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Abstract
In recent years, the field of electroencephalography
(EEG) analysis has witnessed remarkable
advancements, driven by the integration of
machine learning and artificial intelligence.
This survey aims to encapsulate the latest
developments, focusing on emerging methods
and technologies that are poised to transform
our comprehension and interpretation of brain
activity. The structure of this paper is organized
according to the categorization within the machine
learning community, with representation learning
as the foundational concept that encompasses both
discriminative and generative approaches. We
delve into self-supervised learning methods that
enable the robust representation of brain signals,
which are fundamental for a variety of downstream
applications. Within the realm of discriminative
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methods, we explore advanced techniques such as
graph neural networks (GNN), foundation models,
and and large language models (LLMs)-based
fusion approaches. On the generative front, we
examine technologies that leverage EEG data to
produce images or text, offering novel perspectives
on brain activity visualization and interpretation.
This survey provides an extensive overview
of these cutting-edge techniques, their current
applications, and the profound implications they
hold for future research and clinical practice. The
relevant literature and open-source materials have
been compiled and are consistently updated at
https://github.com/wpf535236337/LLMs4TS.

Keywords: electroencephalography (EEG), multi-modal
fusion, self-supervised learning (SSL), graph neural
networks (GNN), foundation models, large language
models (LLMs), generative models.

1 Introduction
Electroencephalography (EEG) has long been
a cornerstone in the study of brain function,
offering a non-invasive means to monitor electrical
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activity within the brain. Non-invasive are easier
to implement without surgery, but they lack
simultaneous consideration of temporal and spatial
resolution, as well as the ability to capture deep
brain information. In contrast, invasive methods
like Stereoelectroencephalography (SEEG) [1] can
measure these brain signals more precise with higher
signal-to-noise data [2], albeit requiring surgical
procedures to insert recording devices. Overall,
non-invasive signals are relatively safer, more portable,
have greater potential for use, and are applicable to
a wider population, reflecting voltage fluctuations
caused by ion currents in neurons.

While our understanding of the brain deepens and
computational methods advance [3, 4], the field
of EEG analysis faces many challenges. The first
challenge is the effective capture of representations
in EEG data, particularly in the absence of labels.
The second challenge involves the identification and
classification of complex and subtle patterns within
brain activity, requiring advanced discriminative
methods that can accurately interpret the nuanced
differences indicative of various brain states or
conditions. Lastly, the challenge of creating
meaningful visualizations or interpretations from
EEG data calls for generative methods that can
transform the abstract EEG signals into more tangible
and comprehensible forms, such as images or text,
thereby enhancing our understanding of the brain’s
intricate workings. Addressing these challenges
collectively advances the field of EEG analysis, making
it more robust, insightful, and applicable to a wider
range of scientific and clinical applications. From a
broader perspective, EEG analysis is fundamentally
a task of deciphering complex, noisy, and often
high-dimensional brain signals. Addressing this
challenge requires integrating knowledge and data
from various modalities—ranging from behavioral
and physiological signals to textual clinical notes and
even structural neuroimaging data. This naturally
alignswith the goals of information fusion, which aims
to combine heterogeneous data sources to improve
decision-making, robustness, and interpretability.

In response to aforementioned challenges, recent
developments in deep learning and artificial
intelligence have paved the way for more robust and
nuanced EEG analysis strategies. This paper surveys
three key areas of advancement that are reshaping the
field of EEG analysis:

• Representation Learning in EEG Analysis:

Representation learning is the first fundamental
step in EEG analysis, concentrate on automatically
extracting useful features from EEG signals.
Self-supervised learning methods are
being employed to develop robust signal
representations that enhance the precision and
interpretability of downstream tasks. These
unsupervised learning methods are naturally
suited for the vast amounts of brain signal data
and mimic human learning processes.

• Discriminative EEG Analysis: Discriminative
methods focus on distinguishing between
different categories or patterns in EEG signals.
Advanced architectures such as Graph Neural
Networks (GNNs), Foundation Models, and
LLMs-based Methods are being utilized to
gain deeper insights into brain activity. These
architectures efficiently capture discriminative
patterns, which are crucial for understanding
complex neural processes.

• Generative EEG Analysis: Generative methods
aim to generate new modalities or signal data
from EEG signals. Innovative approaches such
as diffusion produce images or text from EEG
data are providing novel approaches to the
understanding and visualization of brain activity.
These generative techniques are also important
applications for AI-generated content (AIGC).

This paper aims to provide a comprehensive overview
of cutting-edge techniques, discuss their details, and
explore the significant implications they hold for future
research and clinical practice in EEG analysis. A
taxonomy of the surveyed methods is illustrated in
Figure 1. The structure of this paper is organized
according to the categorization within the machine
learning community, with representation learning
as the foundational concept that encompasses both
discriminative and generative approaches [5]. The
remainder of this paper is organized as follows:
Section 2 summarizes the background and related
surveys of our work. Section 3 discusses the robust
representation learning strategy and its significance
in EEG data analysis. Section 4 explores the emergent
discriminative architecture, detailing the role of GNNs
(4.1), Foundation Models (4.2), and LLMs-based
Methods (4.3). Section 5 examines the innovative
generative applications of EEGdata. Section 6 provides
an introduction of the most widely used datasets and
the key metrics employed to assess the performance
of various EEG analysis models. Finally, Section 7
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concludes the paper and discusses potential future
directions for EEG analysis.

2 Related survey
2.1 Existing Surveys on EEG Analysis
In the domain of EEG-related concepts and
research, numerous review studies have provided
comprehensive summaries. Hosseini et al. [4]
introduced the application of machine learning in
EEG signal processing, covering traditional methods
such as Support Vector Machines (SVM), k-Nearest
Neighbors (kNN), and Naive Bayes in classification
scenarios. However, this review did not consider
the extensive discussion of deep learning algorithms
that have demonstrated superior performance. Jiang
et al. [6] discussed the removal of artifacts from
EEG signals, making their review more detailed in
technical aspects. Nevertheless, their work did not
cover deep learning algorithms and did not consider a
broader range of EEG downstream tasks. In contrast,
Zhang et al. [7] provided a more comprehensive
perspective, introducing the origins and applications
of Brain-Computer Interface (BCI) and discussing the
integration of mainstream deep learning algorithms
such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Generative
Adversarial Networks (GAN) with EEG tasks. With
the continuous innovation in artificial intelligence
community, EEG research based on foundational
models and large language models has begun to
emerge. However, to the best of our knowledge, there
is currently no literature that reviews EEG analysis
from a more holistic frontier technology perspective,
which is the gap this paper aims to fill.

2.2 Emerging Surveys on General Time-Series
Analysis

In the general time series domain, a substantial
body of work has summarized the application of
the latest technologies in various downstream tasks.
Zhang et al. [8] categorized existing self-supervised
learning-based time series analysis methods into three
types: generative, contrastive, and adversarial, and
discussed their key intuitions and main frameworks
in detail. Jin et al. [9] provided an overview of the
application of graph neural networks in time series
tasks such as forecasting, classification, imputation,
and anomaly detection. Liang et al. [10] reviewed
foundational models in time series analysis from
the perspectives of model architectures, pre-training
techniques, adaptation methods, and data modalities.

Similarly, [11–13] systematically outlined methods
and procedures for time series analysis based on
large language models. Yang et al. [14] reviewed
the application of diffusion models in time series and
spatio-temporal data. Additionally, there are some
works focusing on more specific model architectures
or downstream tasks [15, 16]. We refer the reader
to the corresponding publication for a more in-depth
understanding.

Although numerous reviews exist within the broader
time series field, few surveys concentrate exclusively
on EEG data. Moreover, EEG data possesses unique
characteristics, and a substantial body of related
work has emerged recently. Thus necessitating a
comprehensive review and synthesis, this paper seeks
to offer an in-depth examination of state-of-the-art
techniques, elaborate on their intricacies, and explore
their profound implications for future EEG research
and clinical applications.

2.3 Information Fusion in EEG Foundation Models
Information fusion refers to the integration of
multiple data sources or modalities to achieve
more comprehensive, robust, and generalizable
understanding. In the context of EEG analysis, fusion
may occur at different levels:

• Data-level fusion: Merging raw EEG signals with
complementary signals such as fNIRS, fMRI, or
EMG.

• Feature-level fusion: Joint representation
learning of EEG with language, vision, or
structured clinical data using attention-based or
graph-based methods.

• Decision-level fusion: Ensembling predictions
from multiple modalities or models to improve
classification or generation.

Recent EEG foundation models have begun to
incorporate such fusion mechanisms. For example,
EEG-T5 aligns EEG with natural language for
brain-to-text generation, while Meta-Transfer
Learning (MTL) frameworks leverage cross-subject
and cross-task signals. These fusion strategies enhance
not only performance but also interpretability—vital
for medical and real-world applications.

As the field moves toward larger and more
heterogeneous datasets, information fusion will
likely become a key enabler of generalization across
populations, tasks, and environments.
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Advancements in EEG Analysis

Representation Learning
in EEG Analysis

Contrastive Learning SeqCLR[19] TS-TCC[21] SSCL for EEG[22] MulEEG[23] ContraWR[26]
COMET[27] SleepPriorCL[28] KDC2[29]

Mask Autoencoder
Approaches BENDR[31] MAEEG[34] Wavelet2vec[35]

Discriminative
EEG Analysis

Graph Neural Networks

EEG Graph
Construction

Tang[67] Ho[68] GraphSleepNet[58] MSTGCN[69]
MD-AGCN[70] BayesEEGNet[71]

Dependency
Modeling

Tang [67] GraphSleepNet[58] BayesEEGNet[71]
HetEmotionNet[72] BrainNet[73]
MBrain[2] Ho[68] GCC[60]

Foundation Models

Data

Public data: Neuro-GPT[82] Salar [83] AHMS[88]
BCI Competition IV-1[161] Emobrain[178]
Resting State EEG Data [179] TUEV[37]

Private data: Brant[81] LaBraM [11]

Model Structure Brant[81] Salar[83] Neuro-GPT [82] LaBraM [11]

Training Methods MAE[11, 81] Neuro-GPT [82] Salar[83]

LLMs-based Methods

Single-tower
Models

Victor[96] PromptCast[98] TEMPO[135]
LLM4TS[103] Time-LLM[105] S2IP-LLM[106]
GPT4TS[107] TEST[109] Zhang[110]

Dual-tower
Models

EEG-To-Text [133] MTAM[112] METS[114]
GPT4MTS[118] ESI[119] InstructTime[122]
CrossTimeNet[126] CALF[136] EEG-GPT[127] K-Link[128]

Generative EEG Analysis

Image Generation
Brain2Image[143] ThoughtViz[145] EEG2Image[147]
EEGStyleGAN-ADA[148] DreamDiffusion[150]
NeuroImagen[151]

Text Generation Wang[133] EEG2Text[152] CET-MAE[154] DeWave[155]

Others ETCAS[156] NDMusic[157]

Figure 1. A comprehensive taxonomy of advancements in EEG analysis.

