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Abstract
Few-shot learning aims to recognize new-class
items under the circumstances with a few labeled
support samples. However, many methods may
suffer from poor guidance of limited new-class
samples that are not suitable for being regarded as
class centers. Recent works use word embedding
to enrich the new-class distribution message but
only use simple mapping between visual and
semantic features during training. To solve the
aforementioned problems, we propose a method
that constructs a class relation graph by semantic
meaning as guidance for feature extraction and
fusion, to help the learning of the second-order
relation information, with a light training request.
In addition, we introduce two ways to generate
pseudo prototypes for augmentation to resolve
the lack of representation due to limited samples
in novel classes: 1) A Generation Module(GM)
that trains a small structure to generate visual
features by using word embedding; 2) A Relation
Module(RM) for training-free scenario that uses
class relations in semantics to generate visual
features. Extensive experiments on benchmarks
includingminiImageNet,CIFAR-FS and FC-100 prove
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that our method achieves state-of-the-art results.
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1 Introduction
In recent years, we have witnessed the success of deep
learning in the field of image recognition, but such a
breakthrough depends on a large amount of labeled
data costing significant human labor. In contrast,
humans are capable to master a certain knowledge
with a few samples. Few-shot learning aims to mimic
such an ability to extract class information by only
viewing limited samples, which helps to solve the
problem of large data requirements.

Meta-learning [1, 2] is one of the most popular
methods for few-shot learning. It aims to learn a
model that can extract prototypes for novel classes
from a few data, based on which the test data are
able to be distinguished by their feature similarities.
Oriol et al. [3] introduces two structures for support
and query set to diversely extract the feature
and compare the compound score for classification.
ProtoNet methods [4, 5] use light structures to
extract features and propose to measure the distance
between prototypes and features in a shared metric
space. Meta-Baseline [6] takes advantage of the
base training and episodic training by combining
them into two stages. In a word, These methods
provide several simple and effective baselines with
relatively less computational cost. Despite performing
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well, the proto-based method lacks the ability to
extract high-quality prototypes only from visual
domain, especially when the support sample is not
representative. It is vital to enrich class information
from other aspects.

To enhance the feature representation, semantic
information is introduced during feature extraction [7,
8]. Xing et al. [9] adaptively combines the visual and
semantic features with a learnable factor. KTN [12]
aligns the fully connected node for base classes
from both modals, and obtains new knowledge from
the semantic modal for novel classes. Chen et
al. [11] matches the deepest visual features with
the word embedding and then uses the former
to augment the feature with the nearest neighbor
distance. CVAE [10] proposes a generative-adversarial
structure to generate better auxiliary features. These
methods introduce semantic information into FSL, but
with simple mapping between visual and semantic
features, without digging further messages. Such
mapping may be helpful to some extent, but may not
generate an ideal embedding space, leading to the
limitation of generalization. Attribute methods [13,
14] go further into semantic information, they use
component information of a class to divide visual
features into several segments, each aligning with
attribute embeddings. But they need extra attribute
information labels in datasets for guidance, making
the training cost higher. Compared with these
methods, our proposed method takes class relations
into consideration, which is easy to obtain by using
word embedding.

In our opinion, it is more appropriate to learn
the relationship among classes, rather than only
direct features, since the semantic structure
contains the core embedding information. For
such purpose, we propose a novel FSL method
that establishes a class-relation graph to guide the
feature extraction, hoping the network can learn
second-order relation messages. Specifically, we
design an absolute constraint for direct feature
mapping and a relation constraint for graph mapping
among second-order relations. Furthermore, to
improve feature representation with limited seen
samples, we propose a Generative module and a
Relation module to produce pseudo prototypes for
modifying the support features in few-shot case.
The former bridges word embedding and learned
features to directly generate pseudo features for novel
classes, while the other uses the word correlation
between base and novel classes to incorporate the base

prototypes for generation. The performance of our
model shows state-of-the-art behavior in miniImageNet
and CIFAR-FS, and achieving an improvement of
1.12%–3.8% in FC-100 for 1-shot case compared with
the second-best method. It also has a first-class
performance for 5-shot case. Our main contribution
can be summarized as follows:

1. Using word embedding, we propose an absolute
constraint a relation constraint to produce visual
features with semantic information.

2. We propose a Generative Module and a Relation
Module to produce pseudo features that can refine
prototypes to class centers.

3. Our experiments show that our methods achieve
state-of-the-art performance on three challenging
datasets, miniImageNet, CIFAR-FS and FC-100.

