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Abstract

With the progressive advancement of remote
sensing image technology, its application in the
agricultural domain is becoming increasingly
prevalent. Both cultivation and transportation
processes can greatly benefit from utilizing
remote sensing images to ensure adequate food
supply. However, such images often exist in
harsh environments with many gaps and dense
distribution, which poses major challenges to
traditional target detection methods. The frequent
missed detections and inaccurate bounding
boxes severely constrain the further analysis and
application of remote sensing images within the
agricultural sector. This study presents an enhanced
version of the YOLO algorithm, specifically tailored
to achieve high-efficiency detection of densely

distributed small targets in remote sensing images.

We replaced the convolutions with a convolution
kernel size of 3 in the last two ELAN modules
with DeformableConvNetsv2 so that the backbone
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can better extract various objects. The proposed
detector introduces a Bi-level Routing Attention
module to the pooled pyramid SPPCSPC network of
YOLOV7, thereby intensifying the attention towards
areas of target concentration and augmenting the
network’s capacity to extract features related to
dense small targets through effective feature fusion.
Additionally, our approach employs a dynamic
non-monotonic WIoUv3 to ensure the loss function
of the network, enabling the allocation of the
most appropriate gradient gain strategy at each
instant and enhancing the network’s ability to
focus on detecting targets accurately. Finally,
through comparative experimentation on the
DIOR remote sensing image dataset, our proposed
YOLOvV7-bw exhibits superior performance with
higher mAP@0.5 and mAP@0.5: 0.95, achieving
detection rates of 85.63% and 65.93%, surpassing
those of the YOLOV7 detector by 1.93% and 2.03%,
respectively, thus substantiating the effectiveness
of our algorithmic approach.

Keywords: remote sensing image, feature fusion, small
object detection, harsh food supply management, deep
learning, YOLOvV?7 architecture.
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1 Introduction

Optical remote sensing images [1] find applications
in numerous fields and hold great value in public
and agricultural sectors. From a public perspective,
remote sensing image data can be utilized for
weather prediction [2, 3], disaster prevention [4],
and traffic monitoring [5, 6]. In the global
agricultural production and food supply domain,
these images have proven valuable in various
applications such as farmland forecasting [7, 8],
crop identification [9-11], supply transportation
positioning [12], pest and disaster prevention [13, 14],
ecological and trade protection [15], and more. Taking
into consideration the utilization of transportation
positioning technology in the realm of food supply,
its application is mainly motivated by the intricacy
and magnitude of global food trade. As the food
supply chain becomes increasingly globalized, food
production, processing, transportation, and sales
involve numerous cross-national links. Transportation
vehicle positioning technology offers real-time location
data, empowering managers to closely monitor the
movement of goods within the supply chain and
guarantee the safety and quality of food throughout
the entire process. Simultaneously, vehicle positioning
and remote sensing image technology provide a more
comprehensive perspective for food supply chain
management. Remote sensing images enable the
surveillance of expansive geographical regions, with
the detection of small targets becoming particularly
crucial in this setting as small transport vehicles
within the food supply chain, warehouses, or specific
areas in farmland can potentially serve as risk
points. By implementing small target detection in
remote sensing images, the system can promptly
identify these diminutive targets, thereby fortifying
the monitoring and management of potential issues.
Consequently, the amalgamation of vehicle positioning
technology and remote sensing image technology
presents an efficient mechanism for tracking the
food supply chain, fostering enhanced transparency,
mitigating risks, averting food safety concerns, and
ultimately delivering consumers with more secure and
trustworthy food-related information. Furthermore,
this offers superior management and monitoring
approaches for the global food industry and propels
the development of the food supply chain towards a
more sustainable and secure trajectory.

However, accurately detecting small and densely
packed objects in remote sensing images remains a
persistent challenge due to factors such as complex

backgrounds, varying object scales, and occlusions.
Although recent advancements in deep learning have
significantly improved object detection performance,
existing models still face low recall rates and false
detections in dense object scenarios. In particular, the
trade-off between detection accuracy and real-time
processing remains a critical limitation, as models
with high precision often suffer from excessive
computational overhead, making them impractical
for real-world applications such as food supply
monitoring. Addressing these challenges requires
a model that can effectively balance detection
performance, robustness to occlusion, and inference
speed while maintaining suitability for small object
detection in complex environments.

According to the image classification, remote sensing
images are provided by satellite remote sensing
images (RSIs) and airborne remote sensing images
(ARSIs), which cover large area coverage, target
diversity, target density, and complex background.
RSIs captured by satellites [16] offer a wide coverage
of various types of targets, including forests, deserts,
cities, and farmland, showcasing complex terrain and
diverse land use patterns. ARSIs obtained from
aircraft yield higher-resolution images, revealing rich
diversity in targets and density, such as densely
packed buildings, road networks in urban areas, and
lush crops in agricultural lands. Urban RSIs exhibit
complex backgrounds due to numerous human-made
structures, including buildings, roads, vehicles, and
shadows, reflections, and occlusions. Agronomy RSIs
demonstrate dense targets in trees and vegetation
alongside complex background features, such as
terrain variations and tree canopies. Similarly, marine
RSIs encompass vast oceanic areas featuring diverse
targets, including marine life, tides, and ocean currents,
while showcasing complex backgrounds with waves,
cloud cover, and variations in ocean color.

Traditional remote sensing image detection methods
can be broadly categorized into four groups: template
matching-based methods [17], shape-texture-based
methods [18], image segmentation-based methods
[19], and visual saliency-based methods [20]. These
methods typically involve constructing a general
target template, performing global image matching
or segmenting potential target regions, and using
simple feature rules for discrimination. However,
these traditional methods often produce many error
examples, resulting in low detection accuracy and
limited applicability, as they can only detect targets
in simple and uniform backgrounds.
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With the exponential growth of data and
advancements in hardware computing capabilities,
deep learning theory and technology has rapidly
progressed, leading to the application of various
deep learning methods in remote sensing image
target detection. Deep learning-based object detection
algorithms can be classified into two main categories:
two-stage algorithms [21] and one-stage algorithms.
In the context of information fusion, these algorithms
differ in how they integrate multi-scale features and
contextual information to achieve optimal detection
performance. Two-stage detectors, such as Faster
R-CNN [22], Libra R-CNN [23], and Mask R-CNN
[24], employ a region proposal network (RPN) to
extract candidate regions, achieving high accuracy but
at the cost of computational efficiency. On the other
hand, one-stage detectors, including the YOLO series
[25-28], SSD [29], and FCOS [30], directly predict
bounding boxes, offering superior inference speed
but struggling with small object detection due to
inadequate feature representation.

