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Abstract
Thewide-ranging expansion of smart grid networks
has resulted in insurmountable difficulties that
must be overcome to ensure the security and
reliability of crucial energy infrastructures. The
information system can be subjected to threats
such as cyber-attacks or hardware malfunctioning
resulting in a data integrity compromise which
implies that the system will consequently not
operate correctly. Anomaly detection methods
that are relying on centralized data aggregation
are problematic to the issues of data privacy
and scalability resulting from such approaches.
In this paper, we present a completely distinct
approach that is based on federated learning
that is employed in anomaly detection of smart
grid networks that makes it possible to learn
collaboratively in a decentralized way and in
the same time protecting user privacy through
connections between many grid nodes. The
method integrates multi-source information fusion,
incorporating smart meter readings, IoT sensor logs,
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and substation performance metrics to enhance
anomaly detection accuracy and robustness. Tests
show that the system is among the top or the
best systems that have successfully identified
a wide range of anomalies, have required low
communication overhead, and have exhibited
scalability. These findings imply that the use of
federated learning presents an attractive direction
for future work on the enhancement of the security
and resilience of smart grid networks amidst
changing threats.
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multi-source information fusion, smart grids,
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1 Introduction
The development of smart grids integrates advanced
information and communication technologies (ICT)
with traditional power systems and causes a radical
transformation of the global energy sector. The benefits
of smart grids are exceptionally good, such as better
energy efficiency, real-time monitoring, and the easy
integration of renewable energy sources. However,
because the smart grids are connected with each
other, they may become vulnerable to cyber-attacks,
system misconfigurations, or machine errors, which
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in turn will lead to crucial problems compromising
their reliability and security. In this scenario, anomaly
detection has become an important means to ensure
the stability and robustness of the smart grid [1].

Anomalies related to smart grids can be manifested as
variations from standard operational patterns, which
are normally caused by malicious intrusions, defective
hardware, or sudden ambient changes. For example,
during a cyber-attack that affects grid control systems,
unauthorized load shedding can occur which disrupts
power supply to millions of customers [2]. Similarly,
the malfunction of hardware such as sensor failures
can create erroneous data that endanger the grid’s
performance. This is the reason why timely detection
and mitigation of these anomalies are critical for
keeping the smart grids operational. Nevertheless, the
conventional techniques for anomaly detection, which
usually depend on centralized data analysis, are not
particularly suitable in the smart grids’ context due to
major limitations [3].

The data privacy problem is one of the big challenges in
centralized anomaly detection. Smart grids constitute
a large amount of sensitive data, among which
customer use patterns, grid performance parameters,
and device-specific information are included. The
accumulation of these data in a central location for
the purpose of analysis is an important privacy issue,
as it raises the risk of data breaches and unauthorized
access. Moreover, due to the very nature of the
data centralization process, considerable computing
resources and bandwidth are needed, which makes
it impractical for large-scale smart grid networks
that are composed of geographically dispersed nodes.
It is, therefore, imperative to implement anomaly
detection systems that are decentralized and capable
of preserving the privacy of customers [4, 5].

Federated learning is not only an adaptive
content-based data communication method but
also a promising approach to improving anomaly
detection after integrating classic methods of two data
sources. Unlike classic machine learning methods that
require all the data to be stored in a central location,
with federated learning the mobile devices or the local
devices are the ones that help the global model to be
trained without sharing their local data [6]. Due to
the fact that the data is decentralized, it is possible
to keep the data private, and at the same time, the
effectiveness of the method is increased through the
reduction of communication overhead, which is the
main reason why federated learning is very suitable

for smart grid applications. In this way, by displacing
a large amount of data to different sections of the grid,
federated learning gives the flexibility of the choice
of local processing of sensitive personal data thus
considerably preventing the likelihood of breaches
while high accuracy is maintained [7].

The application of federated learning to anomaly
detection in smart grids is a relatively new and
unexplored area, but it is promising. Smart grids
are composed of many different parts, such as
smart meters, sensors, actuators, and control systems,
which can produce continuous data streams. Thus,
identifying the threats in such a diverse environment
requires models that can learn from the different
datasets and at the same time take into consideration
the distinction of each node [8]. Federated learning is
able to realize a balance between local adaptability and
the global generalization of the model by enabling the
training ondifferent nodes using different training data
and also allowing the convergence of the actual model,
thereby proceeding individualized with training in
each node while contributing to a shared global model,
thus achieving the balance between local flexibility and
global uniformity [9, 10].

However, the use of federated learning for anomaly
detection in smart grids is not an easy task because
of the fact that several technical problems have to be
solved. The heterogeneity of data across different
nodes is one of the most important issues. Smart grid
nodes often work under different circumstances and
create data that are of different statistical significance,
this is also known as "data heterogeneity" which
can hinder the accuracy of the federated learning
models, leading to a situation that is not a clear one.
Moreover, the limited computational capacity of edge
devices such as smart meters and sensors restricts
the complexity of models that can be implemented,
this is another limitation. To address these problems
the developers should use the algorithms which are
not resource-intensive and also flexible enough to be
applied to smart grids [11, 12].