2 Method
2.1 Problem Setup
Following the typical few-shot learning setting, a
dataset contains a base setDb consisting of base classes
Cb, and a novel setDn with novel classes Cn, in which
Cb ∩ Cn = ϕ. Firstly the goal is to train a feature
extractor fθ(·) on base classes. Based on that, a set of
few-shot classification tasks are constructed for novel
class recognition. For a N -way K-shot task, N classes
are randomly chosen from Cn, and a fixed quantity of
samples are equally chosen among each class. After
that, the support set S = {(xi, yi)}N×K

i=0 is constructed
by choosing K labeled samples for each class, while
the rest of the samples are used to construct query set
Q = {(xi, yi)}Mi=0, the aim of few-shot learning is to use
information from S to guide the classification of Q.

2.2 Backbone Training
As the setting in [15], we use a two-branch structure
to train the feature extractor: Apart from keeping the
standard classification architecture, another branch
with a new logistic regression structure is added after
the penultimate layer, which retrieves possible rotation
of each sample. And manifold-mixup [18] method
is included for augmentation to improve the model
robustness.

While the design above has good performance
in regular classification, the embedding space it
constructs lacks semantic relations among classes.
For example, the class ’chair’ and class ’desk’ may
have high semantic similarity in real world, but such
relation may differ in the embedding space. To solve
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the problem, we introduce using word embedding
information to guide the training. The architecture is
shown as Figure 1(a), in which the main structure
consists of: 1) Absolute Constraint, which forces
features to match the corresponding word embedding.
2) Relation Constraint, which forces relations between
class prototypes to match the similarity between
semantic meanings by building a relation graph.

2.2.1 Absolute Constraint
In this section, we hope that the extract features
can directly learn the class representation ability
of word embeddings, thus projecting features into
word embeddings dimension with a simple 2-layer
FC structure. Then we design a loss function. In
details, given the features F = fθ(x) extracted from
the backbone in a training batch, we assign word
embeddings of base classes loaded from a Natural
Language Processingmodel to form a direct restriction,
to imitate its distribution. The word embedding label
of each feature is chosen according to its class label:
ywj = Eb[yj ], where yj is the label of the j-th sample
and Eb is the word embedding of all base classes. An
embedding layer is then applied to match the channel
dimension. The process can be represented as the
following constraint:

LAC(F
′, yw) =

1

N

N∑
j=0

(W (Fj)− ywj )
2 (1)

where W stands for a fully-connected layer and N
is the batch size. Fj is the j-th visual feature in a

batch. F ′ = W (Fj) stands for the projected features by
fully-connected steucture

2.2.2 Relation Constraint
Although features extracted by backbone can represent
class to some extent, the feature distribution, such
as class relations, may not have the same structure
as in real word. In this case, we need to use a good
second-order structure to guide training, supposing
that the extracted features not only have good ability
of class representation. To achieve this, we use a class
relation graph in each batch to guide the similarity of
class prototypes. To use the relations among semantic
information, we first calculate the prototypes of batch
classes according to the labels:

µi =

∑N
j=0 Fj ∗ I(yj = i)

Ni
(2)

where Ni is the number of samples that belongs to
class i, I(·) equals to 1 if the inner condition is true.
Thenwe establish the similarity relations between class
semantics by using cosine similarity, and so done as
for prototypes to calculate visual embedding relations:

Rµ(m,n) = cos(µm, µn) =
µm · µn

||µm|| ||µn||
(3)

Rw(m,n) = cos(wm, wn) =
wm · wn

||wm|| ||wn||
(4)

wherem,n are class index, µ_ andw_ are corresponding
prototypes and word embeddings. After that we use
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Figure 1. (a) Base training. the framework includes a classification branch and two extra branches for absolute and
relative constraints. (b) Training of Generative Module(GM), for training-needing case. (c) Process of Relation

Module(RM), for training-free case.
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the following loss to keep the word relations among
extracted visual prototypes:

LRC =
1

MN

M∑
m=0

N∑
n=0

(Rµ(m,n)−Rw(m,n))2 (5)

Considering the classification loss, the overall objective
for training the base model is as follows:

L = LC + βLAC + γLRC (6)

where β and γ are hyperparamters to, and LC stands
for the cross-entropy loss for regular classification
restriction.

2.3 Pseudo generation
In order to further utilize the knowledge in semantic
information for classes that is helpful to modify the
support feature with a few samples, we extracted
features fromall trained samples after the base training,
and calculate their class prototypes similarly as in
Eq(2). We then apply them together with their word
embeddings to generate pseudo prototypes for novel
classes. Here we introduce two ways to achieve it:
1) A Generative Module that trains a structure that
uses novel class embeddings to generate its visual
features. 2) A Relation-based module that compounds
similar base class prototypes according to the semantic
relations between novel and base classes. By fusing the
pseudo and the origin prototypes, the representation
in few-shot case can be improved.

