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Abstract
Extended target tracking in occlusion scenarios
often suffers from split errors due to sensor
limitations and complex target interactions, leading
to degraded tracking performance for autonomous
vehicles and surveillance systems. To address
this issue, in this paper, we propose a Gaussian
Wasserstein distance-enhanced spatio-temporal
similarity method for split error correction. We
first analyze the spatio-temporal characteristics of
split extended targets and model their geometric
uncertainties via elliptical Gaussian distributions.
Then, we integrate the Gaussian Wasserstein
distance into the clue-aware trajectory similarity
calculation framework to simultaneously capture
positional and shape discrepancies, and designs an
adaptive validation gate mechanism to dynamically
adjust the threshold for track splitting, enabling
accurate determination and fusion of split targets.
Finally, simulation experiments are conducted
to demonstrate the effectiveness of the proposed
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1 Introduction
Currently, with the deep and extensive popularization
of high-precision sensors in cutting-edge fields
such as autonomous driving, robot navigation, and
security monitoring, extended target tracking (ETT)
technology has emerged as a new research hotspot [1,
2]. Compared to the issue of traditional point
target tracking, extended target tracking encompasses
multiple information dimensions such as position,
shape and velocity, which undoubtedly poses more
stringent requirements on the accuracy and complexity
of tracking algorithms [3].
To achieve effective tracking of extended targets,
numerical methods have been addressed. For
example, Granstrom et al. [4] introduced probability
hypothesis density (PHD) filter and cardinalized
probability hypothesis density (CPHD) filter into the
ETT field. Then two measurement set partitioning
methods [5] were added into the filters in [4].
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(a) Simulation scene (b) Sensor distribution (c) Tracking results

Figure 1. An autonomous driving scenario: A car with radar and vision sensors is driving on a highway.
Due to the presence of occlusion, the truck is mistakenly recognized as two targets, resulting in a split situation.

Additionally, Habtemariam et al. [6] integrated the
measurement unit generation strategy with joint
probability data association (JPDA), thereby proposed
the multi-detection joint probability data association
(MD-JPDA) method. Zhang et al. [7] introduced
the cardinality balanced multi-target multi-Bernoulli
(CBMeMBer) algorithm and successfully conducted
the ETT task. In [8], the generalized labeled
multi-Bernoulli (GLMB) and Gamma Gaussian
inverse Wishart (GGIW) distributions were used to
precisely model the states and extension characteristics
of multiple extended targets. Then, the GGIW
Poisson model was ingeniously embedded into the
multi-Bernoulli filter to cope with the issue of
multi-extended target tracking [9]. Recently, an
approach based on irregular probability distributions
has also been proposed to cope with this issue [10].

However, when extended targets are occluded or
densely distributed, due to their non-point nature
and their complex interaction patterns in dynamic
environments, the methods mentioned above are
prone to trigger the challenging problem of target
splitting or merging during actual operation. For
example, in Figure 1(a), the radar of the car is occluded
by a motorcycle, resulting in the truck being identified
as two split targets, as shown in Figure 1(c). To
cope with this problem, the key lies in accurately
distinguishing whether the target has truly split or
it is merely false alarm.

A few related works have been proposed to address
the above problem. For visual targets, [11] detected
target splitting positions and segments trajectories

by stacking temporal dilated convolution blocks
and an adaptive Gaussian smoothing label strategy.
For missile targets, [12] constructed a mathematical
model for splitting event detection and tracking
within the joint integrated probabilistic data
association (JIPDA) framework, achieving point
target splitting determination and tracking through
probability calculations of splitting events. [13]
optimized the de-correlation time of group targets
using Pareto analysis based on the interactive
multiple model-unscented Kalman filter (IMM-UKF)
framework, which essentially performs data
association on point targets within group targets. It is
important to note that these methods only utilize the
position data of point targets. Directly applying them
in extended target tracking scenarios cannot fully
leverage the extended information of targets, leading
to poor performance. To the best of our knowledge,
there has been no work addressing the problem of
splitting and merging of extended targets so far.

Motivated by this, we aim to make use of extended
information and achieve accurate determination and
fusion of split targets. To this end, we first
analyze the extended target splitting problem with
PHD-based filters, and then present the similarity
of the track feature of extended targets. Next,
we expand spatio-temporal [14] based clue-aware
trajectory similarity (CATS) method to the ETT
issue by integrating the Gaussian Wasserstein (GW)
distance. Subsequently, we develop an extended target
split error correction algorithm.

