance, shadows
and the atmospheric temperature for green energy
applications.
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