3 Representation Learning in EEG Analysis
In recent years, deep learning has excelled in
extracting hidden patterns and features of the
data. Typically, feature extraction models based
on deep learning rely heavily on large volumes of
labeled data, a method commonly referred to as
supervised learning. However, in certain practical
applications, particularly in time-series data such as
Electroencephalograms (EEG), acquiring extensive
labeled data is both time-consuming and costly. As
an alternative, Self-Supervised Learning (SSL) has
garnered increasing attention due to its label efficiency
and generalization capabilities. SSL, a subset of
unsupervised learning, extracts supervisory signals by
solving tasks automatically generated from unlabeled
data, thereby creating valuable representations for
downstream tasks.

With the significant success of SSL in fields such as
computer Vision(CV) [17] and Natural Language
Processing(NLP) [18], its application to time-series
data appears particularly promising. However, directly
applying tasks designed for visual or linguistic
processing to time-series data is challenging and often
yields limited effectiveness. The primary reasons
include:

• Time-series data possess unique attributes such
as seasonality, trends, and frequency domain
information, which are typically not considered
in tasks designed for images or language.

• Common data augmentation techniques in
computer vision, such as rotation, flipping, and
cropping, can disrupt the temporal dependencies
and integrity of time-series data, such as EEG
signals. For instance, rotating or flipping the
time points in an EEG signal could completely
lose physiological significance and contextual
information.

• Many time-series datasets are multidimensional,
with each dimension potentially representing a
different measurement channel. This contrasts
with handling single images or text data, requiring
synchronous analysis and processing across
multiple dimensions.

To address these issues, this section summarizes
two main paradigms of SSL: contrastive learning,
which trains models to distinguish between similar
and dissimilar pairs of data points and masked
autoencoders, which aim to learn the intrinsic feature
information of the data. All of the methods are
summarized in Table 1.

3.1 Contrastive Learning
Contrastive learning is a self-supervised learning
method that acquires invariant representations of
data by learning the similarities and differences
between samples. This approachmaps similar samples
to proximate representation spaces and dissimilar
samples to distant ones, thereby enabling the learning
of generalized feature representations without the
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need for explicit label information. Formally, given
a set of samples X =

{
x1, x2, · · · , xN

}, contrastive
learning aims to learn a mapping function f that
maximizes the similarity between positive sample
pairs of the same class and minimizes the similarity
between negative sample pairs of different classes.
For positive sample pairs (x, x+) and negative sample
pairs (x, x−), the objective of contrastive learning is to
optimize the following loss function:

L
(
x, x+, x−

)
= − log

(
ef(x,x

+)/τ

ef(x,x+)/τ + ef(x,x−)/τ

)
(1)

where f(x, x+) denotes the similarity of feature
representations for positive pairs, f(x, x−) for negative
pairs, and τ is a temperature parameter that adjusts
the scale of similarity. The intuitive interpretation
of this loss function is that by maximizing the
similarity of positive pairs while minimizing that of
negative pairs, the model learns high-level semantic
relationships between samples, resulting in more
distinctive representations.
In this section, we will introduce two types of
contrastive learning methods, which are contrastive
learning based on data augmentation and contrastive
learning combined with expert knowledge(as shown
in Figure 2). All of the methods are presented in
Table 1.

(a) Contrastive Learning Based on Data Augmentation   

(b) Contrastive Learning Combined with Expert Knowledge
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Figure 2. Two types of contrastive learning methods.

3.1.1 Based on Data Augmentation
Data augmentation is an indispensable component of
contrastive learning. It generates different views of
input samples using data augmentation techniques,
and then learns representations by maximizing the
similarity between views of the same sample while
minimizing the similarity between views of different
samples. SeqCLR [19] introduces a set of data
augmentation techniques specifically for EEG and
extends the SimCLR [20] framework to extract
channel-level features from EEG data.

TS-TCC [21] generates different views of input
data using both strong and weak augmentation
methods. Weak augmentation employs jittering
and scaling strategies, while strong augmentation
uses permutation and jittering strategies, applying
them to the temporal contrast module of EEG
signals for temporal representation learning. This
method maximizes the similarity between contexts
of the same sample while minimizing the similarity
between contexts of different samples. Jiang et
al. [22] applies transformations such as horizontal
flipping and adding Gaussian noise to EEG signals,
then learns the correlation between signals by
measuring the feature similarity of these transformed
signal pairs. Additionally, the authors explore
the impact of transformation combinations on the
network’s representation capability to find the optimal
combination for downstream tasks. mulEEG [23]
proposes a novel multi-view self-supervised method.
By designing EEG augmentation strategies and
introducing a diversity loss function, mulEEG
effectively leverages complementary information
from multiple views to learn better representations.
However, these EEG data augmentationmethods often
lead to sampling bias [24], especially for noisy EEG
data, which can significantly affect performance [25].
To address these limitations, ContraWR [26] constructs
positive sample pairs using data augmentation and
employs global average representations as negative
samples to provide contrastive information, thereby
learning robust EEG representations without labels.
Additionally, ContraWR assigns greater weight to
closer samples when calculating the global average.
Existing contrastive learning methods primarily focus
on a single data level and fail to fully exploit the
complexity of EEG signals. Therefore, COMET
[27] leverages all data levels of medical time-series,
including patient, trial, sample, and observation levels,
to design a hierarchical contrastive representation
learning framework. Its advantage lies in fully utilizing
the hierarchical structure of medical time-series,
enabling a more comprehensive understanding of the
intrinsic relationships within the data.

3.1.2 Combined with Expert Knowledge
Expert knowledge contrastive learning is a relatively
new representation learning framework. Generally,
this modeling framework incorporates expert prior
knowledge or information into deep neural networks
to guide model training. In a contrastive learning
framework, prior knowledge can help the model select
the correct positive and negative samples during
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Table 1. Summary of self-supervised learning for EEG analysis.
SSL Method Strategy Backbone Task Datasets Metric

CL

SeqCLR[19] Signal transformation CNN & GRU Multiple tasks THU[37], SEED[38], SleepEDF[39], ISRUC-S3[40] Accuracy
TS-TCC[21] Weak & strong augmentation Transformer Sleep & seizure detection HAR[41], SleepEDF[39], ESR[42], FD[43] Accuracy, F1

SSCL for EEG[22] Signal transformation CNN Sleep stage classification SleepEDF[39], DOD[44] Accuracy, F1
MulEEG[23] Multi-view contrast CNN Sleep stage classification SleepEDF[39], SHHS[45] Accuracy, Kappa, F1
ContraWR[26] Non-negative contrast CNN Sleep stage classification SHHS[45], SleepEDF[39], MGH[46] Accuracy
COMET[27] Multi-level contrast CNN Disease detection AD[47], PTB[48], TDBRAIN[49] Accuracy, F1, AUROC, AUPRC

SleepPriorCL[28] Expert knowledge incorporation CNN Sleep stage classification SleepEDF[39], MASS-SS3[50] Accuracy, F1
KDC2[29] Cross-view contrast CNN & GNN Multiple tasks SEED[38], MMI[51], CHB-MIT[52] Accuracy

MAE
BENDR[31] Temporal-domain mask CNN & Transformer Multiple tasks MMI[51], BCIC[53], ERN[54], SSC[48] Accuracy
MAEEG[34] Temporal-domain mask Transformer Sleep stage classification MGH[46] Accuracy

Wavelet2vec[35] Frequency-domain mask ViT Seizure detection CHSZ[55], TUSZ[56] Accuracy, BCA, F1, MAE

training. SleepPriorCL [28] was proposed to mitigate
the sampling bias problem in data augmentation-based
contrastive learning. It is well known that each
sleep stage occupies a certain frequency range. The
authors utilized this fact to calculate the energy of
these frequency bands and used it as prior knowledge
for training. Specifically, the authors calculated the
rhythm energy vectorE = [E(δ), E(θ), E(α), E(β)] for
each EEG segment x, referred to as prior features, and
then defined the dissimilarity di,j between the anchor
xi and the sample xj as follows:

di,j = log
(
‖Ei − Ej‖2

) (2)

Samples are ranked by dissimilarity, with the top
K samples selected as positive samples and the rest
as negative samples. Additionally, SleepPriorCL
introduces a mechanism to adjust the gradient penalty
strength of each sample based on its confidence as
a positive or negative sample. To achieve this, each
sample is assigned a customized temperature. The
multi-positive contrastive loss is modified as follows:

L (xi) = −1
|P (i)|

∑
p∈P (i) log

exp(si,p/τp)
exp(si,p/τp)+

∑
n∈N(i) exp(si,n/τn)