Generative Module(GM). One way to generate
features is directly training a structure that is able
to derive visual features according to their word
embeddings. We use the base class word embedding
wb as input for an FC layer, its output µ̂ is set to
approximate the corresponding prototypes. The
process is illustrated in Figure 1(b). Once the training
is finished, we use this structure to extract novel
class pseudo prototypes according to the novel word
embeddings.

Relation Module(RM). Another training-free
approach is to aggregate the base prototypes
according to the novel and base class relations. First,
we construct the correlation matrix as done in (4)
to find class correlations in semantic space, then we
choose the base classes that have top-K similarities
with a certain novel class to synthesize a pseudo

prototype, as shown in Figure 1(c):

fi =

K∑
j=0

wij · µj , j ∈ {C̄i} (7)

wij =
exp(mij)∑K
j=0 exp(mij)

(8)

where i is the index of novel classes and Ci is the
corresponding selected most similar base classes.
µj stands for the prototype of the base class j, fi
represents the synthesized prototypes, and mij is the
semantic similarity between novel class i and base class
j, which is also computed with cosine similarity as in
Eq(4). In order to compute the aggregation factor wij ,
we first compute similarities between novel class i and
all base classes, then choose the top-K similarity scores
with the novel class for normalization to computed to
compound factors.

2.4 Inference
During the testing stage, after we extract features both
for support and query samples, we treat the novel
class as input, either using GM or RM, to generate
pseudo novel prototypes, which we incorporate with
the support features for modifying the final class
centers, where we directly calculate the mean of the
two prototypes.

3 Experiments
3.1 Experiment Setup
Dataset. We adopt three standard benchmark
datasets that are widely used in few-shot learning:
miniImageNet [3], a small subset extracted from
ImageNet[19], consists of 100 classes with 600 images
for each class. Following the setting, We split the
data set into 64 classes for training, 16 classes for
validation, and 20 classes for testing. CIFAR-FS [21],
a subset randomly sampled from CIFAR-100 [22], is
composed of 100 classes and 600 images for each class.
It follows the same settings of split as miniImagNet
and all samples have the same resolution of 32×32.
FC-100 [23], another subset chosen from CIFAR-100
with the same data size as CIFAR-FS, but has a
different way of splitting settings. Rather than being
divided according to classes, It is partitioned into
20 superclasses in total, with 12 for training, 4 for
validation, and the rest 4 for testing.

Word-Embedding. Word2Vec [20] is a word
embedding model to generate word vectors. It is
trained with billions of online articles and sentences to
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Table 1. Comparison with SOTA works on miniImageNet and cifar-fs.

Method Backbone miniImageNet cifar-fs
1-shot 5-shot 1-shot 5-shot

Matching Net [3] ResNet-12 65.64 ± 0.20 78.72 ± 0.15 - -
MAML [16] ResNet-18 64.06 ± 0.18 80.58 ± 0.12 - -
SimpleShot [17] ResNet-18 62.85 ± 0.20 80.02 ± 0.14 - -
S2M2R [18] ResNet-18 64.93 ± 0.18 83.18 ± 0.11 63.66 ± 0.17 76.07 ± 0.19
DeepEMD [24] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 74.58 ± 0.29 86.92 ± 0.41
DSN [25] ResNet-12 62.64 ± 0.66 78.83 ± 0.45 72.30 ± 0.80 85.10 ± 0.60
MetaOptNet [26] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 72.80 ± 0.70 85.00 ± 0.50
RFS [27] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 71.50 ± 0.80 86.00 ± 0.50
Inv-equ [28] ResNet-12 67.28 ± 0.80 84.78 ± 0.50 77.87 ± 0.85 89.74 ± 0.57
R2-D2 [29] ResNet-12 64.79 ± 0.45 81.08 ± 0.32 76.51 ± 0.47 87.63 ± 0.34
EASY [15] ResNet-12 70.63 ± 0.20 86.28 ± 0.12 75.24 ± 0.20 88.38 ± 0.14
EASY 3 × [15] ResNet-12 71.75 ± 0.19 87.15 ± 0.12 76.20 ± 0.20 89.00 ± 0.14
FewTRUE [30] ResNet-12 72.40 ± 0.78 86.38 ± 0.49 77.76 ± 0.81 88.90 ± 0.59
HCTransformer [31] ResNet-12 74.74 ± 0.17 85.66 ± 0.10 78.89 ± 0.18 87.73 ± 0.11
Ours-baseline ResNet-12 70.56 ± 0.20 86.23 ± 0.12 76.36 ± 0.20 88.98 ± 0.14
Ours-RM ResNet-12 72.41 ± 0.19 86.45 ± 0.12 79.19 ± 0.21 89.48 ± 0.14
Ours-GM ResNet-12 76.46 ± 0.18 86.71 ± 0.12 82.69 ± 0.18 89.56 ± 0.14
Note: Average 5-way 1-shot and 5-way 5-shot accuracy (%) with 95% confidence intervals.
Ours-RM denotes our method using Relation Module to create the pseudo support sample.
Ours-GM denotes our method using Generative Module to create the support sample.
The best and the second performance is highlighted in red and blue.

