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Abstract
Sea ice detection is of vital importance for maritime
navigation. Satellite imagery is a crucial medium
for conveying information about sea ice. Currently,
most sea ice detection models mainly rely on
texture information to identify sea ice in satellite
imagery, while ignoring sea ice size information.
This research presents an improved YOLOv8-Based
detection algorithm for multi-scale sea ice. First,
we propose a fusion module based on the attention
mechanism and use it to replace the Concat module
in the YOLOv8 network structure. Second, we
conduct an applicability analysis of the bounding
box regression loss function in YOLOv8 and
ultimately select Shape-IoU, which is more suitable
for sea ice, as the loss function for bounding box
regression. Third, we analyze the distribution
characteristics of sea ice with different sizes in
the NWPU-RESISC45 dataset. Based on these
distribution characteristics, the bounding box
information predicted by YOLOv8 are converted
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into evidence vectors for uncertainty quantification.
Subsequently, information fusion is achieved
by fusing these vectors with the probability of
sea ice categories. Compared to YOLOv8 and
other detection algorithm, our improved YOLOv8
achieves better detection accuracy in both the
NWPU-RESISC45 dataset and the Landsat-8-based
sea ice dataset.

Keywords: satellite imagery, YOLO, attention mechanism,
loss function, information fusion, evidential reasoning.

1 Introduction
In recent years, due to the continuous global warming
[1, 2], the sea ice in high-latitude regions has been
persistently melting [3, 4]. The resulting high-latitude
waterways can shorten the sailing distances between
major trading powers and are urgently in need
of development as future maritime routes [5–7].
Specifically, sea ice detection has always been the focus
of research in high-latitude seas, which is devoted
to accurately locating the positions of sea ice and
identifying the scales of sea ice [8, 9].
A multitude of technologies are emerging in the
domain of real-time object detection. They are
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extensively adopted in diverse industries, including
the identification of suspicious behavior [10], the
detection of anomalies in medical images [11], and
fish detection [12], among others. In recent years,
researchers have been concentrating on designing
CNN-based object detectors [13–17]. Among them,
YOLOs achieve accurate classification and positioning
of objects with low latency, and they are increasingly
gaining popularity [18–27].

Furthermore, for an extended period, considerable
efforts have been directed towards obtaining
high-quality sea ice satellite remote sensing
information and detecting sea ice from a diverse
range of satellite remote sensing data [28–31].
Yuan Hu et al. detected sea ice using GNSS
bidirectional radar reflections [32], where the local
linear embedding (LLE) algorithm was employed for
sea ice feature extraction. Liling Liu et al. proposed
a Bayesian method with consideration of geometric
characteristics of China France Oceanography Satellite
scatterometer(CSCAT) for sea ice detection [33]. The
method operationally produced daily polar sea ice
mask throughout its mission duration from 2019 to
2022. Zahra Jafari et al. developed an automated
method for iceberg detection and classification in
complex sea conditions [34]. Using the RADARSAT
Constellation Mission (RCM), they collected seasonal
sea ice data from the east coast of Canada.

To obtain more abundant spectral information,
researchers have explored diverse types of optical
remote sensing data [35–38]. Researchers have focused
on studying sea ice with visible remote sensing data, as
the human eye can intuitively perceive the difference
between sea ice and seawater in the visible wavelength
band. Advancements in deep convolutional neural
networks have achieved automated sea ice detection
using visible remote sensing data. Shifeng Ding et
al. proposed a detection model based on YOLOv5
[39]. They added Squeeze-and-Excitation Networks
(SE) [40] to backbone of YOLOv5. The SE module
computes channel-wise attention weights through
global average pooling and multilayer perceptron,
which are then applied to recalibrate feature map
channels by element-wise multiplication. However,
over-dependence on channel attention mechanisms
(e.g., SE) inevitably discards spatially fine-grained
features in imagery, particularly ice-water interface
textures and areal extent variations that are critical for
sea ice detection.

In this paper, we aim to address these questions

precisely and further broaden the application scope
of YOLOs. Refining the details of YOLOv8, we aim to
enhance its capability in identifying sea ice across a
variety of sizes.
Our contributions are as follows:
1. First, we propose a fusion module based on the

attention mechanism and use it to replace the
Concat module in the YOLOv8 network structure.
This module can effectively help YOLOv8 extract
the characteristic information of sea ice.

2. Second, we conduct an applicability analysis of
the bounding box regression loss function in
YOLOv8 and ultimately select Shape-IoU, which
is more suitable for sea ice, as the loss function
for bounding box regression. YOLOv8 utilizing
Shape-IoU [41] not only demonstrates superior
detection accuracy across all three categories
of sea ice, but it also significantly reduces
convergence time.

3. Third, we analyze the distribution characteristics
of sea ice with different sizes in the
NWPU-RESISC45 dataset. Based on these
distribution characteristics, the bounding
box information predicted by YOLOv8 are
converted into evidence vectors for uncertainty
quantification. Subsequently, evidence fusion
[42] is achieved by fusing these vectors with the
probability of sea ice categories.

4. Based on Landsat-8 satellite data, we have created
a sea ice dataset and made it publicly available on
this website: https://github.com/LiuYang0911/A-Propr
ietary-Visible-Light-based-Sea-Ice-Dataset.

5. By comparing with current mainstream object
detection algorithms, our improved YOLOv8
achieves better detection accuracy and faster
convergence speed.

We are optimistic that the outcomes of our efforts can
act as a catalyst for the progress of fellow researchers
in this domain.

2 Related Work
2.1 Attention Mechanism
Initially, attention mechanisms were utilized in
machine translation tasks. Thismechanism enables the
model to focus on different parts of the input sentence
when translating a word, which significantly enhances
the translation quality [43]. Over the past years,
considerable efforts have been devoted to developing
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attentionmechanismmodules that aremore applicable
to the domain of computer vision [40, 44, 45].

1. Channel attention mechanism: This type of
attention mechanism, which concentrates on the
channel dimension of the feature map, aims to
enhance significant channel information while
suppressing less important data. It accomplishes
this by learning weights for each channel, akin
to the methodology employed in SENet [40].
In SENet [40], the input feature map is first
compressed along the spatial dimension before
calculating weights for each channel. Finally,
these weights are applied to multiply with the
input feature map to produce the final output.

2. Spatial attention mechanism: In contrast to
the channel attention mechanism, the spatial
attention mechanism emphasizes the locations
of valid information within the feature map, as
exemplified by STN [44]. STN [44] is capable of
extracting characteristics from significant regions
across various deformation data to produce final
prediction results.

3. Hybrid Attention Mechanism: Compared to the
aforementioned two attention mechanisms, this
particular attention mechanism comprehensively
leverages both channel information and spatial
information from feature maps, as exemplified by
CBAM [45]. It sequentially employs the channel
attention module followed by the spatial attention
module to generate attention weights, ultimately
producing the final feature map.

2.2 YOLOs
2.2.1 Modules and Network Architecture
In 2016, Joseph Redmon introduced YOLOv1 [18],
a real-time object detector built upon the deep
learning framework Darknet. When compared to other
object detectors [13–17], YOLOs [18–20] demonstrate
superior detection performance while maintaining
high detection speeds.

