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Abstract
The joint integrated probabilistic data association
(JIPDA) filter is effective for automatic multi-target
tracking in cluttered environments. However,
it is well-known that when targets are closely
spaced, the JIPDA filter encounters the track
coalescence problem, leading to inaccurate state
estimations. This paper proposes a novel particle
swarm optimization-based JIPDA (PSO-JIPDA)
algorithm, which improves the state estimation
accuracy by optimizing the posterior probability
density, effectively addressing the information
fusion challenge in multi-target tracking scenarios
with closely spaced targets. The trace of the
covariance matrix of the posterior density serves
as the objective function for the optimization
problem. Minimizing the trace enhances the
accuracy of target state estimation by refining
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the posterior density. Specifically, all possible
permutations of the targets are enumerated, with
each permutation assigned a unique index. These
indices are mapped to association hypothesis
events within a probabilistic fusion framework,
where each mapping corresponds to a particle in
the PSO algorithm. The particles are initialized
by stochastically assigning indices to hypothesis
events, forming the initial swarm. During iterations,
the particles dynamically adjust their positions and
velocities based on individual and global optimal
solutions, guided by the trace minimization
objective. Experimental results demonstrate that
the PSO-JIPDA algorithm significantly improves
the accuracy of Gaussian approximation and makes
notable progress in addressing the track coalescence
problem.
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1 Introduction
Multi-Target Tracking (MTT) serves as a critical
technique in radar, sonar and other surveillance
systems [1, 2], with recent advances spanning deep
learning-based trajectory analysis [3], multi-sensor
fusion frameworks [4], and graph-based feature
representation [5]. The main challenge of MTT lies
in effectively resolving the data association problem
between targets and collected measurements. There
are two traditional MTT methods: the multiple
hypothesis tracking (MHT) filter [6, 7] and the joint
probabilistic data association (JPDA) filter [8]. While
MHT theoretically achieves near-optimal solutions by
maintainingmultiple association hypotheses over time,
its computational complexity grows exponentially
with the number of targets and measurements due
to the combinatorial hypothesis space. This makes
it challenging for real-time applications without
aggressive pruning and approximation techniques.
In comparison, JPDA reduces computational burden
through probabilistic weighting of association
hypotheses. However, it suffers from two inherent
limitations: (1) it assumes a fixed and known number
of targets during tracking; and (2) it is prone to track
coalescence in dense target environments.

The joint integrated probabilistic data association
(JIPDA) filter [9] plays a critical role in information
fusion for multi-target tracking by integrating
measurement data from different sensors and targets.
It extends the concept of target existence probability,
enabling joint estimation of data associations and
target existence states while efficiently handling
the fusion of probabilistic information. JIPDA
evaluates feasible measurement-to-track association
hypotheses, fuses their probabilistic weights, and
updates both target existence probabilities and state
estimates. By dynamically terminating tracks with
low existence probabilities (e.g., below a threshold),
this probabilistic framework allows JIPDA to adapt
to scenarios where the number of targets varies over
time. However, the JIPDA filter remains susceptible
to the track coalescence problem. This occurs when
targets are in close proximity, leading to overlapping
tracking gates and ambiguous data associations.
As a result, measurements from different targets
may be incorrectly weighted, biasing state estimates.
Prolonged proximity can cause merged tracks that
cannot be distinguished, even after targets are
separated. This limitation is particularly problematic
in dense target scenarios and restricts the practical
effectiveness of JIPDA.