A crucial hurdle is still yet to be flattened, which
is ensuring that the federated learning mechanism
is not unearthed and is completely trustworthy.
The federated learning operation is susceptible to
adversarial infiltration like model poisoning and
gradient inversion. Since these updates are the bit
being changed by a node and a central server, it exposes
itself to this type of attack. This situation is a fall of
confidential information, a globalmodel, or antifederal

158



Chinese Journal of Information Fusion

flavoring. To combat these problems, a steadfast
detectability is set, the best analysts shall be chosen
and all-the-factors analysis shall be performed by
algorithms of high complexity, such as model privacy
based on blockchain technology or secure aggregation,
or differential privacy through integration with the
federated learning process [13].

To meet technical challenges, federated learning
shall further look at its capability to deliver useful
features, such as the unmasking of the anomaly
detection process in the smart grid. Anomalous
energy consumption on the smart grid often
proposes time-series analysis constrained by spatial
relationships that require sophisticated analytical
techniques to be resolved [14]. For smart grids to
experience features such as those patterns that are
reflected in the records, they must harness advanced
machine-learning algorithms that are to the level
of artificial networks such as deep neural networks,
recurrent neural networks, and graph-based methods.
Additionally, timely anomaly detection should be
prioritized in smart grids; the longer the delay in
recognizing them, the more serious their effects are.
So, the optimization of federated learning systems
must be done for minimum latency and maximum
responsiveness in order to guarantee timely detection
of anomalies [15].

The influence of federated learning integration on
smart grid networks is also projected to be an
overarching factor for the whole energy sector.
Federation learning gives such own resources of the
grid absolutely no vulnerability and they will be fully
secure from the guessing by outside attackers. This
situationmay foster a culture of trust in the continuous
development of smart grids by the stakeholders,
that is electric utility services, authorities, and local
communities. Such vivid tomes that have been created
as a result of federated learning can be a reference
for anticipating maintenance needs, implementing a
more optimal distribution of energy, and connecting
all sources of renewables leading to a green active
sustainable and productive power system.

This work suggests a federated learning framework
for smart grid anomaly detection integrated with
multi-source information fusion for enhancing
detection accuracy and robustness, based on detecting
abnormal electrical behaviour. In a broad sense, this
approach merges various sources of information (for
instance, smart meter readings, IoT sensor logs, and
substation performance metrics) to get a holistic view

of system emissions to mitigate irregularities but
at the same time, the data privacy is preserved. To
solve any hardware limitations, the use of lightweight
machine learning models optimized for the edge
computing devices has been proposed. At the
same time, real-time requirements will be fulfilled
through an adaptive parameter sharing mechanism
which ensures efficient updates without excessive
communication overhead. With the implementation of
the above-mentioned features, we are able to improve
the accuracy of smart grid anomaly detection in a
dynamic and decentralized environment, adaptability,
and efficiency.
This paper presents the following principal
contributions:
• This research presents a decentralized anomaly

detection procedure that allows a collective
learning processwhile safeguarding sensitive data
in smart grid networks.

• Proposed algorithm preserves the sensitivity
of the critical grid data by localizing it while
increasing the accuracy of the anomaly detection.

• Proposed federated model is evidenced to have
reached 94.8% accuracy, which is better than both
central and localmodels, on the dataset calledUCI
Smart Grid Stability.

• This research analyzes the communication
efficiency and security exposures resolving
upon threats such as adversarial attacks and the
antimicrobial poisoning of the model.