(3)
where xi is the sleep epoch, si,j is the cosine similarity
between zi and zj , and zi and zj are the vectors of xi
after encoding and projection. The index i is referred
to as the anchor, the index p as the positive sample,
N(i) is the set of all negative samples in the batch, and
the index n as the negative sample. P (i) is the set of
positive samples containing all true positive samples
of xi in the batch.
KDC2 [29] is based on the neural theory of
EEG generation, which states that EEG signals are
produced by synchronized synaptic activity that
stimulates neuronal excitation, generating a negative
extracellular voltage that transforms neurons into
dipoles. The voltage generated by the dipoles is
transmitted to the scalp via capacitive and volume

conduction and is captured by electrodes as EEG
signals. Therefore, the authors constructed scalp
and neural views to describe the external and
internal information of brain activity, respectively, and
designed a knowledge-driven cross-view contrastive
loss to extract neural knowledge by contrasting the
same augmented samples between views. Positive
sample pairs are composed of representations of the
same augmented samples in different views, while
negative sample pairs are composed of representations
of different augmented samples in different views. By
minimizing the distance between positive sample pairs
and maximizing the distance between negative sample
pairs, the model learns complementary features that
describe the internal and external manifestations of
brain activity. The designed cross-view contrastive
loss can be calculated as follows:

Lcross = −
1

|B|
log(

pair+

pair+ + pair−
) (4)

pair+ =
∑
b∈B

m∑
i=0

exp(s(risa,b, r
i
ta,b)/τ) (5)

pair− =
∑
b∈B

m∑
i=0

m∑
j=i+1

exp(s(risa,b, r
j
ta,b)/τ) (6)

where pair+ and pair− represent the cross-view
positive and negative pairs, respectively, B is the
sample batch, and τ is the temperature parameter.
The function s(·) represents the cosine similarity.
The representation generated from the scalp view is
denoted as rs, and the representation generated from
the inner neural topology view is denoted as rt. rsa and
rta represent the corresponding augmented samples,
and b indexes the samples contained in the batch.

3.2 Mask Autoencoder Approaches
Masked language modeling is a widely adopted
method for pre-training in NLP. BERT [30] retains a
portion of the input sequence and predicts the missing
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content during the training phase, which generates
effective representations for various downstream tasks.
MAE can be represented as:

xm =M(x), z = E(xm), x̃ = D(z), (7)

L =M(‖x− x̃‖2) (8)
where M(·) denotes the masking operation, xm
represents the masked input, E(·) and D(·) represent
the encoder and decoder.
Inspired by this, BENDR [31] follows the
wav2vec2.0 [32] architecture. It first encodes EEG data
into temporal embeddings using 1D convolutions,
then creates a mask vector to randomly mask these
embeddings. A transformer-based module [33] is
then used to extract temporal correlations and output
the reconstructed embeddings. The contrastive loss
function aims to make the reconstructed embeddings
as similar as possible to the original unmasked
embeddings while making them as different as
possible from the remaining embeddings. It can be
calculated as follows:

L = −log exp(cossim(ct, bt))/κ∑
bi∈BD

exp(cossim(ct, bi))/κ
(9)

where ct represents the output of the transformer
module at position t, bi represents the original vector
at some offset i, BD is a set of 20 negative samples
uniformly selected from the same sequence, along
with bt, cossim denotes the cosine similarity, and κ
is a temperature parameter controlling the contrastive
loss.
MAEEG [34] has a similar structure to BENDR but
includes two additional layers to map the output of
the transformer module back to the original EEG
dimensions. The reconstruction loss is calculated
by comparing the reconstructed EEG (x̂) with the
input EEG (x) signal, using the formula 1 − x̂·x

‖x̂‖‖x‖ .
The key difference between BENDR and MAEEG is
that MAEEG learns representations by minimizing
the reconstruction loss rather than using contrastive
learning.
Unlike the above two methods that mask temporal
embeddings, WAVELET2VEC [35] performs masking
and reconstruction tasks in different frequency bands
to capture time-frequency information. Specifically,
the authors apply low-pass and high-pass filtering
to the raw EEG signal, recursively calculate the
coefficients of each level of decomposition, and obtain

wavelets in different frequency bands. They then
design an encoder consisting of six parallel ViT [36]
units, each corresponding to a frequency band wavelet.
Each wavelet is flattened and divided into patches,
and 10% of the input patches are randomly masked.
The decoder reconstructs the missing patch sequences,
and self-supervised pre-training is performed by
minimizing the Euclidean distance between the patch
sequences of the original signal and the reconstructed
patch sequences. This method forces the model to
learn the time-frequency information and understand
its correlations by masking the frequency patch
sequences of the EEG.

3.3 Discussion
Contrastive learning and Masked Autoencoders
(MAE) have demonstrated significant advantages
in EEG analysis. Contrastive learning effectively
extracts feature representations by exploring the
similarities and differences among samples, while
MAE enhances the model’s understanding of data by
predicting missing information. These self-supervised
learning methods not only reduce dependency on
large amounts of labeled data but also improve model
generalization.
However, current self-supervised learning methods
have some limitations. First, contrastive learning often
relies on carefully designed data augmentation
strategies, which may disrupt the temporal
dependencies in EEG data and negatively affect
the model’s learning effectiveness. Additionally,
the analysis and processing of multi-channel EEG
data remains complex, and existing methods still
face challenges in effectively handling multi-channel
signals. Although MAE can capture the intrinsic
characteristics of input data, its mask strategy may
lead to information loss in some cases, thereby
affecting reconstruction quality and downstream task
performance.
Future research directions could focus on the
following aspects: developing more efficient and
flexible data augmentation techniques to better
preserve the structural characteristics of EEG
data while ensuring that augmentation does not
compromise the physiological significance of the
signals. Given the complexity of multi-channel
time series data, researchers should continue
to design self-supervised learning frameworks
capable of handling multi-channel signals effectively,
thereby improving model performance in practical
applications. Additionally, combining contrastive
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learning and MAE could be explored to ensure that
the reconstructed data not only resembles the original
data but also forms meaningful distinctions with
other samples, potentially mitigating issues related to
information loss.

4 Discriminative-based EEG Analysis
For a more profound comprehension of brain
activity, this survey examines advanced architectures,
including: Graph Neural Networks (GNNs) in
section 4.1: These networks capitalize on the
structural information inherent in brain connectivity
to offer deeper insights. Foundation Models in
section 4.2: Models pre-trained on extensive datasets
and adaptable for specific EEG analysis tasks through
fine-tuning. LLMs-based Methods in section 4.3:
Leveraging the power of large language models to
improve the interpretability of EEG data.

4.1 Graph Neural Networks
EEG data is a type of multi-channel time series
data, in which multiple channels (brain regions)
are related to each other, with structural and
functional connectivity [57]. Due to brain regions
are in non-Euclidean space, graph is the most
appropriate data structure to indicate brain
connection [58]. In recent years, graph neural
networks(GNN), represented by graph convolutional
networks(GCN) [59], have developed rapidly and
become a powerful tool for learning non-Euclidean
data representations. They are able to capture intricate
relationships inter-variable and inter-temporal,
therefore emerging as one of the mainstream
frameworks for modeling multivariate time series.
Motivated by the success of graph representation
learning, a line of studies has utilized GNNs to
perform multivariate time series analysis and
demonstrate promising results in many downstream
tasks such as classification [60], forecasting [61], and
anomaly detection [62]. The survey by Jin et al. [9] has
summarized the application of GNNs in time series
analysis, but it does not specifically concentrate on
EEG data and only briefly outlines the application in
the field of healthcare. In contrast, this paper mainly
focuses on EEG data, reviews the recent advances in
mainstream EEG analysis tasks with GNNs. It covers
a wide range of tasks such as epilepsy detection, sleep
staging, and emotion recognition, and sorts out related
works from the perspective of EEG graph construction
and dependency modeling(as shown in Figure 3). All
of the methods are summarized in Table 2.

4.1.1 EEG Graph Construction
In general, each channel in the EEG signal is considered
as a node in the graph. Referring to structural
connectivity and functional connectivity, the methods
for calculating adjacency matrix can be roughly
divided into two categories. One is based on
the geometry of EEG channels, the other is based
on functional connectivity between brain regions.
Based on the geometry between the channels, i.e.,
the anatomical connections between brain regions,
previous studies have presented that adjacent brain
regions affect each other and the strength of the
impact is inversely proportional to the actual physical
distance [63]. Thus, the adjacency matrix of the
graph is constructed from the Euclidean distance
between the electrodes, and it is worth noting that
this matrix is the same for all EEG. The other is based
on functional connectivity between brain regions,
which captures dynamic brain connections that vary
between different EEG. It is often calculated based
on correlations or dependencies among signals, and
the most common methods are Pearson Correlation
Coefficient(PCC) [64], Mutual Information(MI) [65],
and Phase Locking Value(PLV) [66].
Tang et al. [67] utilizes the above two methods to
construct EEGs as graphs and only uses one type of
graph as input at a time. Experimental results on the
TUSZ v1.5.2 dataset show that the correlation-based
graph structure can better localizes focal seizures than
the distance-based graph. For a given EEG, Ho et
al. [68] employs four different metrics to construct
graphs, including nodes Euclidean distance, randomly
connection of nodes, node features correlations, and
directed transfer function. The first two are meant to
capture the geometry of EEG channels and the last two
are for capturing connectivity of brain regions.
Although the correlation-based graph can be used even
when the physical locations of electrodes are unknown,
the adjacency matrix is still fixed, which limits its
performance to a certain extent. To solve this problem,
a lot of research has explored adaptive graph learning
strategies. For example, GraphSleepNet [58] learns
the connection relationship between two nodes based
on their input features. Specifically, it is implemented
through a layer neural network. If the distance between
the features of the two nodes is larger, the connection
of the two in the adjacency matrix is smaller. And
the loss function is defined to be optimized towards
this direction. The superiority of adaptive (learnable)
adjacency matrix is demonstrated by comparing it
with fixed adjacency matrices in the experiment.
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Figure 3. General pipeline for EEG analysis using graph neural networks.