Over the past few years, significant efforts have been
dedicated to exploring more efficient modules and
network architectures for the YOLO series. YOLOv4
[21] and YOLOv5 [22] investigated the impact of
various activation functions on detection accuracy
and speed. It is essential to recognize that YOLOv5
[22] has been widely adopted across numerous
sectors as a highly effective object detector. Building
upon RepVGG, YOLOv6 [23] introduced RepBlock to
replace the CSPDarknet53 [46] architecture used in
YOLOv5, which allows the model to better integrate
multi-scale features. Furthermore, based on YOLOv5
[22], YOLOv7 [24] proposed E-ELAN [47], which
enhances the network’s learning capability while
preserving the original gradient path.

Based on the C3 module of YOLOv5 [22], YOLOv8
[25] has developed the C2f module, as illustrated in
Figure 1. This module dynamically adjusts the number
of channels according to the model’s size, enabling it
to flexibly adapt to various scenarios.

YOLOv9 [26] introduced G-ELEN, a network
architecture that integrates the features of CSPNet
[46] and ELEN [47], aiming to enhance detection
accuracy while preserving detection speed. Building
on the foundation established by YOLOv8 [25],
YOLOv10 [27] presented several improvements,

Figure 1. Schematic representation of the network architecture for YOLOv8.
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including the use of classification heads with reduced
parameters and the incorporation of a partial
self-attention module, etc., all designed to further
transcend the accuracy-speed trade-offs inherent in
YOLO models.

2.2.2 Loss Function Utilized in Bounding Box Regression
The object detector based on convolutional neural
networks employs a loss function to update the
network weights [48]. Historically, iterations of the
YOLO object detectors have been engaged in an
unrelenting pursuit of optimizing the loss function for
bounding box regression, aiming to achieve superior
performance [48–50]. Simultaneously, a variety
of loss functions for boundary box regression are
continuously being developed and refined [41, 51–54],
thereby enabling the improved YOLOv8-based object
detector to be applied across an increasingly diverse
range of scenarios.

Figure 2. Schematic representation of the loss function for
bounding box regression.

The YOLOv8 model employs C-IoU [50] as the loss
function for bounding box regression. The following
presents the mathematical expression for C-IoU [50]:

CIoU = IoU − (x− xgt)
2 + (y − ygt)

2

W 2 +H2
− αυ (1)

IoU =
BAnchor ∩BGround Truth

BAnchor ∪BGround Truth
(2)

α =
υ

1− IoU + υ
(3)

υ =
4

π2
∗ (tan−1 w

h
− tan−1 wgt

hgt
)2 (4)

From the formulas, it is evident that C-IoU [50]
takes into account both the position and shape of the
bounding box in a comprehensive manner. This allows
the model to learn the characteristics of the ground
truth box more thoroughly.

3 Methodology
3.1 An Attention-Based Fusion Module
We categorize these sea ice instances into three distinct
groups, as elaborated in section 4.1. Although satellite
imagery offers relatively high resolution, actual ice
conditions can be highly complex. As shown in
Figure 3, several factors make it challenging for object
detection models to accurately identify sea ice of
varying scales. These include the wide range of ice floe
sizes, irregular shapes, and reduced contrast between
ice and seawater caused by melting and accumulation
of sea ice.

Figure 3. The two key issues: (a) Numerous small-scale sea
ice; (b) Ambiguous demarcation between sea ice and

seawater.

Besides, as the network deepens, the detection
model progressively enhances semantic information
in feature maps while inevitably sacrificing spatial
details, particularly size characteristics crucial for sea
ice analysis. When handling this task, YOLOv8 uses
the Concat module to combine deep and shallow
feature maps. However, we observe that relying on the
feature maps after direct stitching is not sufficient for
accurate size classification. To address this limitation,
we propose an attention-based fusion module that can
effectively enhance the spatial detail information in the
feature map, so as to be able to accurately distinguish
between sea ice size categories, as shown in Figure 4.

First, we calculate the channel attention weight MC of
the feature map F1 and multiply it with the feature
map F1 to obtain F ′

1. Secondly, we calculate the
Spatial attention weights MS of the feature map F2

and multiply it with the feature map F2 to obtain F ′
2.

Thirdly, we concatenate the feature map F ′
1 and F ′

2

to obtain the final feature map Ffinal. The detailed
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Figure 4. Schematic representation of the Attention-Based Fusion Module.

process is as follows:

MC = σ (MLP (AvgPool (F1)) +MLP (MaxPool (F1)))

(5)

F ′
1 = MC ⊗ F1 (6)

MS = σ(Conv(AvgPool(F2);MaxPool(F2))) (7)
F ′
2 = MS ⊗ F2 (8)

Ffinal = Concat(F ′
1;F

′
2) (9)

where the feature map F1 is derived from deeper
layers and contains more semantic information, such
as the overall shape and categories of sea ice; the
feature map F2 is derived from shallower layers and
includes more detailed information, such as edges,
textures, colors, and other low-level features of sea
ice. In this way, we optimize the fusion process of
different feature maps in YOLOv8, enabling the model
to balance attention between the semantic information
and detailed information of different feature maps,
thereby improving the detection accuracy of the model
for sea ice of varying scales.

3.2 Selection of Boundary Regression Loss Function
Based on Sea Ice Size Characteristics

The C-IoU loss [50] employed in YOLOv8 considers
the geometric relationship between the ground truth
box and the predicted box, utilizing both their relative
positions and shapes to compute the loss. However,
in contrast to general objects, sea ice presents a more
diverse aspect ratio and possesses an irregular shape
that lacks any fixed pattern. In this study, if C-IoU
[50] is utilized as the loss function for bounding box
regression, two critical questions arise.

1. As shown in Figure 5, targets 1O and 2O represent
the same sea ice. When two bounding boxes
exhibit the same absolute deviation from the
ground truth box, the bounding box that
regresses from the direction of the shorter side
of the rectangle tends to demonstrate a lower
Intersection over Union (IoU) value. Our
research indicates that this variation in IoU
is more pronounced when regression occurs
from the direction of the shorter side during
bounding box adjustment. Consequently, it
is crucial for models to effectively balance the
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regression impact of bounding boxes originating
from different directions.

Figure 5. Schematic diagram of the Question 1.

2. As illustrated in Figure 6, the center points of the
prediction boxes 3O and 4O have shifted closer to
the position of the ground truth box. Furthermore,
both prediction boxes maintain an equal distance
from the ground truth box along both the long
and short sides. However, it is noteworthy that
target 4O, which regressed from the short side,
corresponds to a lower IoU value, indicating
reduced overlap with the ground truth.

Figure 6. Schematic diagram of the Question 2.

During the bounding box regression process, the
variation in IoU is particularly significant when the
regression occurs along the short side of the ground
truth box. Therefore, it is essential to ensure a balanced
regression effect for bounding boxes across various
directions throughout this process.
In the end, we select Shape-IoU [41] as our loss
function for bounding box regression, as it effectively
addresses the two types of issues mentioned above.
The formula for Shape-IoU [41] is presented below:ww =

2∗(wgt)scale

(wgt)scale+(hgt)scale

hh =
2∗(hgt)scale

(wgt)scale+(hgt)scale

(10)

distanceshape = hh∗ (x− xgt)
2

W 2 +H2
+ww∗ (y − ygt)

2

W 2 +H2
(11)

{
ωw = hh ∗ |w−wgt|

max(w,wgt)

ωh = ww ∗ |h−hgt|
max(h,hgt)

(12)

Ωshape =
∑
t=w,h

(1− e−ωt)θ, θ = 4 (13)

where scale represents the scale factor, which can be
adjusted based on the dimensions of the target. Taking
the ground truth box in Figure 5 as an example(where
wgt > hgt), when scale = 0 and ww = hh =
1, the bounding box regression lacks directional
prioritization. by increasing the value of scale, the
regression effectiveness can be enhanced. In this study,
we set scale = 1, resulting inww > hh, which indicates
that higher regressionweight is assigned to the vertical
dimension (height adjustment).
Equation 14 calculates the loss value for bounding box
regression.