To address the issue of track coalescence caused
by overlapping validation gates and the resultant
association uncertainty problem, we propose an
adaptive particle swarm optimization-based joint
integrated probabilistic data association (PSO-JIPDA)
filter. By optimizing the posterior association
probabilities, the proposed method overcomes
the tracks coalescence problem. This geometric
constraint induces two critical issues: (1) substantial
ambiguity in measurement-to-track association;
and (2) pronounced multimodal characteristics in
the posterior density function. Specifically, during
state estimation, measurements originating from
distinct targets may be erroneously associated with
the same track, leading to a marked increase in
the trace of the state estimation covariance matrix
(established research has demonstrated this metric
as an effective quantitative measure of posterior
distribution multimodality [10, 11]). For enhanced
accuracy in multi-target state estimation, the PSO
approach is used to optimize the posterior probability
density and minimize the trace of the covariance
matrix. PSO operates through the following sequential
implementation steps: First, in the initialization phase,
particle positions are randomly generated within
the solution space. These position vectors, whose
dimensionality equals the problem’s free parameters,
represent possible solutions. Initial positions and
velocities are randomly generated for all particles
to ensure uniform distribution across the search
space. Position coordinates are typically bounded
within predefined ranges to comprehensively cover
feasible regions. Each particle evaluates its fitness
value through a predefined objective function,
quantifying the quality of its current solution. During
iterative updates, particles dynamically adjust their
states by tracking two critical extremum values:
the personal best, denoting the optimal solution
discovered by an individual particle, and the global
best, representing the best solution identified by the
entire swarm. The particle state update mechanism
combines three components: inertial momentum,
cognitive learning (based on individual historical
performance), and social learning (guided by
swarm collaboration). A velocity vector adjusts the
particle’s movement direction and step size, while
position updates translate these velocities into spatial
displacements. Additionally, we have implemented
several improvements to the PSO algorithm, including
optimization of the inertia weight adjustment strategy
and enhancements to the particle position update
method, among others. These modifications will be

183



Chinese Journal of Information Fusion

elaborated in detail in Section 4. To summarize, our
contributions are threefold as follows.
• The tracking gate overlap issue has been improved.

When the target spacing is small, the algorithm is
capable of mitigating trajectory overlaps to some
extent, thereby minimizing the potential bias in
trajectory estimation.

• The posterior density has been optimized.
Experimental results demonstrate that the
posterior density obtained through the JIPDA
update, measured by the similarity to a single
Gaussian density, yields superior performance
in the PSO-JIPDA filter compared to other filters,
even in scenarios where the target states are
unknown.

• The accuracy of target state estimation has been
effectively enhanced. Based on the optimization
of the classical PSO algorithm, the performance
of the PSO-JIPDA filter is exceptional in both
known and unknown initial state scenarios,
demonstrating its effectiveness using the OSPA
multi-target miss distance metric.

The remainder of the paper is structured as follows.
Section 2 introduces the proposed PSO-JIPDA
algorithm, detailing the utilization of PSO for
posterior density optimization and providing concrete
implementation examples. Section 3 validates the
effectiveness of our method through experiments in
two distinct scenarios. Section 4 draws conclusions.

2 Related Work
To address track coalescence in multi-target tracking,
various data association techniques have been
innovated. The exact nearest neighbor JPDA
(ENNJPDA) filter [12] represents an early approach,
reducing computational complexity by aggressively
pruning all but the highest-probability association
hypothesis. However, this method presents significant
susceptibility to both false alarms and missed
detections, as it discards potentially useful alternative
hypotheses. To address these limitations, the JPDA*
variant [13] was introduced, refining the hypothesis
selection process through selective pruning: it retains
the most consistent data association hypothesis
to compute measurement-to-target assignment
probabilities, balancing computational efficiency
with robustness. Building on this foundation, The
JIPDA* filter [14] integrates the JIPDA framework
with JPDA*, creating a more resilient solution for track
coalescence scenarios. JIPDA* operates by prioritizing