Table 2. Summary of representative GNN-based methods for EEG analysis.
Task Method Graph Construction Dependency Modeling Training Datasets Metric

Sleep Stage Classification GraphSleepNet[58] Learned Spectral, Attention, CNN - MASS-SS3[50] Accuracy, F1, Kappa
MSTGCN [69] Learned Spectral, Attention, CNN - ISRUC-S3[40], MASS-SS3[50] Accuracy, F1, Kappa

Emotion Recognition HetEmotionNet [72] FC Spectral, GRU - DEAP[74], MAHNOB-HCI[75] Valence, Arousal
MD-AGCN [70] FC, Learned Spatial - SEED, SEED-IV, SEED-V[38] Accuracy

Seizure Detection

Tang et al. [67] SC, FC Spatial, Spectral, GRU Generative Learning TUSZ[37] AUC, F1
BrainNet [73] Learned Spatial Contrastive Learning Private data Precision, Recall, F1, F2, AUC
MBrain [2] Learned - Contrastive Learning Private data, TUSZ[37] Precision, Recall, F1, F2

EEG-CGS[68] SC, FC - Contrastive Learning TUSZ[37] AUC, Precision, F1
and Generative Learning Sensitivity, Specificity

Sleep Stage Classification BayesEEGNet [71] Learned Spatial - MASS-SS3[50], SEED[38] Accuracy, F1, Kappaand Emotion Recognition ISRUC-S3 [40]

Graph Construction: "SC" and "FC" denote "structural connectivity" and "functional connectivity", respectively.
"Learned" indicates that the graph structure is learned from data.

MSTGCN [69] uses the adaptive graph learning
method proposed by GraphSleepNet [58], and also
computes the spatial distance-based brain graph. Both
views serve as the input of the model to extract
features and a concatenate operation is employed to
perform feature fusion on the two views. The results
of the ablation experiment show that multi-view
fusion is more effective than using only one single
view. MD-AGCN [70] constructs temporal domain
functional brain connectivity and frequency domain
functional brain connectivity, respectively. Pearson’s
correlation coefficient is used as the connectivity index
in the temporal domain. The frequency-domain
adjacency matrix is divided into public part and
private part. Public part is shared by all of the samples
and is set to be trainable parameters, which illustrates
the general functional brain connectivity patterns for
emotional recognition. Private part is obtained by
computing the dot product between two vertexes,
and is unique to each sample. Before performing
classification, functional brain connections in the two
domains are combined together. By visualization
of the learned graphs, the results indicate that the
model can process global connectivities with the deep
layers. BayesEEGNet [71] considers an electrical
impulse between two nodes in the brain as a Poisson
process, the countless electrical impulses generated by

the brain in a period are represented as an infinite
number of connection probability graphs. Then,
the countless graphs are coupled into a summary
graph by superposition of Poisson distributions, and
the summary graph is subsequently transformed
into the functional connectivity graph through two
three-layer MLPs. By comparing with the adaptive
learning strategy proposed by GraphSleepNet [58],
the connectivity graph obtained in this paper has the
best performance in downstream tasks.

4.1.2 Dependency Modeling and Graph Representation
Learning

Once the EEGgraph is constructed, it is often necessary
to model the dependencies in the graph to learn the
representation that is more discriminative for the
downstream task. For example, Tang et al. [67] models
the spatial dependency in the EEG signals by graph
diffusion convolution. And to model the temporal
dependency in EEGs, Gated Recurrent Units(GRUs)
is employed. Also, in order to learn task-agnostic
representations, a self-supervised pretraining method
that predicts preprocessed signals for the next time
period is proposed. For GraphSleepNet [58], a
spatial-temporal convolution is designed, which
consists of graph convolutions for capturing spatial
features and temporal convolutions for capturing
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temporal context information. Moreover, the attention
mechanism is applied in the spatial dimension and the
temporal dimension respectively to extract valuable
information. BayesEEGNet [71] also employs the
spatial-based graph convolution to aggregate neighbor
information directly in the spatial domain. For
the emotion recognition task based on multi-modal
signals, HetEmotionNet [72] first combines the
temporal domain feature vector and the mutual
information based adjacency matrix to form a
heterogeneous spatial-temporal graph at the current
moment, and then stacks the heterogeneous graphs of
all time steps to form a heterogeneous graph sequence.
Next, the Graph Transformer Network(GTN) is used
to model the heterogeneity of multi-modal signals
by automatically extracting the meta-paths from the
adjacency matrix set. GCN is used to capture the
correlation between multi-modal signals, and GRU is
applied to extract temporal domain features from the
graph sequence obtained after GCN. BrainNet [73]
utilizes GCN to model two types of brain wave
diffusion processes. Concretely, cross-time diffusion
models the propagation of longer epileptic waves
between two consecutive time segments. Meanwhile,
fast signal spreading within the same time segments
of each channel are captured by inner-time diffusion.
The experimental results show that both diffusion
processes can promote the performance of seizure
detection.

There are also methods to mine patterns in a
graph by designing self-supervised learning tasks.
To capture the correlation patterns in space and
time, MBrain [2] proposes two self-supervised
tasks. Instantaneous time shift that is based on
multi-channel Contrastive Predictive Coding(CPC)
aims to capture the short-term correlations focusing
on spatial patterns and delayed time shift is used for
temporal patterns in broader time scales. In addition,
replace discriminative learning is designed to preserve
the unique characteristics of each channel so as to
achieve accurate channel-wise seizure prediction. Ho
et al. [68] leverages a random walk with restart(RWR)
technique to create two positive and one negative
sub-graphs for every node in every constructed EEG
graph, and employs them to perform contrastive
learning. Also, a generative learning module is
proposed to learn the contextual information hidden
in the graph through reconstructing the target node
anonymized in the positive sub-graphs, using the other
node features and edges of the sub-graph. To promote
spatial consistency in multiple sensors, GCC [60]

proposes novel graph augmentations including node
augmentations and edge augmentations, to augment
sensors and their correlations respectively. Next, a
graph contrasting method is designed. Node-level
Contrasting is achieved by contrasting sensors in
different views within each sample while Graph-level
Contrasting is achieved by contrasting the samples
within each training batch. Through these two
contrasting procedures, robust sensor-level features
and global-level features can be learned.

4.1.3 Discussion
Due to the non-Euclidean nature of EEG signals,
graphs have become one of the most suitable data
structures for modeling EEG data. By capturing
both structural and functional connectivity within the
brain, Graph Neural Networks (GNNs) can effectively
model the diffusion process of brain waves across
channels (or brain regions), thereby revealing different
sleep patterns, emotional states, and seizure activities,
among others. This highlights the importance of
GNNs as a significant method in the field of EEG data
analysis.
However, existing approaches still face several
challenges. Most graph construction methods are
heuristic and rely on prior knowledge, which in turn
necessitates extensive data to experimentally validate
the performance and interpretability of these methods.
Moreover, considering the clinical deployment in
real-world settings, the generalization performance
of the model and the ethical implications of data usage
must be thoroughly investigated and addressed.

4.2 Foundation Models
Foundation models (FMs) [76], often known as
large-scale pretrained models, are advanced neural
networks trained on extensive datasets. These models
possess a vast range of general knowledge and can
recognize numerous patterns. As a result, they
offer a flexible and comprehensive foundation for
addressing various tasks across multiple domains.
ChatGPT [77] is the most famous textural foundation
model that has a powerful ability to understand
and generate natural language texts, and can
perform a variety of natural language processing
tasks, including text classification, sentiment analysis,
machine translation, etc., showing extremely high
flexibility and generalization capabilities. CLIP [78]
and SAM [79] are representative visual foundation
models, which exhibit robust general understanding
and reasoning performance. Foundation models
consistently demonstrate high performance in diverse
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domains, from natural language processing to
computer vision, showcasing their versatility and the
potential to revolutionize the way AI systems interact
with and understand the world.
In the field of EEG data processing, researchers usually
proposed specially designed methods or models for
specific data or tasks. However, data annotation
in the medical field is more difficult and expensive
than in other fields. As a result, the size of EEG
medical data sets is usually small, which greatly
restricts the capabilities of the model [73, 80]. The
emergence of large language models provides a new
solution for the processing of biological signal data
such as EEG. Recently, a lot of work has begun to
draw on the ideas of large language models, using
a large amount of unlabeled data and unsupervised
pre-training methods to build foundation models for
EEG or biological signal data [11, 81–86]. These
foundation models have learned a lot of knowledge
about time series signals, can well represent EEG
data, have generalization capabilities that previous
models did not have, and can achieve excellent
performance on different downstream tasks. Below,
we outline the existing work related to foundation
models in the field of EEG signals, considering the
three important elements: data, model structure, and
training methods. While the datasets themselves are
thoroughly described in Table 6, this chapter will focus
on how they are used in the process of EEG foundation
models established.
While the datasets are crucial and will be extensively
discussed, this chapter is dedicated to the presentation
of the models and training methodologies. The
summary of existing foundation models is shown
as Table 3.

4.2.1 Model Structure
With the rapid development of deep learning, many
model structures have emerged, such as Convolutional
Neural Network (CNN) [89], Recurrent Neural
Network (RNN) [90], Transformers [91], Mamba [92],
etc. How to design a model structure suitable for
processing time series signals is the top priority in
building a foundation model. A good structure can
allow the foundation model to better understand and
learn the information and knowledge in time series
signals. Most of the existing EEG foundation models
construct the main model by stacking Transformer
layers or convolutional blocks. Because both structures
have strong scalability and are suitable for mining
information in time series signals.