LShape−IoU = 1− IoU + distanceshape + 0.5 ∗ Ωshape

(14)
It is noteworthy that Shape-IoU dynamically
emphasizes the gradient update path of bounding
box parameters (e.g., center offsets and aspect
ratios) during model convergence. Unlike C-IoU,
which indirectly guides optimization through
geometric penalties (center distance and aspect
ratio matching), Shape-IoU explicitly introduces a
directional weighting coefficient, thereby clarifying
the prioritization of regression targets with higher
shape discrepancies. This property of Shape-IoU
shortens the convergence time of the model.

3.3 An Evidence Fusion Module for the Correction
of Sea Ice Categories

Figure 7. Typical cases of misclassification.

After extensive experimentation, we discovered that
YOLOv8 is capable of accurately predicting the
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Figure 8. Schematic diagram of evidence fusion module.

bounding boxes of sea ice; however, it occasionally
misclassifies the categories of sea ice. More specifically,
YOLOv8 occasionally misclassifies medium-scale sea
ice as large-scale sea ice and conversely misclassifies
large-scale sea ice as medium-scale sea ice, As
illustrated in Figure 7.

In Figure 7 (a), the sea ice located in the upper
left corner is classified as medium-scale, as the
longest side of its circumscribed rectangle measures
less than 128 pixels. However, it was incorrectly
identified by YOLOv8 as large sea ice. Meanwhile,
in Figure 7 (b), the sea ice situated at the center
is categorized as large-scale, given that the longest
side of its circumscribed rectangle exceeds 128 pixels.
However, it was inaccurately classified by YOLOv8 as
medium-scale sea ice.

With these issues in consideration, we conducted a
more thorough examination of YOLO. The YOLO
algorithm is designed to extract features from
images and classify targets based on these extracted
characteristics. The features encompass various types
of information, including texture, color, shape, and
more. More specifically, YOLO relies more heavily on
the aforementioned features for target classification
than on the scale information of the targets.

However, in our task of classifying sea ice, the scale
information of the target cannot be overlooked. We
aim to improve YOLOv8 so that the scale information

of the target can serve as a more significant feature for
predicting categories of sea ice.
In the inference process of YOLOv8, the role of
non-maximum suppression (NMS) is to eliminate
redundant prediction boxes and produce the final
output. Based on this, we propose the Evidence Fusion
module to address the aforementioned issues, the
details of the Evidence Fusion module are illustrated
in Figure 8.
First, we convert the prediction box information
and prediction category information provided by
YOLOv8 into evidences. Utilizing an enhanced DSmT
fusion inference algorithm [42], we subsequently
integrate these two types of evidence to establish a
new prediction category. The algorithmic model is
primarily composed of the following two components.

3.3.1 Convert the Information Predicted by YOLOv8 into
Evidence Characterizing Uncertainty

1. The bounding box information predicted by
YOLOv8: We begin by counting the instances of
sea ice larger than 8 pixels in the satellite image
dataset NWPU-RESISC45 [29]. Subsequently,
we categorize these sea ice instances into three
distinct groups based on their scale, as elaborated
in section 4.1. Finally, we generate histograms to
illustrate the frequency distribution of the longest
side of the circumscribed rectangles for each type
of sea ice and fit distribution curves to these
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histograms, as depicted in Figure 9.

Figure 9. Distribution of the size of three types of sea ice in
the NWPU-RESISC45 dataset: (a), (b), and (c) Frequency
histograms and probability density curves showing the
distribution of Small-scale sea ice,Medium-scale sea ice and
Large-scale sea ice, respectively; (d) A schematic diagram is

presented, showing the three curves.

Based on the distribution shown in Figure 9, we
fit the curve, as shown in equation 15, 16, and 17.

fsmall(l) =
1

7.32 ∗
√
2π

∗ e−
(l−21.42)2

2∗7.322 , l > 0 (15)

where 21.42 represents the mean µ of the
normal distribution, 7.32 represents the standard
deviation σ of the normal distribution. Here,
l denotes the pixel value corresponding to the
longest side of the circumscribed rectangle for sea
ice, and fsmall(l) is the probability of occurrence of
sea ice.

fmedium(l) = 0.64 ∗ 1

2
11.43

2 ∗ Γ
(
11.43
2

)
∗
(

l

6.78

)( 11.43
2

−1)
∗ e−

l
2∗6.78 , l > 0

(16)

where 0.64 serves as the scaling parameter for
the function, 6.78 is the scale parameter, 11.43
denotes the degrees of freedom for the chi-square
distribution, and Γ(·) is the symbol for the
gamma function. Here, l denotes the pixel
value corresponding to the longest side of the

circumscribed rectangle for sea ice, and fmedium(l)
is the probability of occurrence of sea ice.

flarge(l) = 1.06 ∗ 1

2
69.06

2 ∗ Γ(69.062 )

∗ ( l

2.43
)(

69.06
2

−1) ∗ e−
l

2∗2.43 , l > 0

(17)

where 1.06 serves as the scaling parameter for
the function, 2.43 is the scale parameter, 69.06
denotes the degrees of freedom for the chi-square
distribution, and Γ(·) is the symbol for the
gamma function. Here, l denotes the pixel
value corresponding to the longest side of the
circumscribed rectangle for sea ice, and flarge(l)
is the probability of occurrence of sea ice.
We normalize the distribution rules mentioned
above, as shown in equations 18, and finally
transform the bounding box information
predicted by YOLOv8 into evidence that describes
the uncertainty.


a1 =

fsmall(l)
fsmall(l)+fmiddle(l)+flarge(l)

a2 =
fmedium(l)

fsmall(l)+fmedium(l)+flarge(l)

a3 =
flarge(l)

fsmall(l)+fmedium(l)+flarge(l)

(18)

where a1, a2, a3 represent the scale reliability for
the three types of sea ice, respectively.

2. The category information predicted by YOLOv8:
The prediction values for the three types of
sea ice—clssmall, clsmedium, clslarge—are included in
the prediction information provided by YOLOv8.
The category with the highest prediction value
indicates the model’s predicted target. We convert
this set of data into category evidence, as shown
in equations 19.

b1 = clssmall

b2 = clsmedium

b3 = clslarge

(19)

where b1, b2, b3 represent the category reliability
for the three types of sea ice, respectively.

4 Experiments
4.1 Data Collection
We currently employ two distinct sea ice datasets to
assess the detection accuracy of our improved YOLOv8
model. The first dataset is the widely recognized
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(a) Small-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice ranges between 8 pixels and
32 pixels.

(b) Medium-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice ranges between 32 pixels
and 128 pixels.

(c) Large-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice exceeds 128 pixels.
Figure 10. Three distinct categories of sea ice.

Algorithm 1: Optimized DSmT fusion inference
algorithm
Input: The bounding box evidence ai, The

category evidence bi;
Output: New category result New_catei;
for i = 1, 2, 3 do

mai = 1− bi;
mbi = 1− ai;
Bi = a2i · bi +

a2i ·mai
ai +mai

+
ai · b2i ·mbi
bi +mbi

;
end
sumB =

∑3
i=1Bi;

New_catei = 0;
for i = 1, 2, 3 do

New_catei =
Bi

sumB
;

end

NWPU-RESISC45 [29], while the second consists of an
exclusive Landsat8-based sea ice dataset that we have
developed.