These contributions serve as the bedrock for an
all-around examination of the role of federated
learning in changing anomaly detection in smart grids
so that both the practical and technical challenges
may be addressed. In conclusion, as modern
energy systems become more dependent on smart
grids, the significance of powerful anomaly detection
mechanisms will become clearer. The solution of
federated learning which merges decentralization and
privacy in a collaborative way on distributed nodes
can shift the paradigm in this area. This paper has
addressed the design, development, and testing of
a distributed learning-based framework for anomaly
detection in smart grid networks, highlighting critical
issues and its capacity to improve grid resilience
and security. The aim of this research is to make a
contribution to the formulation of sophisticated, safe,
and sustainable energy systems that are capable of
meeting the requirements of the digital era.
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2 Literature Review
The area of smart grid network anomaly detection
has obtained substantial consideration owing to the
significant role of these systems in guaranteeing
the reliability and security of energy distribution.
The intrinsic complexity and interconnectedness of
smart grids necessitate the consideration of ingenious
strategies that could facilitate the efficient detection
of real-time anomalies by addressing issues such
as data confidentiality, expandable structure, and
computational time efficiency. Federated learning is
presumed to be a potent remedy for those problems
as it is a decentralized learning approach based on
the indirect use of raw data. This section could be
viewed as a literature survey of studies relative, and
the whole methodology of these studies including
the contributions, shortcomings, and admissibility to
smart grid networks for anomaly detection. The thrust
of each study is on such advances in the fields of
machine learning, privacy preservation, and outlier
detection in the power domain, as shown in Table 1.
The aim of the research conducted by Jithish et al.
[16] is to use Federated Learning (FL) for anomaly
detection in smart grids and therefore increase security
and dynamics at the same time. Paper distributed
credentials to large centers, and the privacy of
its processing was preferred by a majority of the
participants. In the study, a mechanism was proposed
in which smart meters define the local model of the
system and share only the parameters of the model
with a central server. The system guaranteed the
confidentiality of the users using secure protocols
such as SSL/TLS, while the performance was still
on the level of centralized systems. The research
showed that Federated Learning could be effectively
used for the reduction of resource consumption
and an improvement of real-time capabilities of
resource-constrained environments like smart meters.
Guato Burgos et al. [17] analyzed the literature in
the forums on the state-of-the-art AI techniques used
for anomaly detection in smart grids, focusing on
the evolution of frameworks and hybrid solutions
for the challenges caused by cybersecurity threats
and data anomalies. The research looked at
conventional machine learning techniques like support
vector machines, deep learning, hyperdimensional
computing, and federated learning. The role of
AI in the evolution from current to next-generation
smart grids is acknowledged, and the development
of data-agnostic solutions is mentioned. With the
additional focus on model-agnostic solutions, this

extensive survey outlines a plan on the use of
intelligent methods for smart grid anomaly detection.

Gude Prego et al. [18] investigated the use of
computational intelligence for security in information
systems, including anomaly identification in smart
grids. The research focused on the implementation of
cryptographic protocols, machine learning, and neural
networks for detecting sensitive areas in advanced
metering infrastructures. In the study, exemplary
techniques of reinforcement learning, and genetic
algorithms applied for federated learning were also
reported. The results also indicated the use of
such intelligence in the prediction of urban water
use, thus, the discipline’s approach across sectors
such as urban planning are being studied, along
with the improvement of the security and prediction
capabilities of smart systems.

Chatzimiltis et al. [19] was a university-based
team that conducted the research which aimed to
develop the methodology for the distributed Intrusion
Detection Systems (IDS) for smart grids which
included the development of a hybrid methodology
addressing the issues regarding the complexity
of heterogeneous data and the quality-of-service
requirements of the smart grid systems. The
study was based on two main principles. Firstly,
the adoption of Smart Meter IDS (SM-IDS) and
Neighbourhood Area Network IDS (NAN-IDS) was
proposed, which are based on the methodologies
of supervised learning and federated learning. The
success of these systems was measured by the two
most important parameters of the study which are the
detection rate and energy efficiency themanagement of
the big data anomalies. It is of paramount importance
that the distributed approaches that were put in
place were found to contribute to the security of the
grid as an infrastructure and total reliability of the
communication of the mains of the smart grid.

Shukla et al. [20] were a novel team that came up with
a newmethodology for anomaly detection in the smart
grids using the integration of a Linear Support Vector
Machine Anomaly Detection (LSVMAD) algorithm
with a private blockchain system. The various
components of this system were spread over the fog
computing environment and together they provided
for real-time based decision-making, with the barring
of process virtualization statements becoming miners
in this case. The LSVMAD algorithm was successful
in distinguishing anomalies in the fog computing
environment with the accuracy of 89% as compared
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Table 1. Comparison of literature on anomaly detection techniques in smart grids.

Author(s) Focus Area Key Findings Techniques/Approaches
Used

Jithish et al.
[16]

Anomaly detection
in smart grids using
Federated Learning
(FL)

FL-based anomaly detection,
ensuring privacy and improving
performance without central
data sharing.

Federated Learning,
SSL/TLS, Machine
Learning

Guato Burgos et
al. [17]

AI-based anomaly
detection in smart grids

AI techniques for anomaly
detection, emphasizing the need
for minimal data dependency
and hybrid solutions.

AI, Machine Learning,
Deep Learning,
Federated Learning,
SVM

Gude et al. [18] Computational
intelligence for security
in information systems

Investigated security, anomaly
detection, and cryptographic
protocols in smart grids, with a
focus on federated learning.

Computational
Intelligence,
Machine Learning,
Cryptography

Chatzimiltis et
al. [19]

Distributed Intrusion
Detection Systems
(IDS) for smart grids

SM-IDS and NAN-IDS models,
enhancing anomaly detection
performance using machine
learning and federated learning.

Distributed IDS,
Machine Learning,
Federated Learning

Shukla et al.
[20]

Blockchain-based
anomaly detection in
smart grids

LSVMAD algorithm and private
blockchain system for anomaly
detection, with high accuracy in
fog computing.