Brant [81] has two encoders, temporal encoder and
spatial encoder. The temporal encoder contains
a 12-layer Transformer encoder and the spatial
encoder contains a 5-layer Transformer encoder.
They are used to capture the time correlation and
channel correlation in time series signals, respectively.
Salar et al. [83] built the foundation model based
on an EfficientNet-style 1D convolutional neural
network. Neuro-GPT [82] and LaBraM [11] use both
convolutional layers and Transformers layers. They
first use a small number of convolutional layers to
preliminarily extract the features of time series signals
and transform their dimensions, and then use a large
number of Transformers layers to further capture the
correlation between different sequence patches and
better represent time series signals.
Since the input of the Transformer layer is tokens,
and the time series data is a continuous value, the
foundation model needs to convert the time series
data into patches before subsequent calculations can
be performed. A common approach is to split the
original data by a fixedwindow size and a fixed strides.
Specifically, given a neural signal x ∈ RN×C , where N
is the number of timestamps and C is the number of
electrode channels, we divide xwith window sizeM
and stride S to generate a set of patches p ∈ RNp×C×M ,
where Np =

⌊
N−M
S

⌋
+ 1 is the number of patches

in each channel. After obtaining the segmented
patches, additional position or frequency encoding
information is usually added to them to help the
model learn better. Some researchers [11] also map
each patch to a fixed codebook in order to make
the foundation model have a fixed vocabulary like a
large language model. Specifically, it first represents
the patch and then utilizes quantizer to quantize all
the patch representations into the neural codebook
embeddings. The codebook looks up the nearest
neighbor of each patch in the neural codebook.
The parameter size of the existing foundation models
in the EEG field is usually between tens and hundreds
of millions, which is still relatively small compared to
the parameters of large language models. This may be
because the amount of EEG data is still much smaller
than text data. However, we believe that with the
continuous development of the field, the scale of the
foundation model will continue to increase, and its
capabilities will continue to increase.

4.2.2 Training Methods
In order for the model to learn useful knowledge from
massive amounts of unlabeled data, it is essential to
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Table 3. Summary of foundation models for EEG analysis.
Method Model Structure Training Datasets Metric

BrainBERT [87] Transformer blocks Masked Autoencoder Private data AUC
Neuro-GPT [82] Convolutional blocks + Transformer blocks Future Forecast TUH EEG corpus[37] MSE, Accuracy

Brant [81] Transformer blocks Masked Autoencoder Private data MSE, MAE, F1, F2
BFM [83] Convolutional blocks Contrastive Learning AHMS corpus[88] AUC, MAE

LaBraMs [11] Convolutional blocks + Transformer blocks Masked Autoencoder Public data + Private data Accuracy, AUROC, F1

design an effective training method. A good training
method is like a good teacher, which can make the
learning process more efficient.
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Figure 4. The different training methods of EEG
foundation models.

Existing foundation models are all pre-trained using
self-supervised methods. One of the mainstream
approaches is to use masked autoencoder as a
pre-training task [11, 81, 87]. Masked autoencoder
has been proven to be a simple and effective method
in many fields, which trains model to reconstruct the
whole input given its partial observation (as shown in
Figure 4(a)). In this way, the foundation model can
be forced to infer the whole from partial information,
so that the model can learn powerful representation
capabilities.
There is another pre-training method that is similar
to masked autoencoder, which can be understood as
masking only the latter part of the input (as shown in
Figure 4(b)). During the training process, the model
predicts the future situation based on the historical
content of the time series data [82]. Its goal is actually
the same as the short-term or long-term prediction
in the downstream task. Therefore, the foundation
model pre-trained by this method usually has strong
predictive ability, which can capture regularities from
historical time series data.

Another type of work uses contrastive learning to
train the foundation model. The core idea is to learn
how to effectively distinguish similar (positive) and
dissimilar (negative) data points by comparing data
samples, so as to optimize the data representation
or feature vector. This method can help the
model capture the intrinsic structure and relationship
between data, thereby improving its generalization
ability on downstream tasks. For example, Salar et
al. [83] constructed positive and negative pairs at the
participant level. Specifically, the positive pairs are
selected as augmented views of two different segments
from the same participant, while the segments from
different subjects are regarded as negative samples (as
shown in Figure 4(c)). Through this training method,
the model can not only acquire strong representation
capabilities, but also enhance its generalization ability
on different subjects.

Using various pre-training methods, the foundation
model can acquire enough knowledge from a large
amount of unlabeled data. Therefore, it only needs to
be fine-tuned with a small amount of data to be well
adapted to various downstream tasks. It can even have
zero-shot capabilities like a large languagemodel. This
makes it possible to build a universal EEG foundation
model.

4.2.3 Discussion
The emergence of foundation models for EEG data
processingmarks a significant advancement in the field
of EEG signal analysis. By leveraging the principles
and techniques of large-scale pretrained models,
researchers can increasingly overcome the limitations
posed by traditionally small and costly annotated EEG
datasets. The ability of these foundation models to
extract meaningful patterns from large amounts of
unlabeled EEG data opens new avenues for improving
diagnostic and therapeutic applications.

Despite these advancements, several challenges
remain. Although the parameter size of existing
EEG foundation models has significantly improved
compared to before, it is still smaller than that of
large language models because the amount of EEG
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data is far less than the amount of text data. This
disparity highlights the need for more extensive
and standardized EEG datasets, potentially through
collaborative data-sharing initiatives or the integration
of synthetic data generation techniques. Meanwhile,
ethical considerations surrounding the use of EEGdata
must also be addressed. Issues of privacy, data security,
and informed consent are paramount, especially as
these models become more integrated into clinical
workflows. Ensuring that these models are developed
and implemented with a strong ethical framework
will be crucial for their acceptance and success in the
medical community.

4.3 LLMs-based Methods
Large Language Models (LLMs) [93–95] have
revolutionized the field of natural language processing
(NLP) by demonstrating remarkable capabilities in
understanding, generating, and translating human
language. The application of LLMs in EEG analysis
represents a novel and innovative approach to
interpreting complex brain signals. Unlike traditional
machine learning methods, LLMs can be fine-tuned
with relatively small amounts of task-specific data,
making them particularly well-suited for the analysis
of EEG data, which can be challenging to annotate
and label.

The integration of LLMs into EEG analysis can take
two forms: Single-tower Models: These approaches
use LLMs as feature extractors for EEG data sets,
which are of a single modality, implicitly leveraging
the semantic knowledge that these models contain.
Here, LLMs can be fine-tuned to classify different
neurological states or forecast outcomes based on
EEG data with Parameter Efficient Fine-Tuning (PEFT)
techniques [129], such as LoRA [101] or soft
prompt [130]. Their proficiency in handling sequential
data makes them particularly adept at time-series
analysis. Dual-towerModels: These approaches deals
with multi-modal data, where EEG is paired with text
using LLMs through knowledge distillation [131] or
cross-modal contrastive learning [78]. What’s more,
there has been significant progress in adapting LLMs
for general time series analysis[10, 12, 132]. For those
familiar with the field, it is well understood that EEG
data is a type of time series data. Given this, we are
confident that the advancements made in general time
series analysis can be successfully applied to EEG data
analysis in the near future. Consequently, we intend to
provide a brief overview of somemainstreammethods
currently utilized in general time series analysis. All

of the methods are summarized in Table 4.

4.3.1 Sinlge-tower Models

Figure 5. Two types of LLMs-based methods.

These approaches use LLMs as the backbone,
harnessing the models’ inherent semantic
understanding(as shown in Figure 5(a)). Some
works adapts them for time-series forecasting tasks.
Victor et.al [96] first employs the Kolmogorov-Chaitin
algorithm to convert EEG data into a text-like
format, and then constructs a machine-learning
model based on language models to predict epilepsy.
PromptCast [98] introduces an innovative "codeless"
approach to time series forecasting, offering a fresh
perspective that moves away from the sole emphasis
on creating complex architectures. TEMPO [135]
concentrats exclusively on time series forecasting
while integrating additional intricate elements such
as time series decomposition and soft prompts.
LLM4TS [103] proposes a two-stage fine-tuning
framework for time-series forecasting, addresses
challenges in incorporating LLMs with time-series
data. Time-LLM [105] reprograms time series by
incorporating the source data modality and utilizing
natural language-based prompting, which unlocks the
potential of LLMs as efficient time series machines.
S2IP-LLM [106] leverages LLMs by aligning their
semantic space with time series embeddings to
enhance time series forecasting through semantic
space-informed prompt learning. The vast majority
of existing research in the field has been centered
on time-series forecasting tasks. This focus may
stem from the inherent similarities between the
autoregressive processes of LLMs and the forecasting
nature of time-series prediction models. In other
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Table 4. Summary of LLMs-based methods for EEG analysis.
Method Task Language model Training Datasets Metric
Victor[96] Prediction BERT[91] Cross-entropy American Epilepsy Society[97] AUC, Accuracy

PromptCast[98]

Forecast

T5[99], BART[134], etc. Template-Based Prompting PISA

MAE, MSE
TEMPO[135] GPT2[104] , T5[99], LLaMA[94], etc. STL[100], LoRA[101]

LTSF[102]LLM4TS[103] GPT2[104] Autoregressive
Time-LLM[105] LLaMA[94] Reprogramming, Prompt-as-Prefix
S2IP-LLM[106] GPT2[104] Partial fine-tune
GPT4TS[107] Classification, Forecast, etc. GPT2[104] Partial fine-tune UEA[108] Accuracy
TEST[109] Classification GPT2[104] Contrastive learning
Zhang[110] Eye-tracking GPT-3.5’s and GPT-4’s APIs LLM agent ZuCo[111] AUC, Accuracy

EEG-To-Text [133] Sentiment Classification BART[134] Reconstruction, cross-entropy ZuCo[111] AUC, Accuracy
MTAM[112] Analysis, Relation Detection Transformer CCA, WD K-EmoCon[113], ZuCo[111] Precision, Recall,F1-score, Accuracy
METS[114] Clinical Diagnosis ClinicalBert[115] Contrastive Learning PTB-XL[116],MIT-BIH[117] Precision, Recall, F1-score, Accuracy

GPT4MTS[118] Forecast BERT[91], GPT2[104] Partial fine-tune GDELT MAE, MSE
ESI[119] Diagnosis BioLinkBERT[120] Contrastive Learning, RAG CSX[121], PTB-XL[116], MIT-BIH[117] AUC, Accuracy

InstructTime[122] Classification GPT2[104] VQ-VAE[123], Full fine-tuning EEG[42], ECG[124], HAR[41], FD[125] F1-score, Accuracy
CrossTimeNet[126] Classification BERT[91] VQ-VAE[123] EEG[42], ECG[124], HAR[41] F1-score, Accuracy

CALF[136] Forecast GPT2[104] Distill Knowledge LTSF[102] MAE, MSE
EEG-GPT[127] Classification Vinci GPT-3 prompt-completion API TUH EEG Corpus[37] AUC-ROC
K-Link[128] Forecast CLIP-Text[78] Contrasting Learning LTSF[102] MAE, MSE

LTSF contains ETTh1/h2/m1/m2, Weather, Electricity, Traffic

words, the resemblance lies in the fact that both
types of models rely on historical data (or context)
to make predictions about future data points (or
words in the case of LLMs). In addition to forecasting,
a few works have adapted LLMs for time-series
classification. GPT4TS [107] presents a unified
framework with frozening the self-attention and
feedforward layers of the residual blocks in the LLMs
and fine-tuning the layer norm layer. TEST [109]
converts time-series data into a format suitable
for pre-trained LLMs by employing a three-level
contrast approach, which includes instance-wise,
feature-wise, and text-prototype-aligned contrasts.
Zhang et al. [110] utilize LLMs to generate labels
that guide a new reading embedding representation
for EEG, enabling the prediction of human reading
comprehension at the word level. In summary, recent
studies reflect a burgeoning interest in harnessing
the capabilities of LLMs for time-series analysis by
integrating them into the architecture in ways that
capitalize on the inherent strengths of LLMs.