4.1.1 A Sea Ice Dataset Derived from NWPU-RESISC45
When traversing sea-ice laden waters, it is imperative
for the crew to swiftly discern and precisely locate sea
ice of diverse dimensions to enable the vessel to bypass
the perilous sea ice. Consequently, we categorize
the sea ice in these two datasets into three distinct
categories. We employ the software labelimg [55] to
annotate the images of three distinct types of sea ice,
designated as Small-scale sea ice, Medium-scale sea ice,
and Large-scale sea ice, as shown in Figure 10.

4.1.2 An Landsat8-based Sea Ice Dataset
We cropped the satellite data into uniformly sized
images and utilized the software labelimg [55] to
annotate three distinct types of sea ice present in these
images, designated as Small-scale sea ice, Medium-scale
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(a) Small-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice ranges between 8 pixels and
32 pixels.

(b) Medium-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice ranges between 32 pixels
and 128 pixels.

(c) Large-scale sea ice: the longest side of the circumscribed rectangle for this type of sea ice exceeds 128 pixels.
Figure 11. Three distinct categories of sea ice.

sea ice, and Large-scale sea ice, as shown in Figure 11. The
specifics of this dataset are provided in the appendix,
as shown in Tables 1 and 2.

In addition to the NWPU-RESISC45 [29] dataset, we
also explored other datasets to continually validate
the performance of our enhanced YOLOv8-based sea
ice detector. We identified areas where sea ice occurs
at high latitudes and acquired satellite data for these
regions, as depicted in Figure 12.

4.2 Implementation Details
We use YOLOv8 as a baseline model. Since the release
of YOLOv8 in 2023, it has been deployed on various
types of hardware due to its low resource requirements.
The following are the experimental configuration,
hyper-parameters of improved YOLOv8 object detector
and summary of the labels for the three types of sea
ice, as shown in Table 3 and 4.

Table 1. Summary of the labels for the three types of sea ice.
Small-Scale Sea Ice Medium-Scale Sea Ice Big-Scale Sea Ice

NWPU- RESISC45 [29] Quantity 6820 3710 382
Percentage 62.5% 34.0% 3.5%

Our Sea Ice Dataset Quantity 3162 1170 256
Percentage 69.0% 25.5% 5.5%

Note: We randomly select 70% of the images to train the model, and the remaining 30% of the images were used to verify
the training effect.
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Table 2. Important information about the exclusive
Landsat8-based sea ice dataset.

Attribute Attribute Value
1 2

SPACECRAFT_ID LANDSAT8 LANDSAT8
ORIGIN Image courtesy of

the U.S. Geological Survey
Image courtesy of

the U.S. Geological Survey
LANDSAT_SCENE_ID LC80482392019215LGN00 LC81300082018179LGN00

LANDSAT_PRODUCT_ID LC08_L1GT_048239_
20190803_20190819_01_T2

LC08_L1TP_130008_
20180628_20180704_01_T1

FILE_DATE 2019-08-19T23:27:47Z 2018-07-04T09:14:55Z
OUTPUT_FORMAT GEOTIFF GEOTIFF

SENSOR_ID OLI_TIRS OLI_TIRS
TARGET_WRS_PATH 48 130
TARGET_WRS_ROW 239 8
DATE_ACQUIRED 2019-08-03 2018-06-28

SCENE_CENTER_TIME 20:32:39.0212890Z 03:26:15.2127540Z
CLOUD_COVER 1.55 2.20

CLOUD_COVER_LAND 0.02 0.12
IMAGE_QUALITY_OLI 9 9
IMAGE_QUALITY_TIRS 9 9
Note: This dataset pertains to the sea ice data corresponding to the aforementioned two scenes.
The dataset comprises a total of 430 images, each with dimensions of 256 * 256 pixels.

Table 3. Experimental configuration.
Attribute Attribute Value
CPU Core i5 12450H
GPU NVIDIA GeForce RTX 3050

Running memory 16GB
Storage memory 256GB
Operating system Win 10

Interpreter Python 3.9
Deep Learning Frameworks PyTorch 1.9

IDEA PyCharm

Figure 12. Schematic diagram of the sea ice satellite
imagery.

4.3 Comparison with State-of-the-Arts
4.3.1 Experimental Results Utilizing the

NWPU-RESISC45 Dataset
As shown in Table 5, we conduct experiments on the
NWPU-RESISC45 Dataset with mainstream object
detection algorithms and perform a comparative
analysis of our improved YOLOv8. The selected
object detection algorithms include: the two-stage
object detection algorithm Faster R-CNN, the
Transformer-based object detection algorithm
RT-DETR, the one-stage object detection algorithms

Table 4. Hyper-parameters of improved
YOLOv8 Algorithm.

Attribute Attribute Value
epochs 500

batch size 16
imgsz 256
workers 8

close mosaic Last 10 epochs
optimizer AdamW

initial learning rate 0.01
final learning rate 0.0001

momentum 0.937
weight decay 0.0005

warm-up epochs 3.0
warm-up momentum 0.8

warm-up bias learning rate 0.1
box loss gain 7.5
class loss gain 0.5
DFL loss gain 1.5

hsv hue augmentation 0.015
hsv saturation augmentation 0.7

hsv value augmentation 0.4
translation augmentation 0.1

scale augmentation 0.9
mosaic augmentation 1.0
mixup augmentation 0.1

copy-paste augmentation 0.1

from the YOLO series, and the improved YOLO series
algorithms. Compared to YOLOv8, our improved
YOLOv8 achieves a 15.6% increase in Recall, a 5.6%
improvement in mAP50, a 3.1% enhancement in
mAP50-95, and a 6.8% boost in F1 score, while
simultaneously reducing the training time by 13.8%.
In addition, compared to other improved YOLO series
algorithms, our enhanced YOLOv8 also demonstrates
outstanding detection accuracy and relatively faster
convergence speed. As Figure 13 illustrates, we
present the detection effects of our improved YOLOv8
alongside the baseline model YOLOv8.

4.3.2 Experimental Results Utilizing the Landsat 8-Based
Sea Ice Dataset

As shown in Table 6, we conduct experiments on the
landsat 8-based sea ice dataset with mainstream object
detection algorithms and perform a comparative
analysis of our improved YOLOv8. The selected
object detection algorithms include: the two-stage
object detection algorithm Faster R-CNN, the
Transformer-based object detection algorithm
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Table 5. Comparisons with the baseline model and state-of-the-arts.
Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) F1 (%) Training time (h) FPS
Faster R-CNN 62.7 80.3 79.2 47.1 70.4 6.09 4.4
SSD 62.3 76.0 78.0 47.6 68.5 0.98 6.9
RT-DETR 74.9 66.1 73 54.2 70.2 3.213 68.0
YOLOv3 66.8 86 74.7 50.9 75.2 5.719 59.2
YOLOv5 73.3 73.3 82.2 52.5 73.3 0.728 208.3
YOLOv6 72.4 69.3 78.4 47.0 70.8 3.262 69.4
YOLOv7 76.7 64.6 81.5 49.1 70.1 4.529 87.7
YOLOv9 65.6 82.3 78.0 44.2 73.0 5.46 108.7
YOLOv10 84.2 68.1 81.9 49.0 75.3 0.483 128.2
ASF-YOLO 64.6 77.9 80.3 45.1 70.6 3.983 53.5
GOLD-YOLO 73.4 74.7 81.1 47.8 74.0 6.118 58.5
Hyper-YOLO 69.2 76.9 83.1 50.5 72.8 6.307 44.4
Improved YOLOv5[39] 71.2 75.1 82.6 51.5 73.1 3.52 126.4
YOLOv8 84.7 62.4 81.6 56.2 71.9 1.113 82.6
Our Improved YOLOv8 79.4 78.0 87.2 59.3 78.7 0.959 48.3
In the same group of experiments, the best-performing data is highlighted in bold.