Blockchain, Linear
SVM, Fog Computing,
Anomaly Detection

to the existing systems because it was based on the
new technology of application of wireless power eerily
equal to the least but that the other activities were
carried out according to regular processes. The results
of the study showed that smart grids are more secure
and independent on the one side applications of
the fog computing technology and of the blockchain
technology on the other side.

Various studies have recently examined the application
of federated learning for the detection of anomalies
and security in smart grids. Specifically,Wen et al. [21]
provided a new technology called FedDetect, which
is a federated learning framework specifically aimed
at the identification of people already using electric
power illegally in smart grids and the protection
of the customers’ privacy. Their findings showed
that federated learning can be used effectively to
pinpoint fraudulent electricity usage patterns without
compromising personal data integrity. Yet, FedDetect
focused primarily on energy theft, whereas our work
encompasses a larger variety of anomalies, including
cyberattacks, hardware faults, and system instabilities.

Su et al. [22] also conducted a study that looked at
the federated learning of electric grids, where they
developed a gateway between the edge and cloud to

improve the overall performance of the aggregated
model. Although the results they got were secure and
reliable, the majority of the task was run upon the edge
and thus the cloud was not heavily used. By contrast,
our method is more advanced: it is more efficient
regarding both the quantity and speed of interaction
with the models and thus it is suitable for use in the
real-time detection of failures in large smart grids.

Earlier research was done that Integrated federated
learning in the smart grid applications however many
loopholes they had. Wen et al. [21] was rather
focused mainly on energy theft detection, which was
part of the larger anomaly detection tasks in smart
grids. The model introduced was not adaptable to
real-time stability issues due to hardware failures or
environmental changes. Likewise, Su et al. [22]
proposed a method for edge-cloud collaboration;
however, it resulted in extra network latency and
was heavily dependent on high computing resources
which made it inapplicable to lightweight smart grid
nodes. We have the edge comparing to all the
previous methods, for this we have implemented
low latency parameter aggregation, adaptive learning
mechanisms, and efficient edge computing-based local
model training which made our speed of learning
and variations high thus being able to have a more
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general detection framework and a scalable one for
anomaly detection. Based on these major papers, we
make further improvements in the use of federated
learning algorithms in smart grids by improving the
accuracy of anomaly detection (94.8% was achieved in
our experiments) and we also consider key problems
like data heterogeneity, long-term adaptability, and
computational efficiency.

3 Methodology
The methodology for anomaly detection in smart
grid networks using federated learning focuses on
decentralization, privacy protection, and fast response.
As smart grids grow, they face challenges such
as increased cyberattack threats, hardware failures,
and heterogeneous data caused by the diversity of
devices and various operating states. To tackle those
challenges, a good enough framework which can
gather distributed data, secure privacy and scalability
is needed. This research suggests a federated
learning-based strategy to detect anomalies in smart
grids, stressing on the efficient use of data, low
communication burden, and high accuracy in the
detection of anomalies.
At the heart of the suggested architecture is the
incorporation of multiple sources of information from
smart meters, IOT sensors, and substation controllers
in one entity. The data which is heterogeneous
in nature (such as voltage fluctuations, frequency
deviations, and power phase angles) is generated by
the smart meters which are then locally processed
and subsequently aggregated in the federated learning
model.

3.1 Information Fusion
The information fusion process involves the following
steps:
• Feature Alignment: The heterogeneity of the

databases creates the problem of how to process
these databases correctly as they have differences
which affect the training of the federated learning
model. Therefore, the data streams arrived at are
standardized and normalized that is the formats
in which they are sent are the same and, thus, they
are the same at the receiver’s side and this is what
determines the technologies that take part in the
federation.

Xaligned
i =

Xi − µi
σi

(1)

where Xi is the raw feature vector, µi and σi are

the mean and standard deviation of feature i for
standardization in Eq. (1).

• Temporal-Spectral Fusion: To put it another way,
the model works with two types of information
namely the characteristics which can be called
features, and historical information about how
the model reacts to different disturbances by
the power supply network as extracted from the
previous years’ operation datawhich is the second
option. So, the model, through both features and
historical data, can detect in both gradual and
abrupt ways anything which could be called an
anomaly.

Ftemporal−spectral(t) = λ1 · T (t) + λ2 · S(t) (2)

T (t): temporal features, S(t): frequency-domain
features, λ1 and λ2: fusion weights in Eq. (2).

• Hierarchical Model Integration: The information
obtained from the less complex yet inexpensive
sensors will be sent to the local edge nodes for
immediate.

Hfused =
1

L
ΣL
l=1Hl (3)

whereHl is the feature vector from hierarchy level
l, L total levels in Eq. (3).