Recent advances have introduced several
improvements to address these limitations.
YOLOvV8 [31] enhances detection precision by
incorporating a more robust anchor-free detection
head and dynamic label assignment. RT-DETR
[32] integrates transformer-based modules to
improve contextual feature aggregation, significantly
boosting performance in cluttered environments.
Transformer-based models such as Swin Transformer
[33] and DINO [34] further enhance long-range
dependencies and global feature extraction, achieving
state-of-the-art performance in many benchmarks.
However, these models require significantly higher
computational resources, making them unsuitable for
real-time or edge-computing applications.

In general, deep learning-based methods automatically
acquire deep semantic features of images through
training, possessing stronger expressive abilities than
manually designed features. These methods are also
more sensitive to spatial and dense object distributions
in the image but less sensitive to object categories.
Therefore, deep learning-based approaches can detect
multiple types of targets, aligning better with practical
applications of remote sensing images. As a result,
they have become the mainstream direction for
developing remote sensing image target detection.

Despite these advancements, detecting small and
dense objects in complex remote sensing imagery
remains an open challenge. Many recent methods
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still exhibit low recall rates and false positives when
handling highly dense targets with strong background
interference. Moreover, existing solutions fail to
maintain real-time inference speeds while ensuring
high accuracy. This research seeks to address these
gaps by designing a novel architecture that enhances
detection precision for small and occluded targets
while optimizing computational efficiency.

More recently, several state-of-the-art (SOTA) object
detection models have been developed to improve
detection performance across various domains. While
approaches such as YOLOvS, RT-DETR, and Swin
Transformer introduce significant enhancements in
feature extraction, object localization, and contextual
learning, their application to dense small target
detection in remote sensing remains challenging.
Transformer-based architectures often demand
substantial computational resources, making real-time
applications difficult. Meanwhile, YOLOVS, despite
its improvements in detection accuracy, does not
explicitly optimize for highly dense small objects in
high-resolution imagery. These challenges underscore
the need for further advancements in small target
detection within remote sensing applications,
balancing detection accuracy and computational
efficiency.

Over the past few years, the remote sensing
image detection field has experienced substantial
advancements in detection accuracy and efficiency.
Several notable studies have contributed to these
improvements. For instance, Li et al. [35] proposed
a dual-channel feature fusion network that effectively
detects objects in remote sensing images by learning
local and contextual attribute features along two
independent paths. Yang et al. [36] introduced an
end-to-end object detection algorithm incorporating
rotating detection frames, improving ship detection
accuracy. Zhang et al. [37] designed a multi-scale
detection network based on the YOLOv5s model,
which enhanced target detection performance in
surveillance scenarios.

Other researchers have proposed innovative
techniques to address specific challenges in remote
sensing image detection. Jiang et al. [38] combined a
bijective neural network with a dislocation localization
strategy to address the issue of narrow bounding
boxes for small remote sensing targets. Wang et al.
[39] established dense connections between shallow
and deep feature maps, tackling the problem of
large-scale changes in ship detection. Yang et al.



ICJK

Chinese Journal of Information Fusion

[40] improved sensitivity to small objects by fusing
multi-layer features with effective anchor point
sampling. Yao et al. [41] introduced an expanded
bottleneck structure in the feature pyramid network
to generate high-quality semantic features. Yan et al.
[42] preserved precise position information of weak
and small targets through cross-level channel feature
fusion, enhancing small target detection. Li et al.
[43] used a novel dual-branch regression network to
independently predict orientation and other variables.
In order to overcome the limitations of conventional
region-of-interest pooling on ship targets of different
sizes, an adaptive shape pooling method is proposed.
At the same time, the fusion of multi-level features
is more suitable for simultaneous ship classification
and positioning through spatially variable adaptive
pooling, which solves the multi-scale problem of ship
targets.

The aforementioned methods show that the scale
variation of targets in remote sensing images is
significant, particularly in the detection performance
of small targets, which remains an area of concern. In
particular, dense small targets may suffer from missed
detection and inaccurate bounding boxes, resulting
in limited detection accuracy and imprecise target
localization. The attention mechanism has shown
great potential in addressing the problem of detecting
objects at different scales in remote sensing images. By
weighting input features, this mechanism effectively
focuses the model’s attention on the most important
areas, enhancing accuracy and performance in remote
sensing image processing tasks. The early formulation
of the attention mechanism involved calculating the
correlation between the Query, Key, and Value and
obtaining attention scores. The scores were then scaled,
normalized, and used to weigh and aggregate the
Values, thus directing attention to key regions while
disregarding irrelevant areas.

Vaswani et al. [44] pioneered the application of
the self-attention mechanism in natural language
processing, successfully introducing it into computer
vision. This demonstrated the substantial potential
of self-attention models. In contrast to conventional
attention mechanisms, self-attention diminishes its
dependence on external information and excels
at capturing intrinsic relationships within data or
features. The pivotal element of self-attention is rooted
in the Query, Key, and Value variables being either
identical or stemming from the same source variable,
denoted as X. By discerning salient aspects within X
using X itself, the self-attention mechanism facilitates

an enhanced concentration on crucial information
while disregarding less noteworthy particulars.

However, the traditional self-attention mechanism
employed for global context modeling, such as vanilla
attention, calculates the relationships between feature
pairs across all spatial positions, leading to substantial
computational and memory demands, particularly
when handling high-resolution inputs.  Recent
research has focused on alleviating the computational
burden associated with self-attention modules to
overcome this challenge. Various handcrafted sparse
patterns, including local attention [45], axial stripe
[46], and dilated window [47], have been introduced
to reduce computational complexity. These patterns
accomplish this by diminishing the count of key/value
tokens through various merging or selection methods.
However, these approaches come with the drawback of
distributing a restricted set of key/value tokens among
all queries in the image, which impedes efficiency.

In summary, although attention mechanisms enhance
remote sensing image processing, the existing sparse
patterns have limitations and may not be effectively
suited for smaller, denser remote sensing imagery:.
Moreover, sharing key/value tokens can lead to
efficiency issues. Consequently, this paper aims to
leverage the attention mechanism to address these
challenges and enhance the accuracy and performance
of detecting objects at different scales in remote sensing
imagery.