extract word relations and creates an embedding for
each word, so the embeddings for semantically-close
words keep a similar correlation in the higher
dimension. Here we use the pre-trained model offered
by Google to directly generate embeddings for classes
for simplicity.

Implementation Details. We set both β and γ to 0.5.
For fair comparisons, we use ResNet12 as backbone
and adopt SGD for optimizer with a weight decay
of 5e-4 and momentum of 0.9. The learning rate is
initialized to 0.1 and adapted with a cosine learning
rate scheduler. During the training, we also implement
the strategy of S2M2R [18] to build a two-branchmodel
for self-supervision, as done in baseline [15]. To testify
our design, we follow the 5way-1shot and 5way-5shot
paradigms to randomly generate 2000 episodes from
test setswith 15 query samples for each class and report
the mean accuracy with 95% confidence interval.

3.2 Comparison with SOTA
Table 1 compares the results on 5-way 1-shot and 5-way
5-shot benchmarks of our methods on miniImageNet
and cifar-fs with other state-of-the-art few-shot
learning methods. Our baseline model shows a
close level with [15] since we keep its basic training
structure. After including pseudo generation, we
obtain 1.85% ∼ 2.83% improvements on 1-shot task by

Table 2. Comparison with SOTA works on FC-100.

Method Backbone FC-100
1-shot 5-shot

DeepEMD [24] ResNet-12 46.60 ± 0.26 63.22 ± 0.71
TADAM [23] - 40.10 ± 0.40 56.10 ± 0.40
MetaOptNet [26] ResNet-12 47.20 ± 0.60 62.50 ± 0.60
RFS [27] ResNet-12 42.60 ± 0.70 59.10 ± 0.60
Inv-equ [28] ResNet-12 47.76 ± 0.77 65.30 ± 0.76
R2-D2 [29] ResNet-12 44.75 ± 0.43 59.94 ± 0.41
EASY [15] ResNet-12 47.94 ± 0.19 64.14 ± 0.19
FewTRUE [30] - 47.68 ± 0.78 63.81 ± 0.75
Ours-baseline ResNet-12 47.06 ± 0.19 63.63 ± 0.19
Ours-RM ResNet-12 47.98 ± 0.20 63.88 ± 0.19
Ours-GM ResNet-12 49.06 ± 0.19 64.03 ± 0.19
Note: Average 5-way 1-shot and 5-way 5-shot accuracy (%)
with 95% confidence intervals. The best and the second
performance is highlighted in red and blue.

using RM, and 5.9% ∼ 6.33% improvements on 1-shot
task by using GM. For the miniImageNet dataset, our
methods achieve the best performance on 1-shot task,
outperforming the current best one by 1.72%, and the
second best performance on 5-shot task. For cifar-fs
dataset, ourmethods achieve the best by usingGMand
the second best by using RM on both tasks. Table 2
compares our method with the others on FC-100. It
shows that both GM and RM pseudo generation can
realize certain improvements on the baseline model,
and still achieve first class by surpassing [15] by 1.3%
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on 1-shot task, but lags behind the bestmodel on 5-shot
task.

In total, compared with the well-behaved methods [15,
30, 31], our proposedmethod ismore competitivewith
convincing results, which indicates that it can produce
more representative features by matching features and
word embeddings, along with pseudo generation to
show it effectiveness. Such an advantage is more
obvious as the number of support data decreases.

3.3 Ablation Study
Influence of Modules. Our method can be divided
into the use of proposed constraints and ways of
pseudo generation. To explore their influence on the
final outcome, we further conduct experiments with or
without these designs. Table 3 illustrates that Relation
constraint is more effective than Abosulte constraint,
which indicates that rather than directly aligning
the features to corresponding word embeddings,
constructing the relations as in word embedding space
is more helpful. But using both constraints can achieve
further improvement. On the other hand, pseudo
samples produced by GM outperform those by RM,
which can infer that the class relation between base
and novel classes in word embedding may differ in
that in visual space, although we have matched those
relations among base classes. This conclusion can also
be testifiedwhen using two structures at the same time,
the performance degrades compared using GM only.
We infer that this is because the base class features we
use to generate pseudo samples cannot cover thewhole
information of novel class, and it is unnecessary to take
all base classes into consideration since it may not be
helpful. In total, base on current dataset information,
directly generating with FC layers can achieve a better
outcome.

