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Abstract
This paper considers the distributed group target
tracking (DGTT) problem under sensors with
limited and different field of views (FoVs). Usually,
for the tracking of groups, targets within groups
are closely spaced and move in a coordinated
manner. These groups can split or merge, and
the numbers of targets in groups may be large,
which lead to more challenging issues related
to data association, filtering and computational
complexities. Particularly, these challenges may be
further complicated in distributed fusion system
architectures. To deal with these difficulties, we
propose a consensus-based DGTT method within
the belief propagation (BP) framework, which
introduces undetected targets inside the FoV or
new targets outside the FoV and performs the
probabilistic track association via BP. Meanwhile,
the obtained track association probabilities make
it possible to exploit a probabilistic consensus
fusion scheme for fusing local target densities.
Furthermore, the proposed method exhibits
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computational scalability scaling only linearly
on the numbers of group partitions, local
measurements and neighboring sensors, and
scaling quadratically on the number of targets.
Numerical results validate the performance of the
proposed method.

Keywords: group target tracking, distributed sensor
network, consensus fusion, scalability, belief propagation.

1 Introduction
Recently, the group target tracking (GTT) problem
has become increasingly important and drawn
great attention, which is an integral part of many
applications in different fields, including battlefield
surveillance [1], traffic control [2], robotics [3],
ecology [4], etc. When compared to multi-target
tracking groups not only suffers the difficulties such
as missed detections, clutter, measurement origin
uncertainty [5, 6], but also encounters the group
structure uncertainty caused by group merging or
splitting [7], which result in more complex issues
related to data association, filtering, and computation.
Benefiting from the rapid development in
communication and sensing technologies, the
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sensor network consisting of multiple interconnected
sensors with sensing, communication and processing
capabilities provides a desirable platform for the
challenging target tracking applications, since the
network system provides more information in time
and space and makes it possible to overcome the lack
of target observability from individual sensors with
limited FoVs. In particular, distributed sensor network
(DSN) has aroused tremendous interest as a result
of its attractive merits such as scalability, flexibility,
and robustness to faulty sensors. The optimal fusion
rule is given in [8], while the computational difficulty
of the common information among sensors limits its
use, promoting the development of robust suboptimal
fusion rules. Consensus provides a powerful tool for
the distributed computation over networks, which
aims to achieve the global fusion over the DSN
by iterating local fusion steps among neighboring
sensors. From a probability density perspective,
consensus-based distributed fusion is actually an
iterative calculation of the local Kullback-Leibler
average (KLA) of the state probability density
functions (pdfs) among neighboring sensors [9].
The KLA fusion rule [9] is also known as the
generalized covariance intersection (GCI) [10, 11]
or the exponential mixture density (EMD) [12, 13],
belonging to the type of geometric average fusion
of local pdfs. Furthermore, some studies focus on
another type of arithmetic average fusion can refer to
[14, 15]. Regarding the two fusion types, geometric
average fusion is more sensitive to missed detections,
whereas arithmetic average fusion is more sensitive
to clutter [16]. Based on the robust fusion rule,
a variety of distributed MTT methods have been
investigated, e.g., probability hypothesis density
(PHD) with EMD [13], cardinalized PHD with KLA
[17], Labeled multi-Bernoulli with GCI [18], etc. Most
of the aforementioned studies are presented without
FoV limitations, while the conventional KLA fusion
rule performs poorly when sensors in the network
have limited and different FoVs [19]. To overcome
this issue, some improvement methods are proposed
[20, 21].

Recently, a powerful BP method has attracted
substantial attention in the target tracking
community[22]. The BP method can efficiently
compute the approximations of the marginal
posterior pdfs or probability mass functions (pmfs)
for the random variables of interest, providing a
scalable solution to the challenging probabilistic
data association problem in MTT [23]. Based on

the BP scheme, various scalable target tracking
algorithms have been proposed for MTT from
different perspectives, e.g., scalable MTT methods
for tracking unknown number of targets [23, 24],
maneuvering MTT [25, 26], simultaneous cooperative
self-localization and MTT [27], etc. Recently, a variant
of the LMB-GCI method for DMTT, which does
not have FoV limitations, has been proposed by
integrating BP to address soft (i.e., probabilistic) label
association [28]. This approach demonstrates better
performance compared to those using a hard label
association scheme. Additionally, other BP-based
algorithms for extended target tracking can be found
in [29] and [30]. In the context of GTT, a group
expectation maximization BP method has been
proposed for tracking coordinated group targets [31].
To deal with group targets and ungrouped targets
seamlessly, a scalable group target belief propagation
(GTBP) method is proposed [32]. Given its strengths
in estimation accuracy, computational complexity, and
implementation flexibility [24], BP could prove to be a
highly effective tool for addressing the challenges in
DGTT.
In this paper, we consider the DGTT problem under
sensors with limited and different FoVs, and our main
contributions are outlined below:
• We present a consensus-based distributed GTBP