In summary, the main contribution of this paper is the
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proposed method that can solve the splitting problem
of extended targets by using the spatio-temporal
trajectories and extended information of extended
targets. Furthermore, as far as we know, the method
presented in this paper is the first work to deal with
the issue of the split of extended target.
The organization of this paper is as follows. Section
2 describes the problem of extended target splitting
in detail. Section 3 analyzes the split tracks’
information. Section 4 elaborates on the proposed
splitting determination method. Section 5 builds
a simulation scenario to verify the effectiveness of
proposed method. Section 6 summarizes the entire
paper.

2 Problem Formulation
2.1 Extended Target Modeling
In this paper, a two dimensional ellipse is used to
represent an extended target. The extended target state
ξ is defined as a triple:

ξ , (γ,x, X) (1)

where γ > 0 represents the measurement rate, x =
[p, v, ω]T ∈ R5 represents the kinematic state, which
includes its position p ∈ R2, velocity v ∈ R2 and
turn-rateω ∈ R1 that characterizes the rate of alteration
in the direction of the velocity vector v, where Rn
denotes the set of real n vectors. X represents the
extended geometric information that includes the
shape, size and direction of the ellipse extended target
and

X = R ·D ·RT ,

[
(r1)

2 σ
σ (r2)

2

]
∈ S2++ (2)

where Sn++ denotes the set of symmetric positive
definite n × n matrices. The rotation matrix R and
the diagonal matrix D are represented as follows:

R =

[
cos(α) − sin(α)
sin(α) cos(α)

]
D =

[
(r1)

2 0
0 (r2)

2

]
(3)

where α is the rotation angle of the ellipse, r1 and r2
are defined as the major/minor axes of the ellipse and
σ controls the rotation.

2.2 Extended Target Tracking Method
PHD-based filters are widely used in the field of
multiple extended target tracking, such as GGIW-PHD
andGGIW-CPHDfilters [15]. In order to formulate the
problem of target splitting, we take PHD-based filter

as the front-end process. Assume that GGIW-PHD
filter [16] will output an extended target track set with
labels. Specifically, at time step k, the track information
obtained from the front-end tracker is represented as
Tk = {T lk}Ll=1, where L is the total number of tracks in
the set. Each element T lk is defined as:

T lk = (tlk; ξ
l
k;A

l
k; l) (4)

where l is the unique index (it is referred to as
label in the following text) of each track, tlk denotes
the extended target detection time, ξlk denotes the
extended target state, Alk denotes the "age" that target
exists.
By grouping together the elements from different time
steps with the same label l, we can obtain the track
sequence arranged in chronological order:

T l = {T lk}Ttk=St (5)

where St and Tt denote the start and end time step of
track l sequence. It should be noted that in this paper,
track l sequence will be called "track" T l and T lk will
be called the "element" of track T l.

2.3 The Objective of This Paper
Consider the automatic driving scenario shown in
Figure 1. At time step k, in addition to the original
surviving target track T i with label i, there appears
a new track T j with label j, indicating the potential
emergence of a new extended target. Now, there are
three possibilities for this new track:
1. It is split from the long-existing track T i, such

as the truck in Figure 1, which is split into two
targets.

2. It is a new track, such as the two-wheeled
motorcycle in Figure 1.

3. False alarm. That is:

j =


i, split

j, newborn

∅, false alarm
(6)

The formulated problem is how to accurately judge
which of the above three cases the new target state
belongs to. Therefore, the goal of this paper is to
propose an effective method to determine whether the
extended object is split or not, and if it is split, then
select an appropriate fusion method to fuse the two
tracks.
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3 Similarity Analysis of Track Feature
First of all, we will analyze the track feature of the split
extended targets in this section.
As described above, an elliptic extended target
information includes position p, detection time
t and geometric information X . This elliptic
can be interpreted as the following Gaussian
distribution [17]:

ET , N (p, egX) (7)

where eg is scaling factor relates to the tolerance region
that is user-defined. In addition, due to the uncertainty
of sensor measurement and data processing, the
detection time can also be considered to obey the
following Gaussian distribution:

NT , N (t, et4t2) (8)

where4t is time interval and et represents the scaling
factor.
Suppose that track T · which has already existed moves
in a two-dimensional plane, after being tracked by
the PHD-based filter, it splits into two tracks T i and
T j with distribution sets (ET i,NT i) and (ET j ,NT j),
then their center sets (pi, ti) and (pj , tj) can be
separately connected as a curve in a three-dimensional
plane, as shown in Figure 2.