Table 3. Abalation Study of Modules on miniImageNet.

Baseline LAC LRC RM GM 1-shot

✓ 70.56 ± 0.20
✓ ✓ ✓ 71.87 ± 0.19
✓ ✓ ✓ 74.86 ± 0.18
✓ ✓ ✓ 72.03 ± 0.19
✓ ✓ ✓ 76.16 ± 0.18
✓ ✓ ✓ ✓ 72.41 ± 0.19
✓ ✓ ✓ ✓ 76.46 ± 0.18
✓ ✓ ✓ ✓ ✓ 75.76 ± 0.18

Note: Average 5-way 1-shot accuracy (%) with 95%
confidence intervals.

Influence of hyperparameters. To explore the
influence of hyperparameters on loss functions. we

Table 4. Abalation Study of hyperparameters on
miniImageNet.

β γ 1-shot

0.5 0.3 76.17 ± 0.20
0.5 0.4 76.37 ± 0.19
0.5 0.5 76.90 ± 0.18
0.5 0.6 76.36 ± 0.19
0.5 0.7 76.25 ± 0.18
0.3 0.5 76.62 ± 0.19
0.4 0.5 76.72 ± 0.18
0.5 0.5 76.90 ± 0.18
0.6 0.5 76.63 ± 0.19
0.7 0.5 76.54 ± 0.18
Note: Average 5-way 1-shot accuracy (%) with 95%
confidence intervals.

conduct experiment on beta and gamma separately
by freezing one on 0.5 while testing the other. The
comparison in Table 4 shows that the performance
reaches the best when two hyperparameters are both
set to 0.5. In detail, the accuracy in 1-shot case varies
more rapidly when changing gamma than beta, which
implies that the model is more sensitive to the learning
of relation graph than direct feature representation.

3.4 Computational complexity Study
To test the computation complexity, we conduct the
experiment on baselinemodel and our designedmodel
on GFLOPS and amount of parameters. The outcome
is shown in Table 5, it shows that compared to baseline
model, the majority of extra computation cost lies on
additional mapping structure while using GM, which
is not significant. For using RM, the extra computation
cost is O(MN) by calculating similarities between
novel class and base class matrix, which is far below
the record scale. In total, our extra designed structures
do not consume much resources.

Table 5. Experiment on GFLOPs and Parameter amount on
baseline and our-desgined model.

Method GFLOPs Param.

baseline 3.52304 12.66M
Our-RM 3.52324 12.66M
Our-GM 4.12425 13.26M

3.5 Visualization
To make a direct demonstration, we conduct t-SNE
plots in inference stage for clear comparison. The
visualization of two test episodes are shown in Figure 2.
In comparison, the class centers in our method using
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(a) (b) (c)
Figure 2. visualization by t-SNE of test episodes in inference stage onminiImageNet: (a) Baseline model. (b) Ours-RM. (c)
Ours-GM. In the figures the dot of different colors represent the query samples and the red stars represent class centers.

RM/GM modules are refined to the ideal positions,
which are closer to the real centers of clusters, proving
the effection of our method.

3.6 Discussion
Although our method achieves good performance in
few-shot datasets, there stills exists limitations. At
first, our design is not an end-to-end structure, which
needs extra training in GM case or novel class relations
calculations in RM case. But designing end-to-end
ones like GAN may be unstable because the volume
of few-shot datasets is small. Secondly, the model
lacks information when novel superclasses appears
in inference stage, the trained relation graph is not
well useful. In further study, these problems can be
solved by using Large language models or supporting
the model with larger datasets.

4 Conclusion
This paper proposes a few-shot learning method that
utilizes word embeddings to solve the lack of data,
which is a better fit for the real-world classification case.
We introduce Absolute Constraint(LAC) for direct
feature assignment and Relation Constraint(LRC)
for class relation transfer to visual domain, which
establishes a semantic-related structure for good

reasoning. For clear advantage, we design Generative
Module(GM) and Relation Module(RM) to construct
pseudo support samples for the novel set to guide
the recognition. Extensive experiments on multiple
datasets and ablation study have proved our baseline
model has achieved large improvement comparedwith
baseline model. It provides an inspiration that good
feature relation is helpful for few-shot learning.
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