a single optimal association hypothesis from the
set of possible track-measurement associations,
pruning alternative hypotheses that involve identical
tracks and measurements but differ in assignments.
By eliminating competing hypotheses that could
induce trajectory merging or misassignment, JIPDA*
maintains coherent state estimation even in cluttered
environments where traditional JPDA-based methods
often fail to resolve ambiguous interactions. However,
the discarded hypotheses might contain residual
data association information that could potentially
enhance the accuracy of tracking, despite being
suboptimal in the current selection framework.
To address this problem, our recent research [15]
introduces the evolutionary optimization-based joint
integrated probabilistic data association (EOJIPDA)
method. EOJIPDA operates by probabilistically
integrating all feasible association hypotheses through
posterior density optimization. This mechanism
preserves the probabilistic significance of primary and
secondary hypotheses events, ensuring comprehensive
utilization of measurement information. Nevertheless,
the integration of evolutionary computation inherently
increases the algorithm’s computational load.

Aforementioned methods rely on data association
mechanisms, and there is another class of methods
based on the finite set statistics (FISST) [16]. Notable
implementations include the probability hypothesis
density (PHD) filter [17], its cardinality-enhanced
variant CPHD [18], and the multi-Bernoulli
(MB) formulation [19]. Subsequent refinements
have produced labeled variants such as labeled
multi-Bernoulli [20] and generalized label
multi-Bernoulli filters [21, 22], all using the
random finite set (RFS) theory for systematic
uncertainty modeling. The PHD and CPHD
techniques use moment approximations to circumvent
the computational intractability inherent in full
Bayesian multi-target posterior density calculations.
Different from this paradigm, the MB approach
parameterizes multi-Bernoulli RFS components rather
than maintaining explicit density representations.
Labeled extensions, such as LMB and GLMB, enable
target identity preservation. These FISST-based
methods avoid explicit combinatorial association by
implicitly modeling multi-target states as sets, offering
a principled mathematical framework for MTT.
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3 Background
3.1 Target Motion and Observation Modeling
Target dynamics are modeled under the nearly
constant velocity assumption in this paper. The state
vector of target t at discrete time step k is represented
by xt,k, with following state transition equation:

xk+1 = Fxk + uk (1)
where F denotes the state transition matrix, and uk ∼
N (0, Q) is Gaussian process noise with zero mean and
covariance Q. The measurement zk associated with
target t follows a linear observation model:

zk = Hxk + wk (2)
where H is the observation matrix, and wk ∼ N (0, R)
represents zero-mean Gaussian measurement noise
with covariance R.
The target-originated detections occur with probability
PD, while clutter measurements follow a spatial
Poisson distribution. The average number of clutter
measurements per time step is r = λ|FoV|, where λ
is the clutter intensity and |FoV| denotes the sensor’s
field-of-view coverage. The validated measurement
set at time k is defined as:

Zk =
{
z1
k, z

2
k, · · · , z

mk
k

} (3)
wheremk is the total number of measurements. The
historical measurement sequence up to time k is
denoted as

Z1:k =
{
Z1, Z2, · · · , Zk

} (4)

3.2 Joint Integrated Probabilistic Data Association
Filter

JIPDA generates association hypotheses by
probabilistically assigning validated measurements
to tracks. Each monitored target maintains
a dynamic parameter tuple encapsulating its
kinematic state vector xt,k, covariance matrix Pt,k,
and existence probability Ps(t, k) at discrete time
index k. Consequently, the characterization of a
track t can be achieved through the parameter set
{Ps(t, k),N (xt,k, Pt,k)}. When advancing to time step
k + 1, the key steps for updating this parameter set
are described below.
First, in the prediction stage, the Kalman filter is
used to compute the predicted target state xt,k+1|k and
covariance Pt,k+1|k as follows:

xt,k+l|k = Fxt,k

P t,k+l|k = FP t,kF
T + Qk

(5)

where F denotes the state transition matrix, and Qk
denotes process noise covariance matrix at time k.
The target existence probability propagates according
to a first-order Markov chain model,