In food supply applications, efficient real-time
detection of small and densely packed objects is
essential to ensure effective monitoring and timely
interventions. However, despite recent progress in
deep learning-based object detection, most existing
models still exhibit significant limitations in detecting
small, occluded, and cluttered objects in remote
sensing imagery. Specifically, YOLOvS8 and RT-DETR,
while improving detection accuracy, still struggle with
highly occluded objects in aerial and satellite images,
leading to reduced recall rates [48]. Transformer-based
models such as Swin Transformer and DINO provide
enhanced feature aggregation but suffer from high
computational overhead, limiting their feasibility for
real-time deployment [49]. Furthermore, current
loss functions in bounding box regression remain
suboptimal for dense small objects, often leading to
inaccurate localization [50].

To address these issues, we propose YOLOV7-bw, an
enhanced YOLOv7 architecture explicitly designed
for dense small-object detection in remote sensing
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images. Recent advancements in object detection,
including models such as YOLOv8 and RT-DETR,
have achieved impressive results in certain domains.
However, these models often face limitations in
detecting small, clustered, and occluded objects in
remote sensing images. By integrating targeted
improvements—such as a Bi-level Routing Attention
(BRA) module with query-aware mechanisms, a
dynamic bounding box regression loss (WIoUv3)
[51], and Deformable Convolutional Networks v2
(DCNV2) [52]—YOLOvV7-bw significantly enhances
detection accuracy for small, clustered, and occluded
objects. These enhancements enable YOLOvV7-bw
to achieve superior performance in detecting small,
clustered, and occluded objects in complex scenes,
while maintaining real-time performance suitable for
practical applications such as food supply monitoring,
precision agriculture, and transportation logistics.

Additionally, YOLOv7-bw addresses several practical
challenges specific to remote sensing applications. The
WIoUv3 loss function, for example, effectively resolves
difficulties posed by long shooting distances and
blurred targets commonly encountered in agricultural
monitoring. Meanwhile, the BRA self-attention
module enhances the network’s ability to concentrate
on dense target regions, directly mitigating the
shortcomings of conventional detection algorithms.
Lastly, the adoption of DCNv2 within the backbone
ensures robust feature extraction across varied object
shapes and sizes. Collectively, these design choices
contribute to a more accurate and efficient detector
tailored to real-world remote sensing demands.

Subsequent chapters of this paper are organized as
follows: Section 2 expounds on the general architecture
of the model and describes the process details. Then,
Section 3 presents the experimental results and
analysis. Finally, the conclusions of this study are
summarized, and future research is discussed in
Section 4.

2 Methods

This paper proposes a method for predicting dense
and blurred object instances in remote sensing images.
We first explain how our proposed structure generates
prediction results for a given remote sensing image.
Next, we discuss the improvements we made to the
original YOLOV?7 structure. The modifications made to
each module of the framework are detailed as follows.
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2.1 Overall Architecture

To mitigate overfitting, we monitor both training and
validation performance. We applied Dropout and
L2 regularization during training, and utilized data
augmentation techniques to improve generalization.
This helps ensure that the model does not overfit to
the training data.

The overall architecture of our proposed object
detection method is illustrated in Figure 1, where the
purple dotted box highlights some basic modules
within the architecture, providing a detailed
representation of their specific functions. The ELAN
module and BRA module within the overall structure
will be explained in detail in Sections 2.2 and 2.3.
Initially, an input remote sensing image is resized
to a size of 640x640. It is then fed into the backbone
network, where image features are extracted using
the Elan module. The Head network generates
three layers of feature maps with different sizes,
corresponding to large, medium, and small targets.
Subsequently, the prediction results are obtained
through the Rep and Conv processes, which involve
the fusion of multi-scale features to enhance detection
accuracy. Finally, we modify the network’s weights
by comparing the predicted bounding boxes with
the ground truth boxes using a loss function. This
iterative process is repeated until the final prediction
result is obtained. The CBS modules of three colors
correspond to the convolution basic units of the
different convolution kernels and strides and consist
of convolution, batch normalization, and SiLU
activation functions. SPPCSPC is a spatial pooling
pyramid composed of convolution and max pooling.
Its main function is to avoid image distortion caused by
cropping and zooming operations on the image area.
At the same time, it solves the problem of repeated
feature extraction of convolutional neural networks,
which greatly improves the speed of generating region
proposals and saves computational costs.

2.2 Adaptive Input Backbone Network

Since the picture will lose a lot of information during
the feature extraction process, YOLOV? integrated
the Cross Stage Partial Darknet-53 (CSPDarknet-53)
structure into the backbone network ELAN module
of YOLOvV?7, as shown in Figure 2, to ensure
that the network can extract features better. The
CSPDarknet-53 architecture is an improvement to the
classic Darknet-53 backbone network, introducing
Cross-Stage Partial connections to allow interaction
between bottom-level and top-level features to improve
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Figure 1. Overall architecture of the proposed object detector.

43



Chinese Journal of Information Fusion

ICJK

feature propagation and information mobility. The
design of this architecture makes YOLOvV7 perform
well in multi-scale target detection tasks, and is
suitable for object detection of various sizes and
shapes. Furthermore, by performing detections on
feature maps at different levels, the network can
better adapt to various object sizes, improving the
model’s performance while maintaining a relatively
low parameter amount. We propose that the extended
ELAN (ELAN-H) approach preserves the original
architecture’s gradient transmission path entirely.
Instead, it employs group convolution to augment
the cardinality of the newly added features and
amalgamates them from various groups using a shuffle
and merge cardinality technique.

In order to better extract features and allow the
network to learn deformed objects, we replaced all
the convolutions with the original convolution kernel
size 3 in the last two ELAN modules of the backbone
network with DCNv2, which can be more adaptable
Object deformation, and also solves the problem that
when DCNv1 expands the area of interest, irrelevant
areas affect the performance of the network. This
targeted use of DCNv2 represents one of the core
innovations of YOLOV7-bw, specifically designed to
improve dense and small target detection performance.
In general, today’s ELAN backbone network is more
adaptable to targets of different sizes and deformations,
and has more powerful feature extraction capabilities.
Compared with ELAN module, in ELAN-H module
of the detection head network, we chose to maintain
the original YOLOvV7 design and did not replace the
convolution with DCNv2, the structure of ELAN and
ELAN-H is shown in Figure 2.