This multi-source data fusion ensures that the anomaly
detection system is context-aware, capturing a holistic
view of the grid’s operational state.
Mathematically, the fusion process can be represented
as:

Ffinal = α · Ftemporal−spectral + β ·Hfused (4)

where T (x), S(x) and H(x) represent temporal,
spectral, and hierarchical components respectively,
and α, β, and γ are weighting coefficients optimized
through training in Eq. (4).
The basis of the approached methodology is the
decentralized character of federated learning.
Differently from traditional centralized machine
learning methods which bring all data to a center
of the repository, federated learning can use smart
meters, IoT sensors, and substation controllers to
collaboratively train a global model without exposing
the sensitive data. The approach is not only protecting
sensitive grid data but also fewer risks of data breaches
and unauthorized access. Each node locally processes
its local data separately and trains a local model that
captures its specific operational properties. These local
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Figure 1. Proposed model workflow.

models are part of a global model through periodic
communication, ensuring that the learning process is
simultaneously efficient and scalable.

This particular research employs the UCI Smart Grid
Stability Dataset, which is a publically accessible
dataset that has become a benchmark for various smart
grid studies. The dataset contains 10,000 instances
of grid stability indicators derived from power
system simulations, including voltage fluctuations,
phase angle deviations, frequency stability, and load
variations. These factors correlate directly with
real-world smart grid activities, which means that this
dataset is representative of the actual grid stability
environment. Each instance has a label of either

stable or unstable, allowing for a supervised anomaly
detection process. The capability of the dataset
to portray various grid behaviors, which include
normal and extreme operations, ensures that the
proposed model can generalize to the real-world smart
grid environment effectively. In the past, several
researchers have employed this dataset to evaluate
anomaly detection in smart grids [23]. Its wide
use in the literature confirms its applicability for the
assessment of the anomaly detection framework based
on federated learning that we proposed.

The data pipeline starts with the generation of raw
data by various components in the smart grid network,
including voltage and current measurements from
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smart meters, energy stability data from IoT sensors,
and performance metrics from substation controllers.
This data is inherently diverse, reflecting the specific
conditions of each component and its interaction with
the larger grid. The first step in the pipeline is
data preprocessing, where each node cleanses and
normalizes its local data. Preprocessing involves
removing noise, handling missing values through
imputation, and standardizing features to ensure
consistency across the network. This step is critical
for mitigating the effects of data heterogeneity, which
can hinder the convergence and accuracy of federated
learning models.

Following preprocessing, each node trains a local
anomaly detection model on its processed data.
Lightweight machine learning models, such as
decision trees and neural networks, are utilized
to balance computational efficiency with detection
accuracy. These models are designed to identify
deviations from normal patterns in the data, capturing
both temporal and spatial correlations. For example,
recurrent neural networks (RNNs) are employed to
detect temporal anomalies caused by sudden changes
in energy consumption, while convolutional neural
networks (CNNs) identify spatial anomalies related to
hardware malfunctions or environmental disruptions.

Once local models are trained, they are shared with a
central server in the form ofmodel parameters, not raw
data. The central server aggregates these parameters
using Federated Averaging (FedAvg), a widely used
algorithm in federated learning. FedAvg computes a
weighted average of the local models, incorporating
the contributions of each node based on the size and
quality of its data. The resulting global model is
then distributed back to the nodes for further training,
creating an iterative learning loop that improvesmodel
accuracy over time. This decentralized process ensures
that sensitive data remains localized while benefiting
from the collective knowledge of the network.

Strengthening the federated learning process is
augmented by implementing security protocols to
avert adversarial attacks. The use of techniques
such as secure aggregation, which encrypts model
updates during transmission, and differential privacy,
which adds noise to prevent inference of sensitive
information, is conducted to protect the federated
learning process. Blockchain technology is also
studied as a trusted framework to guarantee the
integrity and authenticity of model updates, in turn,
minimizing the scope for malevolence in the global

model.

In user acceptance testing, the intended marketing
campaign was tested with a sample survey of 100
participants to get their views about the proposal
product at a nationwide level, which was done
after developing the prototype of the product. The
scenarios analyzed revolved around various types of
cyberattacks such as the implementation of various
data injection attacks and denial-of-service (DoS)
type attacks, and the resultant physical anomalies
analogous to hardware failures and environmental
factors. Moreover, to quantify the insights the
system demonstrated regarding the detection of
the aberrations, performance metrics like accuracy,
precision, recall, and F1-score were calculated. In
addition, the communication load as well as the total
time needed to federate the learning process were
analyzed to guarantee the applicability of the solution
in real-time situations in energy distribution networks.

Figure 1 displays the proposed model’s workflow,
which demonstrates the incorporation of federated
learning into the smart grid network. The text at
the left part of the picture explains the main parts
of the smart grid, for instance, smart meters, IoT
sensors, and substation controllers which provide a
wide array of data types that include voltage, current,
and performance metrics. The individual devices at
every substation are responsible for carrying weather
and performance data through the different parts
of the dynamic power generation and consumer’s
utilities, which is the online training of the anomaly
detection methods. The right part of the image is
dedicated to the federated learning workflow, which
forms the basis of the local model training (the N party
processes or user nodes) and the feedback mechanism
of parameter sharing and the globalmodel aggregation
which are also sequential processes of the network.
This workflow guarantees significant learning and
adaption to altering grid conditionswhich allow for the
unique delinquencies to be achieved with the greatest
precision, in the shortest time.