Figure 2. An illustration of spatio-temporal prism structure.

It can be observed that, influenced by various
factors, there are deviations in the area where the
two distributions should overlap, and the deviation

shows the following characteristics: The deviations in
detection time are highly random, but the deviations
in spatial position are relatively fixed, and there are
slight deviations in the rotation angle. Additionally,
some measurement data are missing. Hence, if the
two tracks are originated from the same track, they are
actually a kind of spatio-temporal prism structure [18]
with a range of uncertainty. Thus, we can use the
similarity of historical track information to determine
the split possibility of extended target.
In order to determine the split possibility, the
clue-aware trajectory similarity (CATS) method based
on spatial and temporal information in [19] is chosen.
Its main idea is to find potential "matching points"
on the two tracks when evaluating the spatial and
temporal similarity. However, since it is inappropriate
to use the center point to represent the extent of an
ellipse, the direct application of the CATS method
will result in unsatisfactory outcomes. Therefore, we
propose a new method called GW-CATS to determine
the splitting of extended targets, which will be
elaborated in the next Section.

4 Extended Target Splitting Determination
Method

Before introducing the determination method, we first
introduce Gaussian Wasserstein distance [17].
For elements T ia ∈ T i and T jb ∈ T j , they can
construct two elliptical extended targets subjected to
the following Gaussian distributions:

ET ia = N (pia, X
i
a)

ET jb = N (pjb, X
j
b )

(9)

The Gaussian Wasserstein distance between the two
extended targets provides the similarity measure
metric that is defined as:

dGW (ET ia, ET
j
b) =√√√√‖pia − pjb‖22 + Tr

(
Xi
a +Xj

b − 2

√√
Xi
aX

j
b

√
Xi
a

)
(10)

where Tr(·) represents the trace operator.
This metric simultaneously captures positional offsets
and quantifies the congruence between the two targets’
shapes through their covariance matrices. In this
article, dGW (ET ia, ET

j
b) will be represented by the

shorthand notation dGW (T ia, T
j
b ).
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The main idea of the CATS method is to evaluate
the spatial and temporal similarity of different tracks.
The core workflow is as follows: First, temporal
and spatial thresholds are set to filter elements
contained in the two tracks, selecting element pairs
from different tracks that are temporally and spatially
close. Subsequently, the spatial distances between
these element pairs are normalized to identify themost
similar pairs. Lastly, the similarity between two tracks
is computed as the average of all normalized similarity
scores of their best-matching element pairs.
Since CATS handles point targets through Euclidean
distance, it fails to account for extended target.
Thus, we propose the GW-CATS method that
addresses this limitation by incorporating geometric
information, enabling a more reasonable use of
extended information. The detailed implementation
of the proposed method is as follows.
At time step k, suppose that the track information
is obtained from the front-end tracker. Thereinto,
T j represents a newborn track and T i represents an
existing track. In order to calculate the similarity
between track T i and track T j , the following four-step
process is adopted as follows:
Step 1: Spatio-temporalMatching Elements Finding

Given a spatial threshold ε, a time threshold τ , two
elements T jb ∈ T j and T ia ∈ T i, if T jb and T ia satisfy the
following conditions:

(1) |tjb − tia| ≤ τ , (2) dGW (T jb , T
i
a) ≤ ε,

then we call T ia is the spatio-temporal matching
element of T jb and {T ia → T jb } is a spatio-temporal
matching pair.
Similar to the CATS method, we set a time threshold
ε and a space threshold τ to compensate for
the uncertainty of target kinematics and sensor
measurements. Due to the existence of extended
target velocity information, After the determination of
user-defined time threshold ε according to the actual
situation, the spatial threshold τ can be calculated by
the following method.
As shown in Figure 3, the initial center position
of extended target T jb is set as pjb, its speed is vjb ,
and turning rate perpendicular to the direction of
the velocity vector is wjb . After passing time τ , the
center of the target T (τ)jb reaches the position p(τ)jb.
Since τ is relatively small, the target speed can be
approximated as constant during the motion. Then,

Figure 3. Geometric illustration of the spatial threshold.