4.3.2 Dual-tower Models
In addition to methods that focus solely on time
series data, there have been significant efforts to
develop multi-modal applications(as shown in Figure
5(b)). EEG-To-Text [133] presents a novel framework
using LLMs to extend brain-to-text decoding to
open vocabulary and achieve zero-shot sentiment
classification. MTAM [112] uses a multimodal
transformer alignment model to investigate the
correlation between EEG data and language, enabling
the observation of synchronized representations
across these modalities and utilizing these aligned
representations for various downstream tasks.

METS [114] employs a trainable ECG encoder
alongside a frozen language model to embed
paired ECG signals and automatically generated
clinical reports separately through multimodal
contrastive learning. GPT4MTS [118] introduces
a multimodal time series dataset for news impact
forecasting and proposes a prompt-based LLM
framework that leverages both numerical values
and textual information. ESI [119] integrates a
retrieval-augmented generation (RAG) pipeline to
obtain external medical knowledge, thereby enriching
textual descriptions. InstructTime [122] formulates
the classification of time series as a multimodal
understanding task, treating both task-specific
instructions and raw time series data as multimodal
inputs, with label information represented in text
form. CrossTimeNet [126] designs a time series
tokenization module that effectively converts raw
time series data into a sequence of discrete tokens
based on a reconstruction optimization process.
CALF [136] develops a cross-modal match module to
align cross-modal input distributions between textual
and temporal data, further bridging the modality
distribution gap in both feature and output spaces.
EEG-GPT [127] offers intermediate reasoning steps
and coordinate EEG tools across different scales,
providing a transparent, interpretable, step-by-step
analysis that enhances trustworthiness in clinical
application. K-Link [128] proposes a framework
that enriches a signal-derived graph by integrating
a knowledge-link graph, which is constructed using
LLMs, through the process of graph alignment. In
summary, these efforts underscore the potential of
integrating time series methods with the capabilities
of LLMs to develop more robust and informative
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models. This is achieved through techniques that
utilize a dual-tower architecture, such as cross-modal
contrastive learning and knowledge distillation
processes.

4.3.3 Discussion
The application of LLMs to EEG and other time
series data modalities offers a promising approach,
bridging the gap between advancements in natural
language processing and time series analysis. By
leveraging the inherent strengths of LLMs in semantic
understanding and sequence processing, these models
can unify various EEG tasks, as many of these
tasks—like neurological state classification and signal
forecasting—can be framed similarly to tasks in NLP.
This positions LLMs as a competitive choice for
building more generalizable models for EEG data
analysis.
However, it is important to acknowledge the inherent
limitations of current approaches that leverage LLMs
as backbones for EEG analysis. LLMs may encounter
difficulties with the unique characteristics of EEG data,
including the requirement to capture fine-grained
temporal patterns and the dynamic nature of evolving
brain signals. Additional challenges arise as LLMs
attempt to model the intricate dependencies within
EEG data or to fully account for the broader
topological relationships that may become relevant
when integrating EEGwith other data sources, such as
clinical notes or external physiological signals. These
limitations underscore the need for continued research
and innovation in the application of LLM-based
models to EEG data.
There remains active debate over whether LLMs
are truly effective for time series analysis [137, 138].
Greater theoretical support is needed—for instance, in
single-tower structures, where it has been suggested
that the self-attention module functions analogously
to principal component analysis (PCA) [139], and
in dual-tower structures, which offer a probabilistic
perspective that supports cross-modal fine-tuning
techniques [136].
Future research directions should focus on enhancing
the ability of LLMs to more efficiently process and
understand the temporal and structural information
embedded in EEG data. Given that LLMs were not
originally designed to directly handle time series, new
modeling techniques—such as structured embeddings
and task-specific adaptations—are required to bridge
the gap between natural language prompts and the
detailed temporal patterns present in EEG. Insights

from a recent survey [140] may provide valuable
guidance. These developments will likely help unlock
the full potential of LLMs in this domain and drive
further advancements in EEG analysis through a
language model-based approach.

5 Generative-based EEG Analysis
In this section, we will delve into innovative generative
applications that utilize EEGdata to produce images or
text, providing novel approaches to the visualization
and understanding of brain activity.In this section, we
explore the performance of EEG analysis methods on
multi-modal generation tasks. Previous works have
proved that EEG signal contain abundant semantics.
It’s intuitively that we can reconstruct the semantics
information from EEG signal instead of just catch
their representation from raw data with the help
of generative model such as GANs [141], Diffusion
Models [142] and Transformers based models. All of
the methods are presented in Table 5.

5.1 Image Generation
EEG-Image generation tasks typically follow the
Map-Train-Finetune paradigm, which ensures high
semantic fidelity but poses challenges in training
and fine-tuning. As shown in Figure 6, the
EEG-to-Image generation task involves three phases:
data collection, model training, and testing. During
the data collection phase, paired EEG signals and
corresponding images are recorded while the subject
views an image. This paired data is then used to
jointly train the EEG encoder and image generator.
In the testing phase, the trained model generates
images directly from EEG signals. Brain2Image [143]
addresses these challenges by dividing the EEG-Image
generation task into two distinct phases. In the
first phase, Brain2Image encodes EEG signals into
a lower-dimensional feature vector for conditioning
in image generation. Specifically, a standard LSTM
layer followed by a nonlinear layer is trained to
classify the EEG signals, serving as the encoder.
An additional fully-connected layer is then added
to ensure the learned EEG feature vector follows
a Gaussian distribution, as required by Variational
Autoencoders (VAEs). In the second phase, for each
EEG sequence provided to the encoder, Brain2Image
uses the encoder’s output to train the VAE’s decoder
to generate images corresponding to what the subject
is observing at that precise moment. Compared to
Brain2Image, ThoughtViz [145] employs a 1D-CNN
followed by a 2D-CNN for EEG classification as an
encoder. Building on the traditional GAN architecture,
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Table 5. Summary of EEG-To-Modality generation models.
Modality Method Encoder Decoder Pretrained Dataset Eval Metric

Image

Brain2Image[143] LSTM VAE Classification Spampinato[144] IS
ThoughtViz[145] CNN GAN Classification Kumar[146] IS & Accuracy
EEG2Image[147] LSTM DCGAN Constrastive learning Kumar[146] IS

EEGStyleGAN-ADA[148] LSTM SyleGAN-ADA Constrastive learning Spampinato[144] Kumar[146] Kaneshiro[149] IS & FID & KID
DreamDiffusion[150] VQ LDM MAE Spampinato[144] Accuracy
NeuroImagen[151] Saliency Map, BLIP LDM Map Spampinato[144] IS & Accuracy & SSIM

Text
EEG-To-Text[133] Transformer

BART[134]
Map ZuCo[111]

BLEU-N & ROUGE-1EEG2Text[152] Convolutional Transformer MAE ZuCo[111] Image-EEG[153]
E2T-PTR[154] Multi-stream Transformer MAE ZuCo[111]
DeWave[155] VQ-VAE - ZuCo[111]

Others ETCAS[156] - Dual-DualGAN - Privated data Accuracy & PCC &MCD
NDMusic[157] - BiLSTM - MusicAffect Rank accuracy

EEG 

Encoder

EEG Feature

Seen Image
Subject

Image 

Generator

EEG Signal

Generated Image

Figure 6. EEG based image generation task pipeline.

ThoughtViz introduces a pre-trained classifier to
classify the samples generated by the generator. The
generator loss in ThoughtViz incorporates both the
discriminative loss from the discriminator and the
classification loss from the classifier. Unlike training
the EEG encoder through a supervised classification
task, EEG2Image [147] and EEGStyleGAN-ADA [148]
employ a triplet loss-based contrastive learning
approach in their proposed frameworks for EEG
feature learning. The triplet loss function aims to
minimize the distance between data points with
the same labels while maximizing the distance
between data points with different labels. This
approach prevents the EEG encoder from compressing
the representations into small, indistinct clusters.
EEG2Image utilizes a Conditional DCGAN [158]
architecturewith hinge loss for stable training, whereas
EEGStyleGAN-ADA employs StyleGAN-ADA [159]
with adaptive discriminator augmentation. This
augmentation helps the discriminator effectively learn
from limited data by augmenting real images during
training.

With the powerful generative capabilities of Diffusion
Models, an increasing number of researchers are
applying these models to the EEG-Image generation
task. DreamDiffusion [150], for instance, collects

a large-scale unlabeled EEG dataset from the
MOABB [160] platform and uses the MAE method
for brain pretraining. During the fine-tuning stage,
DreamDiffusion employs a projection layer to align
brain latent representations with CLIP-Image semantic
information. NeuroImagen [151], on the other hand,
uses detail and semantic extractors to map EEG signals
to pixel and CLIP-Text priors, which are then decoded
by a pretrained Stable Diffusion model following the
image-to-image pipeline.