algorithm (DGTBP) for DSN. To address the
target identity inconsistency among local sensors
due to varying FoVs, we incorporate the
undetected targets inside the FoV and new targets
outside the FoV for track association. We then
efficiently compute the marginal track association
probabilities using BP, which are utilized for the
consensus fusion in a probabilistic manner.

• We clarify the computational complexity and
scalability of DGTBP. It exhibits computational
scalability that scales linearly in the numbers
of group partitions, local measurements and
neighboring sensors, while scaling quadratically
in the number of targets. Numerical results verify
the effectiveness and scalability of DGTBP.

The remainder of this paper is outlined as follows.
Section 2 introduces the problem background and
methodology. Section 3 presents the proposed
consensus-based DGTT method, followed by a
particle-based algorithm implementation given in
Section 4. The numerical experiments and comparison
results are shown in Section 5. To the end, we conclude
this paper in Section 6.
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2 Problem Formulation
2.1 Description of DSN
This paper considers the GTT problem in aDSN,where
the sensors have limited and different FoVs. Generally,
there is no fusion center in the DSN, and each sensor
is restricted to processing local data and exchanging
information with its neighboring sensors. For ease
of representation, the DSN is described by a directed
graph D := (S, E), where S := {1, . . . , S} and E ⊆
S ×S are the set of nodes and the set of edges between
nodes, representing sensors and sensor connections,
respectively. Here, (s, s′) ∈ E if and only if sensor s
can receive information from sensor s′. For each sensor
s ∈ S, we denote Cs := {s′ ∈ S : (s, s′) ∈ E} as the
set of its neighboring sensors, i.e., these sensors in the
network that may transmit information to sensor s.
According to the definition, (s, s) belongs to E for any
s ∈ S , and thus s ∈ Cs for any s ∈ S . The FoV of sensor
s is denoted by FOVs.

2.2 Consensus on the Kullback–Leibler Average
Consensus algorithms provide a powerful tool for
distributed averaging, which aim to reach a consensus
over the DSN by iteratively performing the local
fusion of each sensor among its neighboring sensors.
Suppose that at each sensor s of the DSN, a pdf ps(x)
representing the local information is available, where
x is a random vector of interest. The weighted KLA
pdf p(x) among these local pdfs ps(x) is defined by
[9]:

p := arg min
p

∑
s∈S

πsDKL(p ‖ ps) (1)

where the weights πs satisfying
∑

s∈S πs = 1 and πs ≥
0, and DKL(p ‖ ps) is the Kullback-Leibler Divergence
between the pdfs p(x) and ps(x),

DKL(p ‖ ps) :=

∫
p(x) log

p(x)

ps(x)
dx (2)

Further, the KLA pdf p(x) defined in (1) is given by

p(x) =

∏
s∈S

(
ps(x)

)πs
∫ ∏
s∈S

(
ps(x)

)πsdx (3)

which requires all local pdfs ps(x), s ∈ S. From
a distributed way, the following consensus iteration
updates the local average of each sensor by fusing
the local information of its own and the received

information from its neighboring sensors.

p[`+1]
s (x) =

∏
s′∈Cs

(
p

[`]
s′ (x)

)πs,s′
∫ ∏
s′∈Cs

(
p

[`]
s′ (x)

)πs,s′dx (4)

where πs,s′ are suitable non-negativeweights satisfying∑
s′∈Cs πs,s′ = 1 for s ∈ S, ` denotes the number of

iterations, and the iteration is initialized by setting
p

[0]
s (x) = ps(x).