Ps(t, k + 1 | k) = p11Ps(t, k) + p21(1− Ps(t, k)) (6)

where P11 and P21 are the Markov chain coefficients.
Second, analytically derived tracking gates are
generated for each target to assist measurement
association. As comprehensively discussed in [23],
various gating methodologies exist for measurement
validation, with the ellipsoidal gating approach
[24] being particularly prevalent due to its optimal
statistical properties under Gaussian assumptions. At
time step k, for track t, the ellipsoidal gate is defined
as

Gk+1
t =

{
zik+1 ∈ Rdz |∆k+1

t,j ≤ γ
}

(7)

∆k+1
t,j =

(
zjk+1 −Hkxt,k+1|k

)T
× (St,k+1)−1

(
zjk+1 −Hkxt,k+1|k

) (8)

where zik+1 denotes the ith received measurement,
Si,k+1 = HPi,k+1|kH +R is the innovation covariance,
γ is a threshold, which leads to a gating probability
Pw, and dz is the measurement dimension. This gating
procedure ensures that only statistically compatible
measurements are considered for potential association,
thereby reducing computational complexity through
effective measurement pruning.
Third, association hypotheses are generated by
establishing probabilistic correspondences between
validated measurements and existing tracks. The
posterior probability of an event θh is computed as

P (θh) = C−1
∏
t∈Th

0

(1− PDPWPs(t, k + 1 | k))

×
∏
t∈Th

1

(
PDPWPs(t, k + 1 | k)

p(zjk+1 | θh, Z1:k)

λ

)
(9)

where C is the normalization constant, PD denotes
probability of detection, T h0 denotes the set of tracks
associated without measurement, and T h1 corresponds
to the set of tracks associated with exactly one
measurement.
The existence probability of track t is updated under
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the association hypothesis event θh as

Ps(t | h, k + 1) =

(
1−

mk∑
i=1

ξ
t|h
i

)
Ps,0(t | h, k + 1)

+

mk∑
i=1

ξ
t|h
i Ps,i(t | h, k + 1)

(10)

where ζt|hi is a binary indicator variable, i.e.,{
ξ
t|h
i = 1 if tracktis associated with measurement zik
ξ
t|h
i = 0 otherwise

(11)
and Ps,0(t|h, k + 1) denotes the probability of track
t being unassociated with any measurement and
Ps,i(t|h, k + 1) denotes the probability of track t
being associated with measurement zik+1, which are
computed as

Ps,0(t | h, k + 1) =
(1− P tDP tW )Ps(t, k + 1 | k)

1− P tDP tWPs(t, k + 1 | k)
P (θh)

Ps,i(t | h, k + 1) = P (θh)
(12)

The state of track t under hypothesis θh is computed
as:

xt|h,k =

(
1−

mk∑
i=1

ξ
t|h
i

)
xt,k|k−1 +

mk∑
i=1

ξ
t|h
i xit,k (13)

where xit,k is the state updated with measurement zik.
The error covariance is updated as:

P t|h,k+1 =

(
1−

mk∑
i=1

ξ
t|h
i

)
P t,k+1|k

+

mk∑
i=1

ξ
t|h
i

[
P t,k+1|k −Kt,k+1St,k+1 (Kt,k+1)T

] (14)

where Kt,k+1 = Pt,k+1|kH
T (St,k+1)−1 denotes the

Kalman filter gain.
Ultimately, the track’s existence probability, state
estimate and covariance are approximated by

Ps (t, k + 1) =

NH∑
h=1

Ps (t | h, k + 1) (15)

xt,k =
1

Ps (t, k + 1)

NH∑
h=1

Ps (t | h, k + 1)xt|h,k (16)

P t,k =
1

Ps(t, k + 1)

NH∑
h=1

Ps(t | h, k + 1)

×
[
P t|h,k+1 + xt|h,k

(
xt|h,k

)T − xt,k (xt,k)
T
]

(17)

where NH denotes the number of all association
hypothesis events.