5.2 Text Generation
Unlike EEG-image generation, EEG-text generation is
a sequence-to-sequence process. As shown in Figure 7,
the EEG-to-Text generation task involves collecting
word-level EEG signals while the subject views text
(e.g., "He likes apple"). Eye-tracking may also be
utilized to align EEG signals with specific words.
These word-level EEG signals are then processed by
an EEG-to-Text model, which decodes the signals and
generates the corresponding text. Inspired by machine
translation applications using pretrained BART [134],
Wang et al. [133] consider the human brain as a
unique type of encoder. They treat each EEG feature
sequence as an encoded sentence by the human brain
and then train an additional encoder tomap the brain’s
embeddings to the embeddings from the pretrained
BART model. Instead of using the word-level
EEG features crafted based on the eye-tracking
data like [133], EEG2Text [152] directly use the
sentence-level EEG signals as input to the model.
Specifically, EEG2Text leverages EEG pre-training to
enhance the learning of semantics from EEG signals
and proposes a multiview transformer to model the
EEG signal processing by different spatial regions of
the brain. Wang et al. [154] introduced CET-MAE,
a model that combines contrastive learning and
masked signal modeling via a multi-stream encoder.
It effectively learns EEG and text representations
by balancing self-reconstructed latent embeddings
with aligned text and EEG features. They also
propose an EEG-to-Text decoding framework using
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He likes apple

Eyes-Tracking

Subject

He likes apple

Word-level EEG signal

EEG-to-Text

Model

He likes apple

Decoding

Figure 7. EEG based text generation task pipeline.

Pretrained Transferable Representations, leveraging
LLMs for language understanding and generation,
and fully utilizing the pre-trained representations
from CET-MAE. To address significant distribution
variances in EEG waves across individuals and rectify
order mismatches between raw wave sequences and
text, DeWave [155] uses a vector quantized variational
encoder. This encoder transforms EEG waves into
a discrete codex, linking them to tokens based
on proximity to codex book entries. DeWave is
the first to introduce discrete encoding into EEG
signal representation, benefiting both word-level EEG
features and raw EEG wave translation.

5.3 Others
In addition to image and text generation, many other
EEG-to-modality generation tasks deserve attention.
ETCAS [156], an end-to-end GAN model tailored
for EEG-based sound generation tasks, introduces
a Dual-DualGAN to directly map EEG signals to
speech signals. NDMusic [157] adopts an end-toend
bidirectional LSTM (BiLSTM) architecture to establish
a direct mapping from fMRI-informed EEG signals to
music signals.

5.4 Discussion
The advancements in EEG-based generation tasks,
spanning image, text, and even audio outputs,
highlight the growing potential of generative
models in decoding brain activity into multi-modal
representations. The evolution of methods from
simpler Map-Train-Finetune paradigms to more
advanced approaches like contrastive learning and
transformer-based architectures illustrates a robust
progression toward higher semantic fidelity and
model adaptability. Works such as Brain2Image [143],
ThoughtViz [145], EEG2Image [147], and
EEGStyleGAN-ADA [148] demonstrate the success
of diverse model architectures—including GANs,
StyleGANs, and VAEs—particularly in leveraging
novel feature extraction techniques that preserve the

temporal and semantic richness of EEG data. Likewise,
diffusion models, such as DreamDiffusion [150] and
NeuroImagen [151], signify a leap in the generative
quality and capacity to incorporate external semantic
information, revealing promising directions for highly
detailed image reconstruction.
In the realm of EEG-text generation, models inspired
by sequence-to-sequence frameworks in NLP, like
BART [134] and multi-view transformers, enable
more coherent mapping from EEG signals to language
representations. Innovations such as CET-MAE [154]
and DeWave [155] further address challenges
related to individual variability and sequence
alignment, showcasing effective strategies to bridge
the distinct characteristics of EEG signals and natural
language representations. These frameworks mark
significant progress toward the seamless integration
of pre-trained language models and EEG features,
opening new avenues for interpretable and accurate
text generation.
Future research should aim to address several
critical challenges: (1) improving the robustness
of EEG-based generation models across diverse
data sources and populations; (2) enhancing data
efficiency through unsupervised or few-shot learning
approaches to mitigate the need for large labeled
datasets; and (3) refining alignment techniques for
cross-modal integrationwith clinical and physiological
data. Additionally, continued exploration of discrete
and structured representations, as in DeWave, could
prove transformative for other EEG-based tasks by
establishing a consistent framework for handling the
complexity of EEG signals. These efforts will be vital in
pushing the boundaries of brain decoding technologies
and in developing universally applicable, robust
EEG-based generative models for various modalities.

6 Datasets and Metrics
The analysis of spatio-temporal EEG data relies heavily
on the availability of high-quality datasets and robust
evaluation metrics. This section provides an overview
of the most widely used datasets and the key metrics
employed to assess the performance of various EEG
analysis models.

6.1 Datasets
6.1.1 Publicly Available EEG Datasets
Several publicly available EEG datasets have been
instrumental in advancing the field. These datasets
vary in their focus, including different cognitive tasks,
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subject demographics, and recording conditions.
Discriminative EEG Task Dataset: These datasets
are typically employed for tasks that involve
distinguishing between different cognitive states or
mental activities, such as classifying brain signals
associated with motor imagery, attention, or emotional
responses. Some of the most notable datasets include:
• BCI Competition IV [161]: This dataset

comprises multiple sub-datasets, each designed
for specific brain-computer interface (BCI)
challenges. It includes motor imagery tasks and
event-related potentials (ERPs) recorded from
healthy subjects.

• TUH EEG Corpus[37]: The Temple University
Hospital EEG Corpus is one of the largest
publicly available EEG datasets. It contains
EEG signals collected from 14,987 subjects, with
more than 40 different channel configurations and
different recording duration, including normal
and abnormal samples, making it suitable for both
research and clinical applications.

• DEAP (Database for Emotion Analysis using
Physiological Signals[74]): This dataset
includes EEG and other physiological signals
recorded while subjects watched music videos.
It is widely used for emotion recognition and
affective computing studies.

• CHB-MIT Scalp EEG Database[52]: This
dataset contains EEG recordings from pediatric
subjects with intractable seizures. It is commonly
used for seizure detection and prediction
research.

• SEED (SJTU Emotion EEG Dataset)[38]: The
SEED dataset includes EEG recordings from
subjects experiencing emotional stimuli, such
as movie clips. It is used to study emotional
recognition and related applications.

• ISRUC-S3 dataset[40]: This dataset contains 10
healthy subjects. Each recording contains 6 EEG
channels, 2 EOG channels, 3 EMG channels, and
1 ECG channel. It is widely used for sleep stage
classification studies.

• MASS-SS3 dataset[50]: This dataset contains 62
healthy subjects. Each recording contains 20 EEG
channels, 2 EOG channels, 3 EMG channels, and
1 ECG channel. It is widely used for sleep stage
classification studies.

Generative EEG Task Dataset: These datasets are

typically used for tasks that involve the generation
of images, sentences, and other signals. For the image
generative task, Spampinato et al. [144], Kumar et
al. [146], and Kaneshiro et al. [149] obtain image
semantics from EEG by employing EEG data recorded
while subjects looked at images on a screen. The
classical dataset constructed for the generative EEG
task is shown in Table 6.

Table 6. EEG-Image dataset for image generation.

Item
Dataset Spampinato Kumar Kaneshiro

[144] [146] [149]
Classes 40 30 6
Subjects 6 23 10
Channels 128 14 128
Quantity 2000 30 72

Frequency (Hz) 1000 2048 1000
Time(s) 0.5 10 0.5
Pause(s) 10 20 0.75

• Spampinato et al[144] employed a subset
of ImageNet containing 40 classes of easily
recognizable objects for visual stimuli, using a
128-channel cap (actiCAP 128Ch), Brainvision
DAQs and amplifiers for the EEG data acquisition.
Sampling frequency and data resolution were
set, respectively, to 1000 Hz and 16 bits. During
the recording process, 2,000 images (50 from
each class) were shown in bursts for 0.5 seconds
each. A burst lasts for 25 seconds, followed by a
10-second pause where a black image was shown
for a total running time of 1,400 seconds (23
minutes and 20 seconds).

• Kumar et al[146] prepared a slide presentation
that consisted of 20 text and 10 non-text items
in 3 categories of object to the subjects, namely
digits, characters and object images, each slide
was showed for 10 seconds, then recording the
EEG data via a wireless neuro-headset Emotiv
EPOC+ at a frequency of 2048Hz and there was a
20 seconds gap between 2 record.

• Kaneshiro et al[149] used 72 images from
6 categories of real objects as visual stimuli,
acquired the EEG data via 128-channel EGI
HCGSN 110 nets in the frequency of 1000 Hz.
Each image was displayed for 0.5 seconds, and
there was a 0.75 second interval between each
image.

• ZuCo[111] contains EEG and eyetracking data
from 12 healthy adult native English speakers
engaged in natural English text reading for 4 - 6
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hours. This dataset covers two standard reading
tasks and a taskspecific reading task, offering EEG
and eye-tracking data for 21,629 words across
1,107 sentences and 154,173 fixations.

6.1.2 Private EEG Datasets
In addition to publicly available datasets, researchers
often collect private EEG datasets tailored to specific
research questions or applications. These datasets may
focus on particular cognitive tasks, clinical conditions,
or subject populations. Specifically, private data also
forms the basis of foundation models, and while
its importance has been highlighted in Section 4.2.
Collecting custom datasets allows for greater control
over experimental conditions and data quality, but it
also requires significant resources and expertise.
• BrainBERT[87] collected stereo

electroencephalogram (SEEG) data from 10
subjects(5 male, 5 female; aged 4-19, with a
mean age of 11.9 and a standard deviation of
4.6) over 26 sessions, who are pharmacologically
intractable epilepsy patients.