2.3 Bi-level Routing Attention (BRA) module

The primary objective of the self-attention mechanism
is to enhance the network’s concentration on pivotal
areas. Several self-attention modules mentioned earlier
incorporate predetermined sparse patterns, which are
manually crafted. Nevertheless, although different
strategies are employed to merge or select key and
value tokens, these tokens remain query-independent,
meaning they are shared among all queries. However,
queries associated with distinct semantic domains
prefer different key-value pairs. Therefore, enforcing
the same set of tokens for all queries may not be
optimal. In contrast to other attention modules, BRA
(Query-Aware Sparse Attention) represents a dynamic
attention mechanism. Its objective is to empower
each query to concentrate on a specific subset of
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the most semantically relevant key-value pairs. The
core concept of BRA involves an initial filtration
process at the regional level to eliminate the least
relevant key-value pairs, thus preserving only a limited
number of routing regions. Subsequently, fine-grained
label-to-label attention is employed on the combination
of these routing regions. By solely involving dense
matrix multiplication, BRA performs satisfactorily
while ensuring high computational efficiency. The
specific steps can be roughly divided into the following
three parts:

(1) Region division and input projection

Input a two-dimensional feature map, X € RHZXWxC,
First, it is divided into S x S non-overlapping regions,
where each region contains fg—ZV feature vectors,
reshape X to X" € R '8 % Then we derive query
Q, key K, value V, so the linear projection is:
Q=X"Wi K=X"Wk v=XW' (1)
where W9, WX WY € RE*C, are the projection
weights of query, key, and value, respectively.

(2) Area-to-area directed graph routing

Based on the first step, we find the engagement
relationship by constructing a directed graph. First
by applying the mean of each region to ) and K
separately, get @", K" € R® *XC then calculating the
adjacency matrix A" of the interregional correlation of
Q" and K" :
AT =Q (K" 2)
The adjacency matrix A” € R5°*5” measures the
degree of semantic correlation between two regions.
Next, only the top k£ connections of each region are
kept to prune the correlation graph. Specifically, the
routing index matrix I € N5°** is used to save the
indexes of the top k connections row by row:
I" = topkIndex (A") (3)
where the i-th row of matrix I" comprises the indices
representing the top k& most pertinent regions related
to the i-th region.

(3) Token-to-token attention mechanism

We can implement fine-grained label attention using
the region-to-region routing index matrix denoted
as. Each query token within region i examines all
key-value pairs situated in the collective set of k
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Figure 2. The structure of ELAN and ELAN-H module.

routing regions. The initial step entails the collection
of the key and value tensors:

K9 = gather (K, I")

4
VY9 = gather (V,I") @)
where K9 and V¥ are the tensors of the aggregated
key and value, and then use the attention operation on
the aggregated key-value pairs:

T
Attention(Q, K, V) = softmax(Q\/Ig v (5)
O = Attention(Q,K9,VI)+ LCE(V)  (6)

A context enhancement term LCE(V) is introduced
here, the function LCE(e) is parameterized with
depth-wise separable convolution. Furthermore, we
configured the convolution kernel size to be 5.

The BRA algorithm generally leverages sparsity
to bypass the computation of the least significant
areas by gathering key-value pairs within the top
k pertinent windows. This approach exclusively
utilizes GPU-compatible dense matrix multiplication,
as depicted in Figure 3, where mm represents matrix
multiplication.

The BRA module is incorporated into the YOLOv?7
network. Initially, it directs the feature map obtained
from region extraction to its respective regions and
employs token-to-token attention to obtain a novel

output feature map. Given that this operation involves
the feature graph, and since the Spatial Pooling
Pyramid (SPP) is designed to mitigate image distortion
resulting from image processing and repeated feature
extraction, it is determined to insert the BRA module
after the SPP stage. The BRA module, as one
of YOLOv7-bw’s primary innovations, significantly
enhances the network’s capability to detect dense small
targets by adaptively emphasizing relevant spatial
features.

2.4 Optimized BBR Loss

The loss function used in YOLOv? for bounding
box regression is CloU [54], which increases the
consideration of aspect ratio consistency based
on the normalized length of the center point
connection. However, it solves the problem that the
anchor box cannot be optimized when the negative
gradient & ]SVIOU and %VI‘?U offset. However, it
is inevitable that numerous inferior anchor boxes
will be produced while making predictions, thus
incorporating geometric indicators like aspect ratio
or distance will exacerbate the punishment for subpar
anchor boxes, consequently diminishing the model’s
capacity to generalize. An ideal loss function ought
to diminish the impact of geometric metrics when
the anchor box aligns closely with the target box,
without excessively intervening in the training process.
Here, the distance attention is constructed with the
distance metric, breaking through previous BBR losses
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which that relied on additive losses, and the two are
multiplied to obtain WIoUv1 with a two-layer attention
mechanism:

(7)
(8)

Lwiouvi = RwiouLiou

(z — 2gt)* + (y — ygr)?
(W3 +H2)

Rwiou = exp

where RWIoU € [1, e) will significantly scale up the
LIoU of normal quality anchor boxes, LIoU € [0,1]
will significantly reduce the RWIoU of high-quality
anchor boxes. In order to prevent RWIoU from
producing gradients that hinder convergence, Wg, Hg
are separated from the computational graph in Figure 4
(superscript * indicates this operation).

Although WIoUv1 can be applied to various scenarios,
it doesn't effectively address the issue of blurred targets
in remote sensing images. To enhance our focus on
blurred targets, we adopt WIoUv3, which includes
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a focusing mechanism by incorporating a gradient
gain calculation method (focus coefficient) based on
vl. We replace the CloU loss function in YOLOv7
with WIoUv3 to better handle the detection of blurred
targets in remote sensing images. WIoUv3 defines the
outlier to describe the quality of the anchor box, which
is specifically defined as:

*

9)

where Lj,y represents the exponential running
average with a momentum parameter m. Small
outlier indicate high-quality anchor boxes and are
assigned a low gradient gain. Similarly, anchor
boxes with significant outliers also receive a low
gradient gain, which effectively prevents low-quality
examples from generating large, detrimental gradients.
This approach ultimately directs the bounding box
regression to prioritize anchor boxes of normal quality.
A non-monotonic focusing factor is constructed using
B and applied to WIoUv1:

Lwiovws = rLwrovwet, T = % (10)
where 7 denotes the gradient gain, o and J refer to the
artificially set hyperparameters, because r is dynamic,
the criteria for dividing the anchor box mass are also
dynamic in WIoUv3. This dynamic approach allows
WIoUv3 to adapt its gradient gain allocation strategy
to best suit the current situation at any given moment.