the Euclidean distance D between point pjb and p(τ)jb
can be expressed as:

D = ||pjb − p(τ)
j
b||2 =


2||vjb ||2
wj

b

sin(
wj

bτ

2 ) (wjb 6= 0)

||vjb ||2 × τ (wjb = 0)

(11)
where || · ||2 denotes the 2-norm operator. Using D
as the radius, a validation gate is constructed to filter
spatially irrelevant elements, as shown in gray part
in Figure 3. Since τ is relatively small, the elliptical
rotation angle α = wτ remains minimal. By neglecting
rotational effects, we derive:

ε = dGW (T jb , T (τ)
j
b) ≈ D (12)

The detailed derivation is provided in Appendix.
Step 2: Similarity Calculation of Matching
Elements

For any elements in the reference track, the number of
matching elements from other tracks may be zero, one,
or multiple.
To distinguish matching elements and find the most
similar matching pair, we quantify similarity scores
through numerical normalization to the range [0,1],
enabling optimal matching selection. Thus, the
similarity of matching elements are calculated as
follows [20] :

fε,τ (T
i
a → T jb ) = 1−

dGW (T jb , T
i
a)

ε
(13)

where T ia is a matching element of T jb and the value
range of the function fε(T ia → T jb ) is limited in [0,1].
The closer the position and geometric information
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of two ellipses are, the larger this function value is,
indicating greater similarity. If two extended targets
are exactly the same, this function’s value equals to 1.
For brevity, fε(T ia → T jb ) will be abbreviated to fai→bj .
Step 3: Best Matching Element Confirm

After similarity calculation, we can confirm the best
matching element of T jb . Suppose that track T i

contains n elements, for T ia ∈ T i, if:
fε,τ (T

i
a → T jb ) = Max{fε,τ (T iq → T jb ) |

Tt
q=St} (14)

then we call T ia the best matching element of T jb , where
T iq represents any matching element of T jb in track T i.
Best matching element pairs are defined as those that
optimally capture the same kinematic characteristics.
When two tracks are hypothesized to originate
from the same physical target, our objective is to
systematically identify these optimal element pairs,
thereby enabling the subsequent processing step.
Step 4: Similarity Calculate of Two Tracks

Finally, after the above three steps, we obtain the
best matching elements and matching values of each
elements in track T j . The inter-track similarity
is determined by aggregating and averaging the
normalized similarity scores across all matched
element pairs. Thus, the spatio-temporal similarity
of track T i to track T j is defined as:

Sε,τ (T
i → T j) =

1

|Tj |
×

Tt∑
b=St

fε,τ (T
i
a → T jb ) (15)

where |T j | refers to the number of elements in T j and
T ia is the corresponding best matching element of T jb .
For brevity, Sε,τ (T i → T j) will be abbreviated to Si→j .
In summary, a complete pseudocode implementation
of the proposed method is provided in Algorithm 1.
For any newborn track T j , its similarity score Si→j
with respect to each established independent track T i
can be systematically computed through Algorithm 1.
By establishing a similarity threshold µ, we implement
the following decision rule:
• If Si→j > µ, tracks T i and T j are considered to

represent the same physical target.
If two tracks are determined to be similar, the
Monte Carlo Minimum Mean Gaussian Wasserstein
(MC-MMGW) method can be used to fuse the
information of the two extended targets. For the
specific details of the fusion method, please refer to
reference [21].

Algorithm 1: GW-CATS Method for track splitting
determination
Input : Track T i, T j , Temporal threshold τ .
Output :Similarity score Si→j .
totalscore← 0;
for b = 1 to length(T j) do

bestscore← 0;
Calculate D via (11);
ε← D;
// Search candidate track elements
for a = 1 to length(T i) do

if abs(T i(a).time− T j(b).time) > τ then
Continue;

end
d← dGW (T i(a), T j(b));
if d > ε then

Continue;
end
// Update best matching score
f ai→bj ← 1− d

ε , see (13);
if f ai→bj > bestscore then

bestscore ← f ai→bj ;
end

end
totalscore ← totalscore + bestscore;

end
Si→j ← totalscore

length(T j)
;

return Si→j

5 Numerical Experiments
In this section, we set a highway autonomous
driving simulation scenario to evaluate the proposed
GW-CATS method. We used the optimal sub-pattern
assignment (OSPA) [22] and generalized optimal
sub-pattern assignment (GOSPA) [23] as evaluation
metric to Verify the effectiveness of the proposed
GW-CATS method.