4 Methodology
4.1 Objective Function Proposal
Automatic target tracking systems account for
time-varying number of targets. Following [16],
we employ random finite sets (RFS) to characterize
the inherently stochastic and disordered nature of
target states. Following the work in [10], which
demonstrates that posterior probability densities
can be transformed within their corresponding RFS
families, this paper introduces an innovative approach.
Specifically, it proposes a method to improve the
multi-target tracking performance by optimizing
ordered posterior density functions within the RFS
family framework.
Theoretical analysis and experimental studies [11]
have shown that minimizing the error covariance
matrix can overcome the overlapping tracking gate
problem. In practical applications, we employ the
covariance matrix trace [10] as the optimization
criterion for posterior density refinement, formulated
as

Ck =

nk∑
t=1

trace(Pt,k) (18)

where nk denotes the number of targets and the
function trace(·) represents the trace of the matrix.

4.2 Particle Swarm Optimization of the Posterior
Density

For posterior density optimization, target
permutations across distinct association hypotheses
are reconfigured to minimize the cost function defined
in (18). The optimization is effectuated by means
of PSO [5], with the principal procedures of the
PSO-JIPDA approach as follows.
Step 1: PSO setup for the optimization of the posterior
density.

For PSO implementation, we adopt (18) as the global
fitness function. The solution space comprises every
permutation of the current target indices and is defined
as:

P = {Πh | h = 1, ...NH} (19)
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where Πh denotes the permutation set corresponding
to the hth association hypothesis and Πh has
cardinality |Πh| = nk!. We initialize a PSO swarm
with Np particles. At time k, the position xkp of
each particle p represents a candidate solution vector,
where each element corresponds to the index (from
1 to nk) of a specific target permutation chosen for a
particular hypothesis. The goal is to find the vector of
permutation indices (one index per hypothesis) that
optimizes a global fitness function.
Step 2: PSO Iterative Optimization.

Execute the PSO algorithm for defined generations
and update the inertia weight w at time k. In each
generation, for a particle, we perform the following
steps.
First, compute the inertia weight. The original linear
decreasing inertia weight strategy was enhanced with
a nonlinear adaptive approach. The dynamic inertia
weight is calculated based on the iteration progress
and fitness values, as follows

w ={
wmin + (wmax−wmin)×(fcurrent−fmin)

(fmean−fmin) if fcurrent < fmean

wmax otherwise

(20)
where wmax and wmin represent the maximum and
minimum inertia weights, respectively; f(·) denotes
fitness function; fcurrent, fmean, and fmin denote the
current fitness function, the mean fitness function and
the minimum fitness function, respectively.
Second, update each particle’s velocity vkp using
the inertia weight w which controls how much
the particle’s previous velocity affects its current
movement direction. Then, update each particle’s
position vector xkp using the obtained velocity, guiding
the search towards better permutation index vectors.
The mathematical description of the update process is
as follows:

νk+1
p = wνkp + c1r1(pbest− xkp) + c2r2(gbest− xkp) (21)

xk+1
p = xkp + νk+1

p (22)
where c1 is the individual learning factor determining
the influence of the particle’s own best position pbest
on its velocity update; c2 is the social learning factor
reflecting the impact of the global best position gbest
found by the entire swarm on the particle’s velocity
update; r1 ∼ U(0, 1) is the individual stochastic factor;
r2 ∼ U(0, 1) is the social stochastic factor; pbest is
the best position that the particle has reached so

far in the search process; gbest is the best position
found by the entire particle swarm so far. Note that
the boundary handling is used internally as particle
positions correspond to discrete indices.
Third, evaluate the fitness of each particle using each
particle’s position vector xkp and update each particle’s
personal best pbest position and swarm’s global best
gbest position based on fitness values, as follows:

pkbest,p =xkp, fbest,p = f(xkp), if f(xkp) < f(pkbest,p)

gbest =pkbest,p, f(gbest) = f(pkbest,p),

if f(pkbest,p) < f(gbest)

(23)

Step 3: Apply Optimal Permutations.