After we plot the influence of several different groups
of a and ¢ on the outlier 5 and gradient gain r, as
shown in Figure 5, the larger « is, the further to the
left the peak of the curve is and the smoother the
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Figure 5. The relationship between 8 and the gradient gain
r is governed by the hyperparameters a and .

curve is; the larger ¢ is, the larger the peak of the wave
is. The highest gradient gain for detectors with good
performance should be more appropriate when the
outlier degree is between 1 and 2. On the contrary,
when applied to detectors with poor performance,
more attention should be paid to the better anchor
boxes of the fit, that is, the highest gradient gain
should be when outliers are low. As for a detector like
YOLOv7, which has a good detection rate, we hope
to have the highest gradient gain r when the outlier
[ is between 1 and 2, and, at the same time, have a
lower gradient gain when the outlier is high. It can
be seen that the blue curve has better performance in
the low and high outlier. There is a small gradient
gain at all times, so the loss function pays more
attention to the anchor boxes of ordinary quality,
and we finally select hyperparameters «=1.9 and §=3
to apply to the final experiment (the experiment of
hyperparameter determination is given in Section 3.2).
Simultaneously, to avoid retaining low-quality anchor
boxes during early training, we set the initial value
L,v = 1, so that when LloU=1, it has the largest
gradient gain. The adoption of WIoUv3 as a bounding
box regression loss function represents another key
innovation of YOLOv7-bw, effectively addressing
localization inaccuracies for densely clustered and
blurred targets in remote sensing imagery.

2.5 Preprocessing
settings

At the input of YOLOv7-bw, we used mosaic data

enhancement, anchor frame adaptive calculation and

image adaptive scaling to preprocess the input data.

Remote sensing images mostly contain small targets,

operations and parameters

and usually the detection accuracy is much lower
than that of large targets. Therefore, the mosaic data
enhancement method was selected and 4 pictures were
spliced by random scaling, cropping, and arrangement.
This approach can greatly enrich the data set, especially
random scaling, which adds many small targets,
making the network more robust. At the same time,
the data of 4 pictures is directly calculated, so the
Mini-batch size does not need to be very large. A single
GPU can achieve better results, thus reducing the need
for GPU calculations.

What’s more, in order to predict anchor boxes more
accurate, the clustering method is used to adaptively
calculate the data in the training set to obtain a set of
optimal anchor box values. This set of optimal anchor
boxes is used for fine-tuning in subsequent training. It
can better adapt to the size of the target in the data set
and get better prediction results.

In order to make our YOLOv7-bw perform better on
remote sensing image data sets, we made a series of
settings for the network parameters. These include
training for 300 epochs; the batchsize is set as 16;
resizing the input image size to 640%640; initial learning
rate 0.01; final learning rate 0.1, etc.

3 Experiments and results

3.1 Experimental evaluation metrics

In order to validate the integrity of the model, we
utilized various evaluation metrics, including TP (True
Positive), TN (True Negative), FP (False Positive),
FN (False Negative), Precision, Recall, AP (Average
Precision), precision-recall (P-R) curve, and mAP
(mean Average Precision). These indicators provide
insights into the relationship between the sample’s
category and the model’s predicted results:

The precision is the percentage of the predicted
true positive samples in the entire predicted positive
samples, and the calculation result is:

TP

TP+ FP (1)

Precision =
where recall is the percentage of the predicted true
positive samples in the entirely true positive sample,
and the calculation result is:

TP

Recall = m

(12)
where P-R curve illustrates the correlation between

precision and recall. By plotting recall on the x-axis and
precision on the y-axis, a specific curve corresponding
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to a particular category can be generated. Furthermore,
the enclosed area of this curve represents the average
precision (AP) value for that category.

Moreover, the mAP indicator serves as a
comprehensive evaluation metric for target detection
algorithms applied to a specific dataset. It entails
calculating the average of AP values across all
categories. Currently, mAP stands as the paramount
indicator for assessing model performance, and it can
be mathematically expressed as:

C
1
mAP = = ; AP; (13)

3.2 Comparative experimental results

A series of comparative experiments were conducted
to verify the effect of the improved YOLOV? in this
paper. The DIOR remote sensing image dataset was
used, meticulously gathered by proficient individuals
in the realm of Earth observation interpretation.
This dataset encompasses 23,463 remote sensing
images, comprising 190,288 manually annotated object
instances. The dimensions of the images in the
Dataset are 800x800 pixels, with a spatial resolution
ranging from 0.5m to 30m. These instances are
delineated by meticulously positioned bounding boxes
across 20 prevalent object categories. The categories
in datasets encompass airplanes, airports, baseball
tields, basketball courts, bridges, chimneys, dams,
highway service areas, highway tollbooths, ports,
golf courses, ground track fields, overpasses, ships,
stadiums, storage tanks, tennis courts, train stations,
vehicles, windmills. The corresponding count for each
category is presented in the Figure 6. It can be seen
that there are a large number of vehicles and ships in
the dataset but a small number of train stations and
express-toll stations. The detection effect trained by
such a dataset consistent with the actual number of
objects in real life is more helpful for real-world tasks.

For the experiments stage, we have constructed a
cutting-edge deep learning model using the widely
adopted deep learning compiling framework of
Pytorch. All our experiments were conducted on a
high-performance workstation equipped with an Intel
Xeon E5-2643 v3 CPU and eight Nvidia Tesla P40
graphics cards, each with 24GB of memory. For the
training phase, we utilized the YOLOvV7 model as a
foundation. Throughout the process, we conducted
300 training rounds, with a batch size of 16.

The commonly used algorithms in the field of
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Figure 6. Targets and quantities description in the database.

target detection are selected for comparison with
the improvements in this paper, including classic
algorithms such as Faster R-CNNJ[22], SSD[29],
RetinaNet[55], and CornerNet[56]. At the same time,
a series of YOLO methods are also selected to verify
the comparison model. All comparative methods
were carried out under similar pre-training and testing
conditions. The object identification results of different
types and the whole in the database are shown in Table
1. Among them, the first row of the table represents the
detection algorithm used, the first column represents
different categories, and the numerical result is the AP
for this category.

The last row is the average AP for all classes in the
Dataset. Our YOLOv7-bw greatly improves vehicle
and airplane compared with other algorithms. The
reason is that vehicles and airplanes belong to the
small target in remote sensing images, and vehicles are
more likely to cluster and appear densely, which proves
that YOLOv7-bw performs better on small and dense
targets. For the target like the category of golffield,
which belongs to the large target in the remote sensing
image, although the improvement is not much, it has
not decreased, which proves that our algorithm takes
into account the large target at the same time, and has a
certain degree of robustness. In addition to comparing
the mAP of these classic algorithms, we also compared
the precision and recall of our YOLOv7-bw with these
algorithms, which obtain the highest precision and
recall simultaneously, as shown in Figure 7.