5.1 Simulation Scene Settings
Given k = 136 time steps, t = 13.6s in total, we first
set up the simulation scenario. The scenario is set in
two-dimensional three-lane highway with lane width
3.5 m. The road centerline coordinates is [0 0 ; 50 0
; 100 0 ; 250 20 ; 400 35]m. There are a total of five
vehicles on the highway, and they all travel along the
corresponding lane. Target parameters are listed in
Table 1.
Specifically, target 4 represents a motorcycle, target 1
is a truck, Target 2 and 3 are standard vehicles. The
RadarCar is an autonomous vehicle equipped with
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Table 1. Target parameters.

Parameter Dimensions Velocity Lifetime
(m2) (m/s) (s)

RadarCar 4.7×1.8 25− t
20 0.1-13.6

Target 1 4.7×1.8 25 0.1-13.6
Target 2 2.0×1.0 24 0.2-13.6
Target 3 4.7×1.8 26 0.3-13.6
Target 4 9.3×2.2 35− t2

142 0.1-13.6

four radars, and radar parameters are listed below:
• Left/Right radars: 160° detection angle, 30 m

range.
• Front/rear radars: 30° detection angle, 50 m range.
• Detection probability Pd = 0.9.
• False alarm rate λfa = 1× 10−6.
• Clutter intensity λck = 8 (Poisson point process

distribution).
The GGIW-PHD filter is used to track these targets, its
corresponding parameters are shown in Table 2. For
the specific introduction of the parameters, please refer
to [16].

Table 2. GGIW-PHD filter parameters.

Parameter Value

Birth rate 1× 10−3

Death rate 1× 10−6

Assignment threshold 220
Extraction threshold 0.8

Confirmation threshold 0.95
Deletion threshold 1× 10−3

Labeling threshold [1.1 1 0.8]
Merging threshold 50

5.2 Experimental Results
A.Selection of Time Threshold

The selection of time threshold is a process that
combines experience and mathematical principles. In
GW-CATS method, the physical meaning of the time
threshold τ is the maximum acceptable time interval
between the split target and the original target, and
its value is based on the theory of spatio-temporal
trajectory similarity: if two trajectories originate from
the same target split, their spatio-temporal distribution
should maintain continuity in finite time.

Taking the simulation scenario in this section as an
example, the speed of the split truck is 25m/s and its
length is 10m, then the time required for the target
to completely cross its own length is 10 ÷ 25 = 0.4s.
Considering the geometric uncertainty of the elliptical
target after splitting, τ = 0.5s is finally selected as the
equilibrium value. In order to verify the rationality
of the threshold, a comparative experiment of τ ∈
[0.1, 1.5]s is designed, and the key parameters are set
as follows:
• Similarity threshold µ = 0.7.
• Time threshold τ = 0.1− 1.5s.
• Newborn target validation step ksim = 4.

The experiments show that the tracking performance
is optimal when τ ∈ [0.4, 0.7]s. When τ < 0.4s, the real
split targets cannot be merged due to the excessively
narrow time window, and when τ > 0.7s, adjacent
targets are prone to false merging. Under different
τ value, the OSPA metric are shown in Figure 5. In
what follows, τ of the proposed GW-CATS method is
uniformly taken as 0.5s.
B. Single-Run Results

Figure 4(a) shows the GGIW-PHD tracking results.
The detected targets are all represented in the form of
elliptical extended targets. It is evident that for target
1 (truck), a distinct segmentation issue occurs after it
is obstructed by target 4 (motorcycle), resulting in few
false newborn track (target 5-12).
As comparison, Figure 4(b) shows the result with the
proposed GW-CATS method. From k = 71 to k = 79,
the truck target split into several false targets. Some of
these false targets disappeared during their movement,
while others remained until k = 117. Taking target 6
generated at k = 72 as an example, after ksim iterations,
at k = 75, the similarity between new track 6 and tracks
1-4 is [0.845, 0.629, 0, 0.627], so the proposedGW-CATS
method decided to fuse target 6 and 1. Further, at
k = 97 and k = 117, the similarity between track 6 and
track 1 is 0.896 and 0.910, respectively, so the target
fusion process continued, and ultimately the proposed
GW-CATS method successfully completed the split
determination task. Futhermore, the fusion result is
shown in Figure 6.
C.Monte Carlo Results

To evaluate the performance of the GW-CATS method,
this section introduces the point-target based CATS
method and the global nearest neighbor (GNN)
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(a) Tracking results of the GGIW-PHD filter.