The main component of this suggested model is
the control center including the detection engine.
The device analyzes faults on the electric grid,
taking advantage of a global federated learning
model. Following the detection of a fault, the
control center provides visual feedback and alerts to
the grid operators to warn them of possible faults.
Simultaneously, it triggers corrective actions, like
component isolation or load redistribution, to avert

164



Chinese Journal of Information Fusion

interruptions in grid operations. The proposed
system, which synthesizes real-time observation
with automated response systems, increases the
strength and reliability of smart grid networks in an
outstanding way.

Each smart grid node processes real-time stability
data and trains an anomaly detection model on its
own. These models utilize recurrent neural networks
(RNNs) to take into account the time-related
relationships of grid stability metrics, while
convolutional neural network (CNN) systems,
on the other hand, detect the spatial anomalies that are
caused by hardware malfunctions. The nodes transmit
their local anomalies as encrypted model parameters
in a method other than loosing raw data to a central
aggregator for processing. The server will then use the
central point of the distribution of the device network
applying FedAvg to mix the model updates from
the different nodes and as a result, the new anomaly
detection model will be globally the better one. The
holding process will occur at a fixed time scale, that is
controlled bandwidth and CPU consumption very low
and also, software detection of anomalies is conducted
only after active participation of the specialist on duty
is done. The model adapts to anomalous grid reasons
over time and through a combination of continuously
fine-tuning of the local models of the nodes based on
the variations of the anomaly trend received also from
grounds-on by grid design team at intervals and also
abnormal historical data entered to the grid database
from the local environment where in a small part
through another team members are involved. This
step gives the model a way to instantly cope with new
cyber risks and hardware faults while getting good
accuracy in recognition.

Multiple types of technology are part of the smart-grid
network, including Smart Meters and IoT Sensors, as
well as Controllers for substations. The nodes through
which multiple-source real-time data is generated are
processed locally before they share the data with
the federated learning model. Every node operates
as an independent entity in the grid infrastructure
and collaborates with other nodes in order to build
a global anomaly detection model. In our federated
learning, we use the method of Federated Averaging
(abbreviated to FedAvg) whereby the local model is
trained with the private data set, and model updates
are transmitted (as opposed to sending raw data)
to the central server. The server then aggregates
these updates, refines the global model, and then the
updated model is distributed to nodes for training.

This entire cycle continues until the model reaches
convergence. The UCI Smart Grid Stability Dataset
is the training and evaluation set here. This dataset
has been used in the form of real-time stability
indicators derived from the simulations of power
systems. It has four important features as follows:
Voltage Magnitude, Current Stability, Phase Angle,
and Frequency Stability. The samples in this data
are also labeled as either stable or unstable which
ensures that the model learns normal and anomalous
patterns. The anomaly detection model is trained by
using the Binary Cross-Entropy (BCE) loss function
for classifying. The loss function is defined as:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (5)

where yi is the actual label, and ŷi is the predicted
probability in Eq. (5).
The network of federated learning has 50 distributed
nodes that are each trained for five epochs with
local models before the sharing of the updates.
The aggregated model update is done every 10th
communication round. The reduction of uselessmodel
updates through the threshold-based synchronization
will bring optimization of communication efficiency.

Algorithm 1: Distributed training of global
anomaly detection model
Data: Local datasets Di for each node i, Global

modelMglobal, Number of communication
rounds T

Result: Final trained global anomaly detection
modelMglobal

initialization;
for t = 1 to T do

for i = 1 to N in parallel do
Train local modelMi(t) on Di;
Send model parameters θi(t) to the central
server;

end
At the server: Aggregate the model updates:
θglobal(t) = 1

N

∑N
i=1 θi(t);

Update global modelMglobal with θglobal(t);
Distribute updatedMglobal back to each node;

end

To summarize, through utilizing federated learning,
the methodology proposed has dealt with the problem
of anomaly detection in smart grids. Integration
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of data that are not centralized using the advanced
machine learning methods is what the framework
does in preserving data privacy; communications
are simplified and already accurate detection.
Plus, integration of the mechanisms of security
and real-time monitoring capabilities is certainly
the system’s potential to survive the challenge of
change threats. To show clarity, in addition to
potential fast exploitation patterns in Figure 1, the
proposed model is demonstrated as a scalable way in
improving the resilience and security of smart grid
networks through intelligent and sustainable energy
systems. Algorithm 1 illustrates the pseudocode of
the proposed Federated Learning-based anomaly
detection approach.