After PSO converges or reaches defined generations,
retrieve the global best position vector gbest. For
each hypothesis in gbest, reorder the corresponding
hypothesis-specific index. Subsequently, the standard
JPDA hypothesis-weighted marginalization (15)-(17)
performed to estimate the target state estimate xt,k, the
covariance matrix Pt,k, and the existence probability
Ps(t, k). Figure 1 shows the flowchart of the proposed
PSO-JIPDA algorithm. The probability density
optimization procedure is enclosed in the dotted green
box, while the iterative PSO update is shown in
the dotted orange box. The "Termination" module
determines whether the optimization process should
end. If not terminated, the process returns to the
"iterative PSO update" stage. If terminated, it outputs
the global best position.

4.3 Illustrative Example
To illustrate the PSO-JIPDA algorithm’s operational
process, we consider a simplified one-dimensional case
with two Gaussian-distributed targets generating two
measurements. Assume two association hypothesis
events ψ1 and ψ2 are established, with density of
target t under hypothesis ψh is modeled as pt|h(x) =
{rt|h,N (xt|h, pt|h)}. The initial posterior density is
specified by

ψ1 :

{
p1|1(x) = {0.1,N (1, 1)}
p2|1(x) = {0.4,N (4, 1)}

ψ2 :

{
p1|2(x) = {0.5,N (5, 1)}
p2|2(x) = {0.5,N (2.3, 1)}

(24)

Based on (15)-(17), the Gaussian-approximated
probability density for each target is characterized as

p1(x) = {0.6, N(3.5, 2.25)}
p2(x) = {0.9, N(3.5, 2.80)}

(25)
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Figure 1. Flowchart of PSO-JIPDA algorithm.

Figure 2(a) and 2(b) present the posterior probability
density of the joint track state and its Gaussian
approximation, respectively. It can be observed that
a considerable difference exists between these two
densities, demonstrating the limited precision of the
Gaussian approximation. In this case, the trace of the
covariance matrix is

C0 = 2.25 + 2.80 = 5.05 (26)

which can be computed using (18).
The posterior probability density is then optimized
using the particle swarm optimization (PSO)
algorithm. Following five iterations, the final
optimized result is derived as follows:

ψ1 :

{
p11(x) = {0.4, N(1, 1)}
p2|1(x) = {0.1, N(5, 1)}

derived as follows

ψ2 :

{
p1|2(x) = {0.5, N(2.3, 1)}
p2|2(x) = {0.5, N(4, 1)}

(27)
Using (15)-(17), the approximated probability density
for each track is given as

p1(x) = {0.60, N(4.44, 1.25)}
p2(x) = {0.90, N(2.08, 1.23)}

(28)

Figure 3(a) displays the initial posterior probability
density, while its approximated single Gaussian
density is presented in Figure 3(b). Obviously,
Figures 3(a) and 3(b) demonstrate a strong correlation,
whereas Figures 2(a) and 2(b) exhibit a notable

(a)

(b)

Figure 2. (a) Posterior and (b) approximated probability
densities at iteration 0.

divergence. In this case, the trace of the covariance
matrix is

C0 = 1.25 + 1.23 = 2.48 (29)
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After PSO optimization, the trace decreases by 50.89%
relative to the initial trace (26), demonstrating a
significant improvement in Gaussian approximation
and state estimation precision. These statistical
analyses exhibit strong concordance with theoretical
expectations.

(a)

(b)

Figure 3. (a) Posterior and (b) approximated probability
densities at iteration 5.