(b) Tracking results of the GGIW-PHD filter corrected by GW-CATS method correction.
Figure 4. Tracking results in single run simulation scenario.

Figure 5. Sensitivity analysis of time threshold for
GGIW-PHD filter corrected by GW-CATS method.

method for comparison with the proposed GW-CATS
method. The parameters of the GW-CATS method are
consistent with those described in 5.1. The specific
parameters of the CATS method are as follows:
• Spatial threshold ε = 10m.
• Time threshold τ = 0.5s.

The key parameter configurations of the GNNmethod
are as follows:
• Assignment threshold = 30.
• Detect/Miss Confirmation threshold = [4/5].
• Deletion threshold = 3.

We futher conducted 50 Monte Carlo (MC) trails
to demonstrate the effectiveness of the proposed

Figure 6. Fusion results. An inner tangent ellipse with the
length and width of the rectangle as axes is used to

represent the ground truth.

GW-CATS method. The tracking error evaluated by
the mean OSPA metric are shown in Figure 7. The
tracking error evaluated by the mean GOSPA metric
with p = 1 and c = 10m are shown in Figure 8.

It can be observed that the OSPA or GOSPA value
of the GGIW-PHD filter with GW-CATS correction is
greatly reduced when the split target is successfully
determined, compared with that of the original
GGIW-PHD filter, GNN method and CATS method.
It proves that the GW-CATS method can significantly
improve the tracking accuracy of extended targets in
occlusion scenes.
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Figure 7. OSPA metric over 50 MC trails, [*] represents the
GGIW-PHD Tracker.

Figure 8. GOSPA metric over 50 MC trails, [*] represents
the GGIW-PHD Tracker.

6 Conclusion
To address the splitting correction problem in extended
target tracking under occlusion scenarios, we propose
a novel track spliting determination method named
GW-CATS that integrates the GW distance with
spatio-temporal similarity analysis. Simulation
results demonstrate that the proposed method can
successfully determine the case of target splitting,
further reduces the OSPA metric in split scenarios and
achieves stable track fusion.

Appendix : The deviation of equation (11)

First, let us set time threshold τ , pjb = (x0, y0),
p(τ)jb = (xτ , yτ ), vjb = (vx, vy) and turn-rate wjb . Then,
the direction angle of the velocity vector at the initial
time is α = arctan(

vy
vx
), the angle of the target’s

rotation around the center of the circle is θ = ωjbτ and

the radius of the arc is r =
||vjb ||2
|wj

b |
. On the one hand,

when wjb 6= 0, it follows that

xτ = x0 + r(sin(θ + α)− sinα)

= x0 +
1

|wjb |
[sin(wjbt)vx + cos(wjbt)vy − vy]

yτ = y0 + r(− cos(θ + α) + cosα)

= y0 +
1

|wjb |
[− cos(wjbt)vx + sin(wjbt)vy + vx]

Then, the Euclidean distance D can be calculated by
the following formula

D2 =(xτ − x0)2 + (yτ − y0)2

=
1

wj2b
[(sin(wjbt)vx + cos(wjbt)vy − vy)

2+

(− cos(wjbt)vx + sin(wjbt)vy + vx)
2]

= sin2(wjbt)v
2
x + 2 sin(wjbt) cos(w

j
bt)vxvy−

2 sin(wjbt)vxvy + cos2(wjbt)v
2
y − 2 cos(wjbt)v

2
y + v2y+

cos2(wjbt)v
2
x2 sin(w

j
bt) cos(w

j
bt)vxvy + 2 cos(wjbt)v

2
x

+ sin2(wjbt)v
2
y + 2 sin(wjbt)vxvy + v2x

=
1

wj2b
[2v2 − 2v2 cos(wjbt)]

=
4v2

wj2b
sin2(

wjbt

2
)

Furthermore, on the other hand, when wjb = 0, the
velocity displacement formula can be directly applied
for the calculation. Hence, it follows that:

D =


2||vjb ||2
wj

b

sin(
wj

bτ

2 ), wjb 6= 0

||vjb ||2 × τ, w
j
b = 0
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