Table 6. Comparisons with the baseline model and state-of-the-arts.
Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) F1 (%) Training time (h) FPS
Faster-RCNN 70.7 84.1 83.2 66.2 76.8 14.79 5.8
SSD 72.1 71.4 72.0 53.5 71.7 2.38 6.9
RT-DETR 66.7 67.2 73.6 45.4 66.9 7.871 40.5
YOLOv3 73.1 71.3 81.4 50.2 72.2 6.29 53.8
YOLOv5 72.5 88.9 90.2 69.5 79.9 2.499 156.4
YOLOv6 74.0 77.0 80.4 46.1 75.5 13.668 52.8
YOLOv7 74.9 74.6 82.8 53.0 74.7 2.142 192.3
YOLOv9 86.8 70.3 84.7 52.8 77.7 1.921 181.8
YOLOv10 77.5 91.6 91.3 62.2 84.0 1.581 112.8
ASF-YOLO 77.3 90.0 91.6 68.5 83.2 5.865 61.7
GOLD-YOLO 81.7 65.9 82.1 51.6 73.0 6.919 55.6
Hyper-YOLO 86.2 66.4 86.3 55.0 75.0 8.5 70.9
Improved YOLOv5[39] 75.1 90.3 90.1 65.9 82.0 2.042 134.7
YOLOv8 86.1 85.6 92.7 67.6 85.8 9.435 50.8
Our Improved YOLOv8 90.6 78.0 93.8 71.8 87.4 4.624 53.2
In the same group of experiments, the best-performing data is highlighted in bold.

Table 7. Ablation study with improved YOLOv8.
Dataset Method Fusion Module Shape-IoU Evidence Fusion mAP50 (%) mAP50-95 (%)

NWPU-RESISC45 [29]

YOLOv8 81.6 56.2
Algorithm 1 ✓ 83.3 57.0
Algorithm 2 ✓ 82.8 58.3
Algorithm 3 ✓ 85.3 56.8

Our Improved YOLOv8 ✓ ✓ ✓ 87.2 59.3

Our Sea Ice Dataset

YOLOv8 92.7 67.6
Algorithm 1 ✓ 92.9 68.2
Algorithm 2 ✓ 93.2 70.1
Algorithm 3 ✓ 93.3 68.0

Our Improved YOLOv8 ✓ ✓ ✓ 93.8 71.8
Note: ✓ denotes an added module based on YOLOv8. In the same group of experiments, the best-performing data is highlighted in bold.

RT-DETR, the one-stage object detection algorithms
from the YOLO series, and the improved YOLO series
algorithms. Compared to YOLOv8, our improved
YOLOv8 achieves a 4.5% increase in Precision, a
1.1% improvement in mAP50, a 4.2% enhancement
in mAP50-95, and a 1.5% boost in F1 score, while

simultaneously reducing the training time by 51.0%.

In addition, compared to other improved YOLO series
algorithms, our enhanced YOLOv8 also demonstrates
outstanding detection accuracy and relatively faster
convergence speed. As Figure 14 illustrates, we
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(a) YOLOv8 incorrectly predicts medium-scale sea ice as large-scale sea ice.

(b) Our improved YOLOv8 correctly predicts the results.

(c) YOLOv8 incorrectly predicts large-scale sea ice as medium-scale sea ice.

(d) Our improved YOLOv8 correctly predicts the results.

Figure 13. Detection results comparison between YOLOv8 and our improved model.
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(e) YOLOv8 incorrectly predicts medium-scale sea ice as small-scale sea ice.

(f) Our improved YOLOv8 correctly predicts the results.

(g) YOLOv8 outputs redundant prediction boxes.

(h) Our improved YOLOv8 correctly predicts the results.
Figure 13. Continued detection results comparison between YOLOv8 and our improved model.
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Table 8. Ablation study with fusion module.

Dataset Method AP50(%) mAP50 (%) mAP50-95 (%)small medium big

NWPU-RESISC45 [29]

YOLOv8 80.3 80.8 83.7 81.6 56.2
+ SE 52.3 87.2 88.3 75.9 51.7

+ EMA 69.0 78.9 81.3 76.4 48.0
+ CA 62.0 74.7 76.2 71.0 52.2

+ CBAM 79.5 76.1 83.9 79.8 53.5
+ Fusion Module
(Algorithm 1) 84.5 81.0 84.4 83.3 57.0

Our Sea Ice Dataset

YOLOv8 89.1 94.0 95.0 92.7 67.6
+ SE 79.7 91.8 93.2 88.2 65.6

+ EMA 84.4 91.1 92.2 89.3 60.3
+ CA 85.9 91.8 94.3 90.7 66.7

+ CBAM 80.9 89.3 91.3 87.2 64.4
+ Fusion Module
(Algorithm 1) 89.3 94.1 95.3 92.9 68.2

In the same group of experiments, the best-performing data is highlighted in bold.

present the detection effects of our improved YOLOv8
alongside the baseline model YOLOv8.

4.4 Model Analyses
4.4.1 Ablation Study
As shown in Table 7, we exhibit the results of ablation
experiments based on our improved YOLOv8. On the
basis of YOLOv8, we replace the Concat module with a
fusionmodule to obtain Algorithm 1, we substitute the
C-IoU with Shape-IoU to obtain Algorithm 2, and we
add an evidence fusion module to obtain Algorithm 3.
The experimental data from the NWPU-RESISC45
dataset reveal that our improved network architecture,
incorporating a fusionmodule, improves themAP50 of
YOLOv8 by 1.7%. In addition, we propose an evidence
fusion module that improves the mAP50 of YOLOv8
by 3.7%. The experimental data from Our Sea Ice
Dataset reveal that our improved network architecture,
incorporating a fusionmodule, improves themAP50 of
YOLOv8 by 0.2%. In addition, we propose an evidence
fusion module that improves the mAP50 of YOLOv8
by 0.6%.

4.4.2 Analyses for An Attention-Based Fusion Module
As depicted in Table 8, we present the outcomes of the
ablation experiments conducted on YOLOv8, utilizing
various mainstream attention mechanisms.
As shown in Table 8, the attention module affects the
detection accuracy improvement of YOLOv8, while the
fusion module compensates for the negative impact of
using only the attention mechanism and enhances the

overall detection performance.
To intuitively perceive the positive impact of the fusion
module, we use heatmaps to visualize the feature
extraction effects of YOLOv8 after introducing our
fusion module, as shown in Figure 15. Among them,
Figure 15 (a) shows the experimental results of our
improved YOLOv8 on the NWPU-RESISC45 dataset,
while Figure 15 (b) presents the experimental results
of our improved YOLOv8 on our sea ice dataset.