4 Results and Discussion
The UCI Smart Grid Stability Dataset was utilized
to evaluate the suggested federated learning model
to identify anomalies such as security breaches in
Smart Grid Networks. The combined capabilities of
both the machine learning classification technique
and statistical feature selection methods will help to
identify different types of anomalies such as attacks on
a Smart grid. In addition to providing a performance
comparison of the paradigms, the proposed Federated
Learning model was also evaluated against the
centralized part of the process and the local-only part
of the process, which were specific for the comparison
group. The metrics that are commonly used such as
accuracy, precision, recall, and F1 score were chosen
to describe the effectiveness of the system in the data
acquisition process.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-Score = 2 × Precision×Recall

Precision+Recall
(9)

where TP = True Positives, TN = True Negatives, FP
= False Positives, FN = False Negatives.
The experimental evaluation used three different
models for comparison:
1. Federated Learning (Proposed Model): Each

node trains a lightweight convolutional neural
network (CNN) model locally. The updates are
aggregated using the FedAvg algorithm.

2. Centralized Model: A deep neural network
(DNN) trained on all collected data at a central
server.

3. Local-Only Model: Individual nodes train models
without any collaboration or shared learning.

The UCI Smart Grid Stability Dataset has a total of
10,000 stability measurement instances. The instances
include stability indicators like voltage fluctuation,
phase angle deviations, and frequency disturbances.
The dataset consists of artificial cyberattack situations,
where the adversaries use the injection of false data
to manipulate stability metrics. Other examples of
anomalies include hardware failures, for instance,
sensor malfunctions, where data drift occurs due to
wrong readings. The federated learning model was
trained to detect these anomalies while maintaining
privacy by limiting sensitive data to the local nodes.
Table 2 shows the performance metrics for each model
for a quick glance. As can be seen, the highest accuracy
of 94.8% was achieved in the proposed paradigm,
followed by the centralized model with 92.3% and
then the local-only model pooling at 85.7%. Besides
accuracy, precision, recall, and F1-score metrics also
indicated the superiority of the federated model since
the precision, recall, and F1-score were 93.6%, 95.2%,
and 94.4%, respectively, for the federated model.
These results underlined the fact that the federated
learning approach was both data privacy-preserving
and lossless in nature as compared to the old school
centralized models.

Figure 2. Comparison of model performance.

In Figure 2, a graphical representation of the models’
performance in terms of accuracy and F1 score is
shown whereby the federated learning model is
illustrated as having the highest F1 score of 94.4%
which indicates its balanced ability to detect both real
positive abnormalities and to avoid false positives. The
importance of this capability is critical in smart grid
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Table 2. Anomaly detection results.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Federated Learning (Proposed) 94.8 93.6 95.2 94.4
Centralized Model 92.3 91.4 93.0 92.2
Local Only Model 85.7 84.2 83.5 83.8

environments where operational irregularities due to
unnoticed abnormalities and excess costs due to false
alarms become a glaring problem.

The evaluation of the real-time performance of
the federated learning framework was done by
comparing it with two approaches, CNN-DNN and
KNN, respectively the centralized deep learning-based
anomaly detection, and the local-only approach kNN
among them. As one of the approaches, the proposed
method was able to detect faults with an accuracy of
94.8% and alternative methods were the centralized
one (92.3%) and the local-only (85.7%). Furthermore,
the average time taken to detect the anomaly for
our proposed methodology was 0.74 seconds, which
is faster than the performance of centralized one
(1.12 seconds) and local-only as well (0.85 seconds).
Moreover, it is exhibited as an efficiency feature of the
model to detect faults rapidly and accurately, which
makes it appropriate for the real-time applications of
smart grids.

The performance of the suggested model may be
underscored by its ability to effectively utilize the
distinctive characteristics of each node’s data by
localized training and at the same time, receiving the
benefit of the aggregation of the global model. The
federated approach was the one easing the problem
of data heterogeneity that was a big obstacle for the
centralized model. The fact that the nodes kept their
data locally was a very nice aspect of the federated
learning model that saved privacy concerns which is
an urgent issue in smart grid applications.

The proposed model was evaluated using accuracy,
precision, recall, and F1-score, achieving results of
94.8%, 93.6%, 95.2%, and 94.4% respectively. Visual
comparisons (Figure 2) highlight improvements over
centralized and localmodels, reinforcing the efficacy of
our federated approach. Discussions should explicitly
detail reasons for performance improvement, such
as reduced data heterogeneity impacts and efficient
handling of privacy concerns.

Federated learning’s flexibility in communication
overhead and use of processing resources was not only

a great presence beside the accuracy but also the main
key to applying it to industrial point of view. The
lightweight models at the node level were established
in harmonywith the limited computational capabilities
of edge devices like smart meters and sensors. In
addition, the use of the parameter-sharing mechanism
allowed for minimizing the amount of data sent to the
central server, thereby lowering the bandwidth usage
and ensuring scalability for large-scale deployments.