5 Experiments
We assess the PSO-JIPDA filter’s efficacy in a complex
2D multi-target tracking environment, employing
kinematic modeling of moving targets with

xk = [pkx, ν
k
x , p

k
y , ν

k
y ]T (30)

where [pkx, p
k
y ]
T denotes the target position and [vkx, v

k
y ]T

is the target velocity. The transition matrix of the
motion model is

F = I2 ⊗
[
1 TS
0 1

]
(31)

where ⊗ denotes the Kroneker product, I2 represents
a 2 × 2 identity matrix, and TS indicates sampling
interval. The process noise uk follows a Gaussian
distribution with covariance matrix

Qk = I2 ⊗ q

T
3
s

3

T 2
s

2
T 2
s

2
Ts

 (32)

where q is a tuning parameter. A sensor collects
target measurements within the monitoring region
in both experimental scenarios. For simplicity, it is
assumed that the sensor only captures target position
information. Therefore, the observation matrix of the
measurement model is

H =

[
1 0 0 0
0 0 1 0

]
(33)

The covariance of the Gaussian measurement noisewk

is
Rk =

[
σ2
x 0

0 σ2
y

]
(34)

where σx is the standard deviations of the
measurement noise in x coordinate and σy is
the standard deviations of the measurement noise in y
coordinates, respectively.
The sensor operates at a fixed sampling interval of Ts =
1 s, with a detection probability of PD = 0.92. A gating
threshold of γ = 9.21 [25] is applied, corresponding
to a two-dimensional gating probability of PW = 0.99.
The Markov chain model coefficients in (6) are the
same as [9], with p11 = 0.98 and p21 = 0. Track
management follows probabilistic rules: tracks are
confirmed when the existence probability surpasses
PC = 0.83, while terminated when falling below
PT = 0.0909, following the criteria established in [2].
For the PSO algorithm, we use where wmax = 0.9,
wmin = 0.4, c1 = 2, and c2 = 2. We employ the
Optimal Sub-Pattern Assignment (OSPA) metric [26],
a well-established performance measure in random
finite set (RFS) based multi-target tracking [16, 19], to
quantitatively evaluate tracking accuracy.
For two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}
representing true and estimated states (assuming n ≥
m), the OSPA distance is defined as [26]:

dOSPA
p,c (X,Y ) =[
1

n

(
min
π∈Πn

m∑
i=1

min
(
d(c)(xi − yπ(i))

p + cp(n−m)
))]1/p

(35)
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where d(c)(xi − yπ(i)) := min(c, ‖x − y‖), c > 0 is the
cut-off parameter, p ≥ 1 is an order parameter, and π is
a permutation function in the set of permutations Πn;
if n < m, dOSPA

p,c (X,Y ) = dOSPA
p,c (Y,X). All numerical

experiments were conducted using MATLAB R2022b
on a computing platform equipped with a 3.40 GHz
CPU.

In the surveillance area, two targets follow
deterministic trajectories [10, 11], [13] as described in
Figure 4. The targets initially maintain parallel motion
at close proximity and ultimately they separate. In
Figure 4, the parameters are selected as: φ = π/3,
d = 100m, and l1 = l2 = 1000m. Both targets travel
at a constant speed v = 100m/s. The measurement
noise is characterized by σx = σy = 10m.

Figure 4. Simulated scenario 1.

Figure 5(a) and 5(b) present a single-run comparison
of the estimated target trajectories obtained from
the conventional JIPDA filter and the proposed
PSO-JIPDA filter, respectively. When the two targets
move in close proximity, the JIPDA filter exhibits
severe track coalescence: the estimated trajectories
completely overlap, despite their true tracks being
distinct. Even after the targets are separated, the
JIPDA filter fails to resolve their individual trajectories,
leading to persistent estimation errors. In contrast, the
PSO-JIPDA filter maintains highly accurate trajectory
estimates which closely follow the true tracks.
Notably, significantly reduced track coalescence occurs
during the targets’ proximity stage, and the filter
successfully tracks their subsequent separation. This
demonstrates that PSO-JIPDA effectively mitigates
track coalescence through optimized posterior density
handling, achieving superior state estimation.