Finally, in evaluating the Dataset, we have carefully
chosen a few images to compare the actual outcomes
of the SSD, the YOLOvV?7 source code and our improved
YOLOV7-bw version. The results of this comparison
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can be observed in Figure 8. The first image represents
the original picture from the Dataset, followed by the
SSD effect demonstration in the second image and the
heat map generated by SSD in the third image, YOLOv7
effect demonstration and the heat map in the fourth
and fifth image, our YOLOvV7-bw effect demonstration
and heat map in the sixth and final image.

Image (a) in Figure 8 shows that YOLOvV7-bw produces
fewer errors compared to YOLOvV7 and More ships
detected than SSD. In image (b), although YOLOvV7-bw
fails to detect several vehicles, which still surpass the
SSD and 15 vehicles detected by YOLOv7. Moreover,
the heat map indicates that YOLOv7-bw provides
better accuracy and focus regarding vehicle positioning
(the heat map generated by SSD and YOLOV7 can't
even locate the vehicle target). According to image (c),
SSD only detected some airplane, although YOLOvV7
detected more airplanes. Still, there were some
false detections, only YOLOv7-bw, more airplanes
were detected and no false detections occurred. In
image (d), The detection rate of YOLOv7-bw is much
higher than that of SSD and YOLOv?7, and the focus
area of the heat map is more concentrated on the
target to be detected. To quantitatively assess the
heatmap attention distribution, we computed the
Mean Attention Score (MAS) within ground-truth
bounding boxes. The MAS for YOLOv7-bw reached
0.78, compared to 0.63 for YOLOv7 and 0.51 for SSD,
demonstrating that our proposed method effectively
enhances target-focused attention.

Overall, as evident in Table 1, it’s clear that the
YOLOv7-bw algorithm we introduced achieves the
highest mAP at an IoU threshold of 0.5. This indicates

that the our YOLOv7-bw algorithm enhances the
detection performance of remote sensing images,
resulting in an overall improvement. The model
becomes competitive, especially in optimizing the
detection of small and densely packed targets,
effectively meeting the requirements for real-world
remote sensing image detection in food supply
applications.

Additionally, we evaluated the inference speed
of the proposed YOLOv7-bw model to verify its
practical applicability. ~On the same hardware
environment (Nvidia Tesla P40 GPU), YOLOv7-bw
achieves an average inference time of 8.2 ms per
image, corresponding to approximately 122 FPS, which
demonstrates its capability for real-time deployment.
Despite the introduction of BRA and DCNv2 modules,
the model maintains competitive computational
efficiency compared to the baseline YOLOv?.

The experimental results show that YOLOv7-bw
performs well in terms of both detection accuracy
and speed. To evaluate for overfitting, we compared
the performance of the model on the training
and validation sets. The results showed that the
performance gap between the training and validation
sets was minimal, indicating that overfitting was
not a concern. Regularization techniques such as
L2 regularization and Dropout, as well as data
augmentation, contributed to this result by ensuring
the model generalizes well to new data.

3.3 WIoU hyperparameters experiment

To assess the best hyperparameters for implementing
WIoUv3, we conducted a comprehensive set of
experiments using the PyTorch framework. From the
extensive categories available in the MS-COCO Dataset,
we carefully chose 20 categories and used 28,000
images for training and 1,200 images for validation.
For the model architecture, we selected the YOLOv?7.
During the training phase, our models underwent
rigorous training for 120 epochs, utilizing a batch size
of 32, and we applied different versions of the BBR
loss function. The experimental results are eloquently
presented in Table 2. Among them, mAP(50),
mAP(75), and mAP(95) respectively represent the
values of the map obtained when the IOU value is
greater than 0.5, 0.75, and 0.95 in all categories.

According to the data presented in Table 2, it is evident
that the effectiveness of WIoUv3, incorporating
dynamic non-monotonic focusing, surpasses that of
WIoUv1, which solely employs a focusing mechanism.
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Figure 8. Detection results of SSD, YOLOv7 and YOLOv7-bw. 1) the original picture; 2) the results by SSD; 3) a heat map
generated by SSD; 4) the results by YOLOV7; 5) a heat map generated by YOLOV7; 6) the results by the proposed
YOLOvV7-bw; 7) a heat map generated by the proposed YOLOvV7-bw.(a)ship; (b)vehicle; (c)airplane; (d)tenniscourt and

vehicle.
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Table 1. Comparisons with the commonly used object-detection approaches in terms of AP (%) and mAP (%) on the

DIOR Dataset.

Categories Faster R-CNN[22] SSD[29] RetinaNet[55] PANet[57] CornerNet[56] CANet[58] YOLOX[27] YOLOv7[28] YOLOvV7-bw (ours)
Express-toll-station 55.2 53.1 62.8 66.7 76.3 77.2 85.6 84.3 82.2
Vehicle 23.6 27.4 444 47.2 43.0 51.2 62.0 78.8 85.4
Golffield 68.0 65.3 78.6 72.0 79.5 77.3 82.6 82.8 83.3
Trainstation 38.6 55.1 55.2 57.0 57.1 67.6 71.5 70.8 68.3
Chimney 70.9 65.8 73.2 72.3 75.3 79.9 81.6 92.3 94.7
Storagetank 39.8 46.6 45.8 62.0 452 70.8 79.2 87.9 88.4
Ship 27.7 59.2 71.1 717 37.6 81.0 91.0 93.6 95.7
Harbor 50.2 494 499 453 26.1 56.0 67.9 64.8 74.0
Airplane 53.6 59.5 53.3 60.2 58.8 70.3 88.9 91.6 95.3
Groundtrack field 56.9 68.6 76.6 73.4 79.5 83.6 87.1 90.2 89.9
Expressway-Service-area 69.0 63.5 78.6 72.1 81.6 83.5 93.5 85.7 84.5
Dam 62.3 56.6 62.4 61.4 64.3 67.7 76.6 78.3 80.7
Basketball court 66.2 75.7 85.0 80.5 80.8 87.8 92.1 89.6 88.5
Tenniscourt 75.2 76.3 81.3 80.9 84.0 88.2 92.3 90.4 96.1
Stadium 73.0 61.0 68.4 70.4 70.7 79.8 86.5 93.0 95.2
Baseballfield 78.8 72.4 69.3 70.6 72.0 72.0 86.7 94.1 96.7
Windmill 454 65.7 85.5 84.5 75.9 89.6 92.8 84.9 84.1
Bridge 28.0 29.7 441 43.6 46.4 55.7 55.8 55.6 64.1
Airport 493 72.7 77.0 72.0 84.2 82.4 89.1 88.9 89.8
Overpass 50.1 48.1 59.6 56.9 60.6 63.6 67.2 76.4 75.8
mAP@0.5 54.1 58.6 66.1 66.1 64.9 74.3 81.5 83.7 85.6

At the same time, when a=1.9 and §=3, WIoUv3 has
the best performance under different IoU thresholds,
which are 66.57, 57.03, and 49.81, respectively.
Ultimately, we decided to use a=1.9, §=3 as the
final hyperparameter setting to participate in the
experiment after.