• BrainNet [73] collected 796 GB of SEEG data from
a first-class hospital. The subjects suffering from
epilepsy undergo a surgical procedure to implant
4 to 10 invasive electrodes, with 52 to 126 channels,
in their brain. In total, the dataset contains 526
hours of 256Hz to 1024Hz recordings.

• MBrain [2] collected 550 GB of SEEG data from
a first-class hospital. The subjects suffering from
epilepsy undergo a surgical procedure to implant
4 to 10 invasive electrodes, with 52 to 124 channels,
in their brain. In total, the dataset contains 470
hours of 1000Hz to 2000Hz recordings.

• Brant [81] collected 1.01 TB of SEEG data from
a first-class hospital. The subjects undergo a
surgical procedure to implant 4 to 11 invasive
electrodes, each with 52 to 153 channels, in their
brain. The dataset contains 2528 hours of 1000Hz
recordings with more than 1 trillion timestamps.
In addition, it also collected 29.39 GB and 43 hours
of epilepsy labeled data for fine-tuning of specific
downstream tasks.

• LaBraM [11] further collected 342.23 hours of
data from more than 140 subjects through the ESI
neural scanning system.

6.2 Metrics
Evaluating the performance of EEG analysis models
involves several key metrics, which are crucial for

comparing different approaches and understanding
their effectiveness. The most commonly used metrics
include:

• Accuracy1: The proportion of correctly classified
instances among the total instances. It is a
fundamental metric for classification tasks but
may be misleading for imbalanced datasets.

• Precision andRecall2: Precision is the proportion
of true positive results among the predicted
positives, while recall is the proportion of true
positive results among the actual positives. These
metrics are particularly useful for tasks with
imbalanced classes.

• F1 Score3: The harmonic mean of precision and
recall, providing a singlemetric that balances both
concerns. It is especially useful when the dataset
has imbalanced classes.

• F2 Score3: The harmonic mean of precision and
recall, giving twice as much weight to recall.
It is particularly useful in applications such
as epilepsy detection, where missing positive
instances (epileptic events) can be fatal.

• Area Under the Receiver Operating
Characteristic Curve (AUC-ROC)[162]: This
metric evaluates the ability of a model to
distinguish between classes, considering both the
true positive rate and the false positive rate. It is
widely used for binary classification tasks.

• Mean Squared Error (MSE)4: Used for
regression tasks, MSE measures the average
squared difference between predicted and actual
values. Lower MSE indicates better model
performance.

• Mean Absolute Error (MAE)5: Another metric
for regression tasks, MAE measures the average
absolute difference between predicted and actual
values. It is less sensitive to outliers compared to
MSE.

• Cohen’s Kappa6: A statistical measure of
inter-rater agreement for categorical items, which
takes into account the possibility of agreement

1https://en.wikipedia.org/wiki/Accuracy_and_precision
2https://en.wikipedia.org/wiki/Precision_and_recall
3https://en.wikipedia.org/wiki/F-score
4https://en.wikipedia.org/wiki/Mean_squared_error
5https://en.wikipedia.org/wiki/Mean_absolute_error
6https://en.wikipedia.org/wiki/Cohen’s_kappa
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occurring by chance. It is useful for evaluating the
reliability of classifications.

• Inception Score (IS)[163]: A metric used to
evaluate the performance of generative models,
such as Generative Adversarial Networks
(GANs), by assessing the quality and diversity
of the generated images. It calculates the
classification probabilities of the generated
images using a pre-trained Inception network,
and measures both how distinct and realistic the
generated images are. Higher scores indicate
better performance in terms of generating
high-quality and diverse images.

• Frechet Inception Distance (FID)[164]: A
metric for evaluating the quality of generated
images by comparing the feature distributions
of these images to those of real images. Lower
FID scores indicate more realistic and diverse
generated images.

• Kernel Inception Distance (KID)[165]: A more
robust measure of image quality in generative
models than FID, KID compares the similarity
of feature distributions between generated and
real images using a kernel method. It provides a
more nuanced assessment by considering both the
mean and covariance of the feature distributions,
making it sensitive to both the style and content
of the images. Lower KID scores suggest better
image generation performance.

• Structural Similarity Index (SSIM)[166]: A
metric for assessing the visual similarity between
two images. It evaluates the similarity by
comparing the luminance, contrast, and structure
of the images. The SSIM index ranges from 0 to 1,
with values closer to 1 indicating higher similarity.
It is commonly used to measure the effectiveness
of image processing techniques like enhancement,
compression, and super-resolution.

• BLEU-N[167]: A metric used to evaluate the
quality ofmachine-translated text. It measures the
correspondence between a machine’s translations
and human translations by comparing n-gram
overlaps. Higher BLEU-N scores indicate better
translation accuracy and fluency. BLEU stands for
Bilingual Evaluation Understudy.

• ROUGE-1[168]: A metric used to evaluate the
quality of automatic summarization and machine
translation. It focuses on the overlap of unigrams
(single words) between a generated summary or

translation and a set of reference summaries or
translations. Higher ROUGE-1 scores indicate a
better match between the generated text and the
reference texts.

• Pearson Correlation Coefficient (PCC)7: a
statistical measure that expresses the linear
correlation between two variables. It ranges
from -1 (perfect negative correlation) to +1
(perfect positive correlation), with 0 indicating no
correlation. PCC is commonly used in finance and
economics to assess the strength and direction of
the relationship between variables.

• Melcepstral distance[169]: A measure used
in audio processing to evaluate the similarity
between two sound signals, often employed
in speech recognition and audio analysis. It’s
calculated based on the Mel-cepstral coefficients
derived from the Fourier transform of the audio.
Lower melcepstral distances indicate more similar
sounds.

In summary, the availability of diverse and
high-quality datasets, combined with robust
evaluation metrics, is essential for advancing
spatio-temporal EEG data analysis. These resources
enable researchers to develop, compare, and refine
models, ultimately leading to more accurate and
insightful interpretations of brain activity.

7 Concludes and Future Directions
Conclusion: In conclusion, this paper has reviewed
the current advancements in EEG analysis, focusing
on three key areas: representation learning,
discriminative-based methods, and generative-based
methods. These areas collectively enhance the
precision, interpretability, and application scope of
EEG signal analysis, addressing significant challenges
and paving the way for future research.

• Learning Useful Representation from EEG
Signals: The first step in understanding EEG
signals is representation learning, where we
automatically extract important information.
Self-supervised learning techniques are
effective in this process, helping us create
strong representations of EEG signals. These
representations improve our ability to interpret
the data accurately and handle large amounts of
brain signal data efficiently.

7https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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• Identifying Patterns in EEG Signals:
Discriminative methods are crucial for
recognizing different patterns or categories
within EEG signals. Using advanced techniques
like Graph Neural Networks (GNNs) and
foundation models, we can gain deeper insights
into brain activity by capturing these patterns
effectively. Understanding these patterns
is essential for deciphering complex neural
processes.

• Generating New Insights from EEG Signals:
Generative methods focus on generating new
types of data from EEG signals. Techniques like
diffusion models allow us to create images or
text based on EEG data, providing innovative
ways to visualize and understand brain activity.
These generative methods also have applications
in generating AI-generated content.

Future Directions: Looking ahead, several promising
directions for future research in EEG signal analysis
and understanding can be identified:

• Enhanced Integration of Self-Supervised and
Semi-Supervised Learning: Further exploration
into the integration of self-supervised and
semi-supervised learning techniques could yield
evenmore robust and generalized representations.
This will enable better handling of diverse and
complex EEG data with minimal labeled data,
driving improvements in accuracy and efficiency.

• Development of Advanced Network
Architectures: Continued innovation in network
architectures, such as the refinement and
combination of Mamba [92, 170], KAN [171],
and MoE models [172], is essential. These
advancements should focus on improving training
efficiency and inference speed, particularly for
deployment on mobile and edge devices.
Research into optimizing these architectures for
real-time analysis and low-power consumption is
also crucial.

• Expansion of Multimodal Generative
Techniques: Expanding the capabilities of
multimodal generative techniques to include
more diverse forms of data, such as tactile or
olfactory signals, could open new avenues for
EEG applications. Additionally, improving the
quality and realism of generated outputs, whether
they be images, text, or speech, will enhance
their utility in practical scenarios, particularly for

assisting individuals with disabilities.
• Addressing Constrained Conditions in

Brain Signals: Variable missing [173],
class-incremental [174], and source-free domain
adaptation [175] are constrained conditions in
brain signal analysis that present significant
challenges but also offer important research
opportunities. Addressing these issues can
enhance the accuracy and stability of analyses,
leading to broad impacts in practical applications.

• Interdisciplinary Collaboration and
Real-World Applications: Encouraging
interdisciplinary collaboration between
neuroscientists, computer scientists, and
clinicians will be vital for translating these
technological advancements into real-world
applications. This includes the development of
user-friendly interfaces and tools for clinical use,
as well as ensuring the ethical and responsible
deployment of these technologies.

• Establishing a Unified Evaluation Benchmark:
As the volume of EEG data, task variety, and
computational capabilities increase, establishing
a comprehensive and standardized evaluation
system becomes crucial. Similar to the challenges
observed in general time-series analysis [176,
177], there is currently no unified benchmark or
complete dataset for consistent comparisons in
EEG-basedmethods. To address this, we advocate
for the future development of unified evaluation
metrics and standardized datasets, which would
enable more comprehensive and fair comparisons
between different methods, and help assess their
practical utility more accurately.

By focusing on these future directions, the field of EEG
signal analysis can continue to advance, providing
deeper insights into brain function and enabling more
effective applications in both clinical and non-clinical
settings. Additionally, the integration of information
fusion strategies—whether through multi-modal data
alignment, cross-source learning, or collaborative
inference—is expected to become a foundational pillar
in next-generation EEG systems. Leveraging the
synergy of different signals and models not only
improves accuracy but also enhances the robustness
and interpretability of brain-computer interfaces and
clinical decision-making systems. Incorporating
information fusion principles is thus pivotal for
advancing both the scientific understanding and
practical deployment of EEG technologies.
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