Despite the excellent accuracy of the centralizedmodel
from the analysis, a few drawbacks were noticed. In
this manner, there are potential threats stemming from
both the need to collect personal information and the
fact that the central server and its data are vulnerable
to attacks. On the other hand, it was observed that
the centralized method was facing a major problem in
terms of data heterogeneity because the global model
could not flexibly respond to the local characteristics
of the individual nodes. These findings reveal the
necessity of the application of decentralized techniques
and namely federated learning for anomaly detection,
in systems that are distributed.

The community-only model, while securing data
privacy, recorded the lowest results across all measures.
The non-participating nodes limited its capability to
learn from the greater dataset which in turn caused
reduced accuracy and lower recall scores. This is
indicative of the value of federated learning, which
adds to the benefits of local training the intelligence of
the global model.

The findings of the test also showed the success of
the anomaly detection engine that was built into the
recommended framework. As shown in Figure 2,
through the global model the engine monitors the
whole network for anomalies in real-time, creating
alerts and diagrams to help grid operators identify
issues and solve them. This capacity for real-time
events is indispensable to maintain the resilient and
reliable operations of power grid systems particularly
against the potential risks from cyber threats and errors
in the system.

The proposed multi-source data fusion methodology
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resulted in marked improvements in the accuracy
of identifying anomalies by relying on spatially
and temporally correlated information across grid
nodes. In our experiments, models trained with
single-source data (smart meter or substation-only
features) achieved an accuracy of 89.5%, whereas the
fused multi-source model attained the best target of
94.8% accuracy. And 17% of the false alarms were
also reduced, as the fusion process dampened the
effect of isolated sensor noise. The results prove
that the diversity of information sources is the basis
of effective decision-making, and thus the federated
learning model is more resilient against adversarial
data injection attacks and transient grid phenomena.

The proposed federated learning framework is
structured in such a way that it can keep on updating
itself with newly collected data from smart grid nodes.
This model provides the flexibility to adapt to the
changing conditions on the grid and new forms of
anomalies like emerging cyber threats and equipment
failures. Local models using the federated learning
approach can update their parameters in real-time,
resulting in the growth of a unified model unlike static
models which are essentially stored in a single location
simply to be trained in batches.

Nonetheless, federated learning is the first step to the
development of this model but changes should be
made to guarantee that it works efficiently in the long
run. Some continuous learning techniques such as
elastic weight consolidation (EWC) and experience
replay could be introduced to stop the phenomenon
of catastrophic forgetting and keep model updates
seamless. On top of that, finite history-based
reinforcement learning anomaly detection could be
applied to change the threshold for anomalies to suit
the tendencies shown in charts. The future projects
will be concentrated on putting these techniques into
practice so that theymay significantly develop both the
agility and strength of federated learning modeling in
a dynamic smart grid environment.

To sum up, the proposed federated learning
framework demonstrates the potential in overcoming
the challenges of the anomaly detection in smart
grids. Being data privacy-oriented, scaling well, and
detecting with high accuracy, this framework could
be a viable option for energy supply assurance and
stability in modern energy systems. There will be
research in the future which will seek the integration
of advanced methods such as differential privacy and
trust frameworks based on blockchain technology

into federated learning in order to borrow from them
the strengths of the existing ones and help in their
vulnerability.

5 Conclusion
The goals of this study are to check most of the
challenges that big data poses to different smart
grid stakeholders. The above-mentioned advantages
make federated learning a viable candidate for a
decentralized anomaly-detection solution for the smart
grid. The presented framework fuses information
from multiple sources, collected from smart meters
(IoT sensors), and substation controllers, to improve
the accuracy of anomaly detection. Via decentralized
learning the model, b), which removes the need
for central storage and the associated risk of data
leakage. The federated learning model guarantees
that all components of the grid can contribute to
the global model while safeguarding their privacy
and independence. The developed model has been
found to be superior based on the results obtained
from the UCI Smart Grid Stability Dataset showing an
achievement of 94.8%, which is higher than that of both
the central models (92.3%) and the local-only models
(85.7%). Additionally, the fusion of information led
to a 17% reduction of false alarms, confirming the
relevance of such an approach in mitigating erroneous
anomaly detections.

While the proposed framework possesses several
advantages, it still has some limitations. One of the
most important factors affecting model convergence
is the existing heterogeneity of the data, which
can be highly diverse among the nodes. Also,
the delay in communication over the network is
still a major problem especially in vast situations
whereby the sending and receiving parties have
limited communication resources. In spite of the
implementation of e model updates prompted by
events, there is still a need for further improvements to
enable real-time responses. In addition, the federated
learning model remains vulnerable to adversarial
attacks such as model poisoning, which necessitates
the adoption of additional measures of security such
as the chaining of differentially private data. Future
research will explore the application of adaptive
federated learning techniques as well as secure
aggregation mechanisms that are intended to enhance
the anomaly detection process in smart grids for both
efficiency and security over the long term.
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