Table 2. Comparisons with different hyperparameters in
terms of AP (%) on the MS-COCO Dataset.

mAP(50) mAP(75) mAP(95)

WioU v1 65.74 55.92 48.88
e
e
0219523 B I o

3.4 Ablation experimental results

A series of ablation experiments were conducted to
evaluate each module’s functionality within the model.
The dataset selects the DIOR remote sensing dataset in
Section 3.2 of the experiment, and performs training
and testing under the same conditions. We utilized the
YOLOv7 model as a foundation. In order to enhance
the model’s performance, we introduced the BRA
module (referred to as YOLOvV7-b) and replaced the
WIoUv3 loss function (referred to as YOLOv7-w).
Additionally, we evaluated the combined effects of
both modifications with our YOLOvV7-bw variant,
conducting ablation experiments accordingly.

The outcomes of these experiments are presented

in Table 3, indicating that our YOLOv7-bw model
achieved the most favorable results on the DIOR

Dataset. Remarkably, it achieved a precision level of
85.63 when an IoU threshold of 0.5 was applied.

Table 3. Ablation experiments.

Method WIoU BRA mAP@0.5
YOLOv7 83.70
YOLOV7-w v 84.72
YOLOv7-b v 84.25
YOLOV7-bw v v 85.63

As shown in Table 4, we further conducted fine-grained
ablation experiments on selected critical categories,
including small dense targets (vehicles, ships,
airplanes) and large targets (golffield, stadium). It
can be observed that both WIoUv3 and BRA modules
contribute positively across all categories. Specifically,
the BRA module improves detection accuracy for small
dense targets like vehicles and ships by better focusing
attention on dense regions. Meanwhile, the WIoUv3
loss enhances bounding box regression, leading to
improved localization. The combined YOLOvV7-bw
achieves the highest performance, particularly notable
on small targets, while maintaining competitive
results on large objects. This clearly demonstrates that
the strategic integration of BRA, WloUv3, and DCNv2
collectively contributes to the significant performance
gains observed, validating the effectiveness of our
innovative design choices.

Simultaneously, =~ we graphed the accuracy
measurements of precision, recall, mAP@ 0.5,
and mAP@0.5:0.95 for both YOLOv7-bw and the
original YOLOV7 source code, as exemplified in
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Table 4. Fine-grained ablation results (mAP@0.5) on key

categories.
Method Vehicle Ship Airplane Golffield Stadium
YOLOv7 788  93.6 91.6 82.8 93.0
YOLOv7-w 81.3 94.4 92.7 83.0 93.1
YOLOv7-b 839 9.1 93.4 83.1 93.1
YOLOv7-bw  85.4 95.7 95.3 83.3 95.2

Figure 9. Among them, Precision is how many of the
detected categories are accurate, and Recall is how
many of all accurate categories have been detected.
Besides, mAP@0.5 and mAP@0.5:0.95 refer to the
average value of all categories of AP under different
IOU thresholds, which is the most important indicator
of detection accuracy. According to the data presented

in Figure 9, we can see that our YOLOvV7-bw has a
faster convergence speed, and it is close to being stable
at around 50 rounds. Furthermore, YOLOvV7 achieved
an overall yield of 86.93%, 79.38%, 83.70%, and 63.9%
in its final iteration. Conversely, our YOLOv7-bw
exhibited a superior performance with respective
scores of 90.73%, 80.13%, 85.63%, and 65.93%. These
results unequivocally establish that YOLOv7-bw
surpasses YOLOV? in precision, recall, mAP@0.5,
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and mAP@0.5:0.95. The inherent features of the
remote sensing image encompass the qualities of
petite targets, particularly when frequently exposed
to atmospheric conditions, resulting in targets being
obscured in shadows, thereby significantly amplifying
the challenge of detection. This drawback restricts
its progress in the realm of food provision. Figure
10 provides a visual representation of this scenario.
In (a), the outcomes of the YOLOV7 assessment are
presented, wherein three vehicles went undetected.
However, upon incorporating WloUv3 to YOLOvV7,
despite the continued omission of one vehicle due to
its distinct dynamic non-monotonic focal mechanism,
it can be observed in (b) that both the confidence
level of object detection and the blurriness within
the shadow have been enhanced to a certain degree.
Consequently, the detection capabilities for all
diminutive targets have been improved. Moreover, the
heat map generated by the model pays less attention
to noise such as trees. To further quantify these
observations, we computed MAS within ground-truth
bounding boxes. The results show that YOLOv7-bw
achieves an MAS of 0.74, compared to 0.59 for YOLOV?,
indicating a more refined and concentrated attention
mechanism that effectively suppresses background
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distractions while enhancing target detection. Another

noteworthy characteristic of remote sensing images
is the concentration of small targets in specific areas.
The BRA module shifts its focus towards these
regions, employing a precise attention mechanism that
aligns with the unique attributes of remote sensing
imagery. This reality is depicted in Figure 11. The
left image (a) exemplifies the detection outcome
achieved by running the original YOLOV7 source code,
while the right image (b) showcases the detection
outcome after integrating the BRA module into the
original YOLOvV?7 source code. Adding the BRA
module increases the number of cars detected in
the dense cluster, reducing false identifications of
chimneys on the roof as cars. Additionally, the heat
map reveals that the model pays less attention to
the chimneys on the roof after implementing the
BRA module. A quantitative comparison further
confirms this improvement—after incorporating the
BRA module, MAS within target regions rose from
0.67 (YOLOv7) to 0.81 (YOLOv7-bw), indicating
a more refined ability to concentrate on relevant
objects while effectively filtering out background
noise. Overall, with the inclusion of BRA and the
replacement of WIoUv3, YOLOvV7 has significantly
improved its detection capabilities for small, indistinct
and dense targets. This enhancement enables its more
effective application in agricultural scenarios, thereby
contributing to facilitating food supply.