4.4.3 Analyses for Loss Function
We substitute the C-IoU [50] loss with a contemporary
mainstream loss function for bounding box regression.
As demonstrated in Table 9, we present the results of
ablation experiments conducted using YOLOv8.
As illustrated in Table 9, when compared to other
enhanced methods, YOLOv8 utilizing Shape-IoU [41]
not only demonstrates superior detection accuracy
across all three categories of sea ice, but it also
significantly reduces convergence time.
Compared to YOLOv8, our Algorithm 2, equipped
with Shape-IoU, achieves 1.2% mAP50 improvement,
2.1% mAP50-95 improvement along with a reduction
in training time of 23.8%, as validated by the
NWPU-RESISC45 dataset. Furthermore, this YOLOv8
variant equipped with Shape-IoU realizes a 0.5%
increase in mAP50 and a 2.5% rise in mAP50-95
while concurrently reducing training time by 11.8%, as
confirmed by our sea ice dataset.
To intuitively perceive the positive impact of the
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(a) YOLOv8 incorrectly predicts categories of sea ice.

(b) Our improved YOLOv8 correctly predicts the results.

(c) YOLOv8 incorrectly predicts categories of sea ice.

(d) Our improved YOLOv8 correctly predicts the results.
Figure 14. Schematic diagram of experiment results.

94



Chinese Journal of Information Fusion

Figure 15. Schematic diagram of the heatmap.

Figure 16. Schematic diagram of the loss function curve.

Shape-IoU, we use Loss function curve to visualize
the convergence process of our improved YOLOv8 and
YOLOv8, as shown in Figure 16. Among them, Figure

16 (a) shows the convergence process of our improved
YOLOv8 and YOLOv8 on the NWPU-RESISC45
dataset, while Figure 16 (b) presents the convergence
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Table 9. Ablation study with loss function for bounding box regression.

Dataset Method AP50(%) mAP50 (%) mAP
50-95 (%)

Training
time (h)small medium big

NWPU-RESISC45 [29]

YOLOv8 (C-IoU) 80.3 80.8 83.7 81.6 56.2 1.113
+ G-IoU 72.5 75.9 77.8 75.4 53.1 1.058
+ D-IoU 72 72.9 75.3 73.4 56.2 1.710
+ F-IoU 74 75.1 81.1 76.7 56 1.071
+ S-IoU 74.8 76 82.9 77.9 55.6 0.958
+ W-IoU 78.5 79.8 82 80.1 56.4 1.000

+ Inner-IoU 75.3 78.4 78.8 77.5 53.9 1.839
+ Shape-IoU
(Algorithm 2) 82.3 81.4 84.7 82.8 58.3 0.848

Our Sea Ice Dataset

YOLOv8 (C-IoU) 89.1 94.0 95.0 92.7 67.6 9.435
+ G-IoU 80.9 84.7 83.7 83.1 66.4 10.810
+ D-IoU 84.3 85.5 86 85.3 67.4 10.138
+ F-IoU 82.9 84.4 83 83.4 68 9.234
+ S-IoU 82 87 86.6 85.2 68.9 10.465
+ W-IoU 83.7 93.5 93 90.1 68.7 9.911

+ Inner-IoU 81.8 86.5 84.8 84.4 69 11.868
+ Shape-IoU
(Algorithm 2) 84 96.2 99.5 93.2 70.1 8.325

Table 10. Ablation study with evidence fusion.
Dataset Method Small-Scale

Sea Ice
Medium-Scale

Sea Ice
Big-Scale
Sea Ice mAP50 (%) mAP50-95 (%) Training Time (h)

NWPU- RESISC45 [29] YOLOv8 (C-IoU) 80.3 80.8 83.7 81.6 56.2 1.113
+ Evidence Fusion
(Algorithm 2) 83.9 84.5 87.5 85.3 56.8 -

Our Sea Ice Dataset YOLOv8 (C-IoU) 89.1 94.0 95.0 92.7 67.6 9.435
+ Evidence Fusion
(Algorithm 2) 89.7 94.5 95.7 93.3 68.0 -

process of our improved YOLOv8 and YOLOv8 on our
sea ice dataset.

4.4.4 Analyses for Evidence Fusion
YOLOv8 utilizes a detection architecture which
separates the tasks of classification and localization.
This architecture disassembles the tensors, enabling
independent predictions for both the bounding box
and the category of each target.

The bounding boxes and categories of the targets
in sea ice dataset are closely related. Consequently,
the design of the detection architecture may result
in inconsistencies between the predicted bounding
boxes and their corresponding sea ice categories. For
instance, a bounding box that represents large-scale sea
ice might be inaccurately associated with a predicted
category of medium-scale sea ice.

In summary, we simultaneously transform the
bounding box and category information predicted
by YOLOv8 into multiple pieces of evidence that

characterize uncertainty. Subsequently, we utilize an
enhanced DSmT fusion inference algorithm to predict
the new category. As shown in Table 10, we exhibit
the results of ablation experiments based on YOLOv8.

From Table 10, it is intuitively clear that YOLOv8,
when using evidence fusion, achieves better detection
accuracy on all three types of sea ice.

5 Conclusion
In this paper, we propose a YOLOv8-based sea
ice detection algorithm designed to identify sea ice
of various sizes in satellite imagery. Firstly, we
incorporate an attention-based fusion module into
the concatenation component of the YOLOv8 neck
network. Secondly, we substitute the C-IoU loss
function in YOLOv8 with the more recent Shape-IoU
as the boundary regression loss for the detection
head. Thridly, we convert the inference results of the
YOLOv8’s output into uncertain multiple evidences
according to the size distribution of sea ice in the
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dataset. Subsequently, we fuse multiple pieces
of evidences and infer new results based on the
improved DSmT fusion inference algorithm. These
bring our improved YOLOv8, an sea ice detection
algorithm for detecting sea ice of multiple sizes in
satellite imagery. The results show that our improved
YOLOv8 achieves the state-of-the-art performance in
two aspects: identifying sea ice and dividing sea ice
size compared with the baseline model and other
advanced detection algorithms.
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[29] can be accessed via the following link: http://pan.
baidu.com/s/1mifR6tU (Baidu Wangpan). Our exclusive
Landsat8-based sea ice dataset, derived from Landsat
8 imagery and utilized in this study, has been made
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Yang0911/A-Proprietary-Visible-Light-based-Sea-Ice-Datas
et(accessed on 28 October 2024).

Funding
This study was funded by the National Natural
Science Foundation of China under Grant 62072392
and 62272405. This studywas funded by the Shandong
Natural Science Foundation of China under Grant
ZR2020QF010. This study was funded by Yantai
City Science and Technology Innovation Development
Program - Basic Research Category Projects under
Grant 2024JCYJ038.

Conflicts of Interest
Yiping Luo is an employee of Deep Space
Exploration Laboratory, Hefei 230000, China.
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

References
[1] Samset, B. H., Zhou, C., Fuglestvedt, J. S., Lund, M. T.,

Marotzke, J., & Zelinka, M. D. (2023). Steady global
surface warming from 1973 to 2022 but increased
warming rate after 1990. Communications Earth &
Environment, 4(1), 400. [CrossRef]

[2] McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann,
R., Sakschewski, B., Loriani, S., ... & Lenton, T. M.
(2022). Exceeding 1.5°C global warming could trigger
multiple climate tipping points. Science, 377(6611),
eabn7950. [CrossRef]

[3] Screen, J. A., Deser, C., Smith, D. M., Zhang, X.,
Blackport, R., Kushner, P. J., ... & Sun, L. (2018).
Consistency and discrepancy in the atmospheric
response to Arctic sea-ice loss across climate models.
Nature Geoscience, 11(3), 155-163. [CrossRef]

[4] Li, H., & Fedorov, A. (2021). Persistent freshening of
the Arctic Ocean and changes in the North Atlantic
salinity caused by Arctic sea ice decline. Climate
Dynamics, 57(11), 2995-3013. [CrossRef]