To demonstrate the robustness of our proposed
algorithm, we increased the noise to σx = σy = 15m
and reduced the distance to d = 50m between the
two target trajectories. Figure 6(a) clearly illustrates a

(a)

(b)

Figure 5. Estimated target trajectories for case 1. The true
target trajectories are denoted with black dotted lines and
the estimated target trajectories are denoted with dots: (a)

JIPDA; (b) PSO-JIPDA.

pronounced track coalescence phenomenon, where the
estimated positions of targets merge into a single track
when the targets move in close proximity, significantly
degrading the tracking performance. In contrast,
Figure 6(b) demonstrates the superior capability of
the PSO-JIPDA filter, which maintains high-precision
state estimation for each individual target even under
challenging conditions where targets are closely
spaced. By effectively resolving the track coalescence
issue, the PSO-JIPDA filter ensures accurate and
reliable tracking performance, and these experimental
results validate its enhanced robustness compared to
the conventional method. The improved performance
stems from the optimized posterior probability
density enabled by the PSO-JIPDA framework, which
successfully prevents track merging while preserving
estimation accuracy.

Figure 7 presents a comparative analysis of the
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(a)

(b)

Figure 6. Estimated target trajectories for case 2. The true
target trajectories are denoted with black dotted lines and
the estimated target trajectories are denoted with dots: (a)

JIPDA; (b) PSO-JIPDA.

average OSPA distance across 100 Monte Carlo
experiments for the following algorithms: JIPDA,
ENNJIPDA, JIPDA*, CBMeMBer [19], EOJIPDA, and
PSO-JIPDA. Experimental results indicate that the
JIPDA filter exhibits significantly higher OSPA errors
than comparative algorithms caused by the track
coalescence problem. Notably, while the ENNJIPDA
algorithm was designed to address coalescence,
its performance remains highly sensitive to clutter
interference and missed detection events. Compared
to the JIPDA* filter, the EOJIPDA and PSO-JIPDA
filters use the posterior density information more
comprehensively and demonstrate superior tracking
performance in terms of the OSPA error measure.
In Figure 8, the average running time of each
Monte Carlo simulation for the JIPDA, ENNJIPDA,
JIPDA*, CBMeMber, EOJIPDA, and PSO-JIPDA
filters is presented, based on 100 Monte Carlo

Figure 7. Average OSPA distances for scenario 1.

trials. Due to the optimization of the posterior
probability density in the PSO-JIPDA algorithm,
it incurs a higher computational cost compared
to JIPDA, ENNJIPDA, JIPDA*, and CBMeMber.
However, the PSO-JIPDA algorithm demonstrates a
satisfactory trade-off between tracking performance
and computational efficiency. These results suggest
that, despite the increased computational time due
to the posterior density optimization, the PSO-JIPDA
algorithm achieves comparable tracking accuracy and
improved runtime performance than the EOJIPDA
algorithm, making it a more efficient choice.

Figure 8. Running time comparison of all algorithms.

6 Conclusion
This paper proposes a novel PSO-JIPDA approach
designed to effectively address the critical technical
challenge of track coalescence prevalent in multi-target
tracking systems operating in complex cluttered
environments. Through rigorous analysis of
limitations inherent in conventional JIPDA filters, this
study introduces a novel optimization strategy. The
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research implements the optimization of the posterior
probability density in the classical JIPDA filter using
an advanced particle swarm intelligence optimization
approach, achieving enhancement in the tracking
accuracy.
Future research directions include extending the
PSO-JIPDA framework to accommodate nonlinear
measurement models, optimizing swarm initialization
strategies for real-time applications, and exploring
hybrid optimization algorithms to further reduce
computational overhead. Additionally, integrating
adaptive parameter tuning mechanisms for the PSO
coefficients may further enhance the robustness. This
work provides a solution for intelligent swarm-based
optimization in MTT systems, with potential
applications in autonomous surveillance, robotics,
and sensor networks.
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