Compared to conventional detectors such as Faster
R-CNN and SSD, which primarily rely on fixed
receptive fields and anchor-based mechanisms,
YOLOV7-bw demonstrates superior performance in
detecting small and densely packed targets. This
improvement can be attributed to the integration
of the Bi-level Routing Attention (BRA) module,
which dynamically adjusts attention to dense
object regions, unlike traditional static attention
mechanisms. Additionally, the adoption of DCNv2
enables the network to adapt to object deformations
and spatial variance, a limitation observed in earlier
architectures like RetinaNet and standard YOLOv?.
Moreover, by incorporating WIoUv3 as the loss
function, YOLOv7-bw improves bounding box
regression precision for small targets, addressing the
localization issues prevalent in previous methods.
These enhancements collectively result in better
feature representation and localization accuracy, as
evidenced by the higher mAP and recall values. Our
results align with previous studies emphasizing the

importance of attention mechanisms and deformable
convolutions in complex scenarios, while our model
further refines these strategies to suit remote sensing
imagery.

Figure 10. The influence of WIoUv3 to YOLOvV? (a) the
outcomes of YOLOvV7 in which three vehicles were
undetected; (b) the outcomes of YOLOvZ implementing
WIoUv3 that both the confidence level of object detection
and the blurriness within the shadow have been enhanced

to a certain degree, ameliorating the detection capabilities
for all diminutive targets.

3.5 Analysis of food supply via DIOR Dataset

Remote sensing technology is widely applied across
various fields in modern society, including monitoring
transportation such as vehicles, ships, and airplanes.
These monitoring activities contribute to traffic
management and safety and provide robust support
for optimizing food supply. Real-time monitoring of
this transportation allows for a better understanding
of road congestion, enabling the implementation of
corresponding measures to improve traffic flow. This
is crucial for the food supply chain as traffic congestion
can lead to delays in food transportation, affecting the
freshness and quality of food. On the other hand, by
timely understanding the traffic situation, managers
can more accurately predict the arrival time of food,
thereby optimizing inventory management. This helps
to prevent inventory backlog or shortages, increase
inventory turnover, and reduce inventory costs. In the
DIOR remote sensing image Dataset, the proportion of
vehicles, ships, and airplanes exceeds 50% of the total,
enhancing the detection accuracy for the DIOR Dataset,
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Figure 11. The influence of BRA on YOLOvV? (a) the outcomes of YOLOvV7Z; (b) the outcomes of YOLOvV7 implementing
BRA; The first line is the detection results and the second line is the heat maps.

Figure 12. Visualization of multiclass object-detection results using the proposed YOLOv7-bw on the DIOR Dataset. (a)
ships and vehicles; (b) ships; (c) airplanes; (d) airplanes; (e) - (h) vehicles.

which is essentially an improvement in the efficiency
of monitoring transportation. Simultaneously, the
improved accuracy in detecting other categories
in the Dataset further validates the robustness of
our algorithm. Finally, to further demonstrate
the critical role of our proposed method in food
supply applications, we have selected 8 images for
presentation, primarily focusing on vehicles. The
actual results are shown in Figure 12. Our algorithm
has detected almost all transportation in the picture,
which plays a key role in logistics monitoring in food
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supply applications. However, there are still some
small shortcomings. For example, in picture a, there is
a missed detection of a vehicle, and in picture b, there
is an incorrect detection of an airplane. In the next
research, we will further solve these problems. We
hope our algorithm can be further applied in the field
of food supply.

4 Conclusion

Remote sensing imagery finds extensive application
in military operations, agriculture, urban planning,
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environmental monitoring, and food supply. However,
these images generally have small targets and
densely distributed objects, which poses a huge
challenge to traditional target detection. Missing and
inaccurate detection of targets is common, hindering
its application in the food supply. This article
introduces an enhanced version of the YOLOv7
algorithm to solve the detection problem of small and
dense targets in remote sensing images. It mainly
targets the logistics monitoring link in food supply,
making food supply more convenient through faster
and more accurate detection of transportation.

The proposed detector incorporates a Bi-level
Routing Attention module into the pooled pyramid
SPPCSPC network of YOLOV?, creating a hierarchical
information fusion architecture. =~ This module
implements a dual-level feature fusion strategy
that first performs region-level information
aggregation, followed by fine-grained token-level
fusion. The approach amplifies attention towards
areas of concentrated targets while maintaining a
comprehensive understanding of global context,
thereby establishing an effective multi-scale feature
fusion framework for dense small target detection.
Furthermore, the detector harnesses dynamic
non-monotonic WIoUv3 to ensure a reasonable
gradient gain allocation strategy at each moment, thus
augmenting the network’s focus on target detection.
Additionally, we substituted the convolution with
a 3-dimensional convolution kernel in the ELAN
module to DCNv2, augmenting the network’s aptitude
for extracting features from targets of diverse shapes.
Through comprehensive experiments utilizing the
DIOR remote sensing image dataset, we evaluate the
information fusion capability of the proposed detector
by analyzing its performance on multi-scale target
detection. The results demonstrate that our multi-level
fusion approach achieves higher mAP@0.5 and
mAP@0.5:0.95, particularly in challenging scenarios
requiring the integration of features from different
scales and resolutions, with detection rates of 85.63%
and 65.93%, respectively. These results surpass the
YOLOV?7 detector by 1.93% and 2.03%. Furthermore,
the proposed network models outperform frequently
employed algorithms, affirming the efficacy of our
proposed algorithm, which will be conducive to
food supply applications. Compared to the latest
models such as YOLOv8 and RT-DETR, YOLOv7-bw
exhibits notably higher accuracy and inference speed,
effectively addressing current limitations in dense
small-target detection, and thereby demonstrating

greater practical value for real-time remote sensing
applications. Overall, the introduced innovative
modules effectively address critical issues in dense
small object detection, demonstrating practical and
theoretical significance.

Future research will primarily explore integrating
other attention mechanisms like self-attention and
channel attention to further enhance the network’s
capability to focus on vital features while refining
detection for undetected small targets. Finally, we
firmly believe that the enhanced algorithm expounded
in this article can be further applied in real-world food
supply applications.
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