[5] Cao, Y., Liang, S., Sun, L., Liu, J., Cheng, X., Wang,
D., ... & Feng, K. (2022). Trans-Arctic shipping routes
expanding faster than the model projections. Global
Environmental Change, 73, 102488. [CrossRef]

[6] Min, C., Zhou, X., Luo, H., Yang, Y.,Wang, Y., Zhang, J.,
& Yang, Q. (2023). Toward quantifying the increasing
accessibility of the Arctic Northeast Passage in the past
four decades. Advances in Atmospheric Sciences, 40(12),
2378-2390. [CrossRef]

[7] Kapsar, K., Gunn, G., Brigham, L., & Liu, J. (2023).
Mapping vessel traffic patterns in the ice-covered
waters of the Pacific Arctic. Climatic Change, 176(7), 94.
[CrossRef]]

[8] Rodriguez Alvarez, N., Holt, B., Jaruwatanadilok, S.,
Podest, E., & Cavanaugh, K. (2019). An Arctic sea ice
multi-step classification based on GNSS-R data from
the TDS-1 mission. Remote Sensing of Environment, 230,
111201. [CrossRef]]

[9] Cai, Y., Wan, F., Hu, S., & Lang, S. (2022). Accurate
prediction of ice surface and bottom boundary
based on multi-scale feature fusion network. Applied
Intelligence, 52(14), 16370-16381. [CrossRef]

[10] Qaraqe, M., Yang, Y. D., Varghese, E. B., Elzein,
A., & Basaran, E. (2024). Crowd behavior detection:
Leveraging video swin transformer for crowd size
and violence level analysis. Applied Intelligence, 54(21),
10709-10730. [CrossRef]

[11] Li, X., Zhou, Y., Du, P., Lang, G., Xu, M., & Wu,
W. (2021). A deep learning system that generates
quantitative CT reports for diagnosing pulmonary
Tuberculosis. Applied Intelligence, 51(6), 4082-4093.
[CrossRef]

[12] Knausgård, K., Wiklund, A., Sørdalen, T., Halvorsen,
K., Kleiven, A., Jiao, L., & Goodwin, M. (2022).
Temperate fish detection and classification: A deep
learning based approach. Applied Intelligence, 52(6),
6988-7001. [CrossRef]

[13] Girshick, R., Donahue, J., Darrell, T., &Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition (pp. 580-587).
[CrossRef]

[14] Girshick, R. (2015). Fast R-CNN. In 2015 IEEE
International Conference on Computer Vision (pp.
1440-1448). [CrossRef]

[15] Ren, S., He, K., Girshick, R., & Sun, J. (2017).
Faster R-CNN: Towards real-time object detectionwith

97

http://pan.baidu.com/s/1mifR6tU
http://pan.baidu.com/s/1mifR6tU
https://github.com/LiuYang0911/A-Proprietary-Visible-Light-based-Sea-Ice-Dataset
https://github.com/LiuYang0911/A-Proprietary-Visible-Light-based-Sea-Ice-Dataset
https://github.com/LiuYang0911/A-Proprietary-Visible-Light-based-Sea-Ice-Dataset
https://doi.org/10.1038/s43247-023-01061-4
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1038/s41561-018-0059-y
https://doi.org/10.1007/s00382-021-05850-5
https://doi.org/10.1016/j.gloenvcha.2022.102488
https://doi.org/10.1007/s00376-022-2040-3
https://doi.org/10.1007/s10584-023-03568-3
https://doi.org/10.1016/j.rse.2019.05.021
https://doi.org/10.1007/s10489-022-03362-1
https://doi.org/10.1007/s10489-024-05775-6
https://doi.org/10.1007/s10489-020-02051-1
https://doi.org/10.1007/s10489-020-02154-9
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169


Chinese Journal of Information Fusion

region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6), 1137-1149.
[CrossRef]

[16] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017).
Mask R-CNN. In 2017 IEEE International Conference on
Computer Vision (pp. 2961-2969). [CrossRef]

[17] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,
S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37).
Springer International Publishing. [CrossRef]

[18] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (pp. 779-788). [CrossRef]

[19] Redmon, J., & Farhadi, A. (2017). YOLO9000:
Better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (pp.
7263-7271). [CrossRef]

[20] Redmon, J., & Farhadi, A. (2018). YOLOv3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.

[21] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).
YOLOv4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934.

[22] Jocher, G., Stoken, A., Borovec, J., Changyu, L., Hogan,
A., Diaconu, L., ... &Dave, P. (2020). ultralytics/yolov5:
v3. 0. Zenodo. Retrieved from https://ui.adsabs.harvard.ed
u/link_gateway/2020zndo...3983579J/doi:10.5281/zenodo.3
983579

[23] Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang,
B., ... & Chu, X. (2023). YOLOv6 v3.0: A full-scale
reloading. arXiv preprint arXiv:2301.05586.

[24] Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M.
(2023). YOLOv7: Trainable bag-of-freebies sets new
state-of-the-art for real-time object detectors. In 2023
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 7464-7475). [CrossRef]

[25] Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics
YOLOv8. GitHub repository. Retrieved from https://gi
thub.com/ultralytics/ultralytics

[26] Wang, C. Y., Yeh, I. H., & Liao, H. (2024). YOLOv9:
Learning what youwant to learn using programmable
gradient information. arXiv preprint arXiv:2402.13616.

[27] Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J.,
& Ding, G. (2024). YOLOv10: Real-time end-to-end
object detection. arXiv preprint arXiv:2405.14458.

[28] Li, W., Hsu, C. Y., & Tedesco, M. (2024). Advancing
Arctic sea ice remote sensing with AI and deep
learning: Opportunities and challenges. Remote
Sensing, 16(20), 3764. [CrossRef]

[29] Cheng, G., Han, J., & Lu, X. (2017). Remote sensing
image scene classification: Benchmark and state of
the art. Proceedings of the IEEE, 105(10), 1865-1883.

[CrossRef]
[30] Rogers, M., Fox, M., Fleming, A., Zeeland, L.,

Wilkinson, J., & Hosking, S. (2024). Sea ice detection
using concurrent multispectral and synthetic aperture
radar imagery. Remote Sensing of Environment, 305,
114073. [CrossRef]

[31] Sandven, S., Spreen, G., Heygster, G., Girard-Ardhuin,
F., Farrell, S., Dierking, W., & Allard, R. (2023). Sea
ice remote sensing—Recent developments in methods
and climate data sets. Surveys in Geophysics, 44(5),
1653-1689. [CrossRef]

[32] Hu, Y., Hua, X., Yan, Q., Liu, W., Jiang, Z., &Wickert, J.
(2024). Sea ice detection from GNSS-R data based on
local linear embedding. Remote Sensing, 16(14), 2621.
[CrossRef]

[33] Liu, L., Dong, X., Lin, W., & Lang, S. (2023). Polar sea
ice detection using a rotating fan beam scatterometer.
Remote Sensing, 15(20), 5063. [CrossRef]

[34] Jafari, Z., Bobby, P., Karami, E., & Taylor, R. (2025).
Machine learning-based detection of icebergs in sea
ice and openwater using SAR imagery. Remote Sensing,
17(4), 702. [CrossRef]

[35] Xiong, Y., Wang, D., Fu, D., & Huang, H. (2023).
Ice identification with error-accumulation enhanced
neural dynamics in optical remote sensing images.
Remote Sensing, 15(23), 5555. [CrossRef]

[36] Chai, Y., Ren, J., Hwang, B., Wang, J., Fan, D., Yan, Y.,
& Zhu, S. (2021). Texture-sensitive superpixeling and
adaptive thresholding for effective segmentation of
sea ice floes in high-resolution optical images. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14, 577-586. [CrossRef]

[37] Qiu, Y., Li, X. M., & Guo, H. (2023). Spaceborne
thermal infrared observations of Arctic sea ice leads
at 30 m resolution. The Cryosphere, 17(7), 2829-2849.
[CrossRef]

[38] Liang, S., Zeng, J. Y., Li, Z., Chen, K. S., & Zhang,
P. (2020). Assessment of four passive microwave
sea ice concentrations by using automatic MODIS
sea ice classification. In IGARSS 2020-2020 IEEE
International Geoscience and Remote Sensing Symposium
(pp. 3039-3042). [CrossRef]

[39] Ding, S., Zeng, D., Zhou, L., Han, S., Li, F., & Wang,
Q. (2023). Multi-scale polar object detection based on
computer vision. Water, 15(19), 3431. [CrossRef]

[40] Hu, J., Shen, L., & Sun, G. (2018).
Squeeze-and-excitation networks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(pp. 7132-7141). [CrossRef]

[41] Zhang, H., & Zhang, S. (2023). Shape-IoU: More
accurate metric considering bounding box shape and
scale. arXiv preprint arXiv:2312.17663.

[42] Guo, Q., Pan, X. & Tang, T. (2023). DSmT-DS
Multi-Source Uncertainty Reasoning Methodology.
Multi-source Uncertain Information Reasoning Technology,

98

https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://ui.adsabs.harvard.edu/link_gateway/2020zndo...3983579J/doi:10.5281/zenodo.3983579
https://ui.adsabs.harvard.edu/link_gateway/2020zndo...3983579J/doi:10.5281/zenodo.3983579
https://ui.adsabs.harvard.edu/link_gateway/2020zndo...3983579J/doi:10.5281/zenodo.3983579
https://doi.org/10.1109/CVPR52729.2023.00721
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.3390/rs16203764
https://doi.org/10.1109/JPROC.2017.2675998
https://doi.org/10.1016/j.rse.2024.114073
https://doi.org/10.1007/s10712-023-09781-0
https://doi.org/10.3390/rs16142621
https://doi.org/10.3390/rs15205063
https://doi.org/10.3390/rs17040702
https://doi.org/10.3390/rs15235555
https://doi.org/10.1109/JSTARS.2020.3040614
https://doi.org/10.5194/tc-17-2829-2023
https://doi.org/10.1109/IGARSS39084.2020.9324590
https://doi.org/10.3390/w15193431
https://doi.org/10.1109/CVPR.2018.00745


Chinese Journal of Information Fusion

(pp. 59-60).
[43] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural

machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

[44] Jaderberg, M., Simonyan, K., Zisserman, A., &
Kavukcuoglu, K. (2015). Spatial transformer networks.
arXiv preprint arXiv:1506.02025.

[45] Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018).
CBAM: Convolutional block attention module. In
Proceedings of the European Conference on Computer
Vision (pp. 3-19). [CrossRef]

[46] Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y.,
Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new
backbone that can enhance learning capability of
CNN. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (pp. 1571-1580).
[CrossRef]

[47] Zhang, X., Zeng, H., Guo, S., & Zhang, L. (2022).
Efficient long-range attention network for image
super-resolution. In European Conference on Computer
Vision (pp. 649-667). [CrossRef]

[48] Yu, J., Jiang, Y., Wang, Z., Cao, Z., & Huang, T.
S. (2016). UnitBox: An advanced object detection
network. In Proceedings of the 24th ACM International
Conference on Multimedia (pp. 516-520). [CrossRef]

[49] Rezatofighi, H., Tsoi, N., Gwak, J. Y., Sadeghian, A.,
Reid, I., & Savarese, S. (2019). Generalized intersection
over union: A metric and a loss for bounding box
regression. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 658-666). [CrossRef]

[50] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D.
(2020). Distance-IoU loss: Faster and better learning
for bounding box regression. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(07), 12993-13000.
[CrossRef]

[51] Zhang, Y. F., Ren, W., Zhang, Z., Jia, Z., Wang, L.,
& Tan, T. (2022). Focal and efficient IOU loss for
accurate bounding box regression. Neurocomputing,
506, 146-157. [CrossRef]

[52] Gevorgyan, Z. (2022). SIoU loss: More powerful
learning for bounding box regression. arXiv preprint
arXiv:2205.12740.

[53] Tong, Z., Chen, Y., Xu, Z., & Yu, R. (2023). Wise-IoU:
Bounding box regression loss with dynamic focusing
mechanism. arXiv preprint arXiv:2301.10051.

[54] Zhang, H., Xu, C., & Zhang, S. (2023). Inner-IoU:More
effective intersection over union loss with auxiliary
bounding box. arXiv preprint arXiv:2311.02877.

[55] Tzutalin. (2021). LabelImg. PyPI. Retrieved from https:
//pypi.org/project/labelImg/

Yang Liu received the B.S. degree in computer
science and technology from Suzhou
City University, 264005, China, in 2020.
(yangliu0911@s.ytu.edu.cn)

Qiang Guo received the PhD. degree in
information and communication engineering
from Naval Aeronautical University, and
is currently an associate professor at
the School of Computer and Control
Engineering at Yantai University. His
research interests include satellite image
processing, radar signal processing, and
multimodal data fusion, 264005, China, in
2015. (guoqiang@ytu.edu.cn)

Chengguo Dong male, lecturer at the
School of Architecture and Engineering
of Weifang University of Science and
Technology, obtained a Master’s degree in
Transportation Engineering from Shandong
University of Technology in 2012. His research
interests include transportation planning
and management, as well as engineering
surveying. (dongchengguo@wfust.edu.cn)

Yiping Luo female, senior engineer at Deep
Space Exploration Laboratory, obtained a
doctor degree in Aerospace Remote Sensing
Engineering from the Information and
Engineering University in 2010. Research
direction: deep space exploration and remote
sensing. (luoyiping_nj@126.com)

99

https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1007/978-3-031-19790-1_39
https://doi.org/10.1145/2964284.2967274
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1016/j.neucom.2022.07.042
https://pypi.org/project/labelImg/
https://pypi.org/project/labelImg/

	Introduction
	Related Work
	Attention Mechanism
	YOLOs
	Modules and Network Architecture
	Loss Function Utilized in Bounding Box Regression


	Methodology
	An Attention-Based Fusion Module
	Selection of Boundary Regression Loss Function Based on Sea Ice Size Characteristics
	An Evidence Fusion Module for the Correction of Sea Ice Categories
	Convert the Information Predicted by YOLOv8 into Evidence Characterizing Uncertainty


	Experiments
	Data Collection
	A Sea Ice Dataset Derived from NWPU-RESISC45 
	An Landsat8-based Sea Ice Dataset

	Implementation Details
	Comparison with State-of-the-Arts
	Experimental Results Utilizing the NWPU-RESISC45 Dataset
	Experimental Results Utilizing the Landsat 8-Based Sea Ice Dataset

	Model Analyses
	Ablation Study
	Analyses for An Attention-Based Fusion Module
	Analyses for Loss Function
	Analyses for Evidence Fusion


	Conclusion
	Yang Liu
	Qiang Guo
	Chengguo Dong
	Yiping Luo