2.3 SystemModel
At time k, each potential target (PT) of a local sensor
s is either a legacy PT (i.e., a PT survived from time
k − 1 to time k) or a new PT (i.e., a newly detected
target at time k). That is, the PTs can be divided
into two categories at each time step, namely the
legacy PTs and the new PTs. Let x(i)

k,s be the state
vector of the legacy PT i at time k, consisting of the
target position and possibly further parameters (e.g.,
velocity and acceleration), where i ∈ {1, . . . , nk,s}
and nk,s is the number of the legacy PTs at time k.
The detections of the legacy PTs are modeled by the
binary existence variables r(i)

k,s ∈ {0, 1}, i.e., x
(i)
k,s exists

at time k if and only if r(i)
k,s = 1. We denote xk,s :=

[x
(1)T
k,s , . . . ,x

(nk,s)T
k,s ]T and rk,s := [r

(1)
k,s, . . . , r

(nk,s)
k,s ]T as

the joint state vector and existence vector of the legacy
PTs at time k, respectively. Let 1FOVs(·) denotes the
indicator function that 1FOVs(x

(i)
k,s) = 1 if x(i)

k,s is inside
the FoV of sensor s and otherwise 1FOVs(x

(i)
k,s) = 0.

Assume that at time k, sensor s receives mk,s

measurements and the joint measurement vector
is denoted as zk,s := [z

(1)T
k,s , . . . , z

(mk,s)T
k,s ]T. To

incorporate the newly detected targets at time k,mk,s

new PT states x(m)
k,s , m = 1, . . . ,mk,s are introduced,

where each x
(m)
k,s corresponds to the measurement

z
(m)
k,s . The detections of the new PTs are also modeled

by the binary existence variables r
(m)
k,s ∈ {0, 1},

i.e., a measurement z(m)
k,s is generated by a new PT

x
(m)
k,s if and only if r(m)

k,s = 1. We denote xk,s :=

[x
(1)T
k,s , . . . ,x

(mk,s)T
k,s ]T and rk,s := [r

(1)
k,s, . . . , r

(mk,s)
k,s ]T

as the joint state vector and existence vector of the
new PTs, respectively. Notably, the new PTs at
time k become the legacy PTs when receiving new
measurements at time k + 1, which means that the
number of the legacy PTs at time k + 1 is updated
by nk+1,s = nk,s + mk,s. Since the number of PTs
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would increase with the accumulation of sensor
measurements, we consider at mostNs PTs at any time
for sensor s ∈ S and perform a pruning step at each
time step to remove unlikely PTs.
In GTT, the group structure describes the connection
between targets, which is a premise of the modeling
of the evolution of targets. In this paper, we make the
convention that at any time k, only the group structure
of the confirmed legacy PTs (that have been declared
to exist at the current time) is considered, and each
confirmed legacy PT can be partitioned to only one
group in a possible group structure. Concretely, we
use a group partition vector g

k,s
:= [g

(1)
k,s, . . . , g

(nk,s)
k,s ]T

to denote the group structure of all legacy PTs at time
k, where the element g(i)

k,s > 0 if x(i)
k,s is confirmed and

g
(i)
k,s = 0 otherwise. Furthermore, the group structure

of the new PTs at time k is denoted by the vector gk,s
with zero entries, and we denote the number of groups
partitioned by g

k,s
as n(g

k,s
) := max{g(1)

k,s, . . . , g
(nk,s)
k,s }.

The unknown association between legacy
PTs and measurements at time k can be
described by a target-oriented association vector
ak,s := [a

(1)
k,s, . . . , a

(nk,s)
k,s ]T, where the element

a
(i)
k,s = m if the PT x

(i)
k,s generates the measurement

z
(m)
k,s ,m ∈ {1, . . . ,mk,s} at time k and a

(i)
k,s = 0

otherwise. Following [22–24], we also use
a measurement-oriented association vector
bk,s := [b

(1)
k,s, . . . , b

(mk,s)
k,s ]T, where the element

b
(m)
k,s = i if the measurement z(m)

k,s originates from the
PT x

(i)
k,s, i ∈ {1, . . . , nk,s} and b

(m)
k,s = 0 otherwise. The

expression of bk,s is redundant with ak,s, that is, one
of the two association vectors is determined and the
other is determined as well.
We denote the joint vectors of all the PT state, the
existence variable and the group partition at time k
as xk,s := [xT

k,s,x
T
k,s]

T, rk,s := [rT
k,s, r

T
k,s]

T and gk,s :=

[gT
k,s
,gT

k,s]
T, respectively. LetRk,s,Rk,s and Gk,s be the

sets of all possible rk,s, rk,s and g
k,s

, respectively. For
notational convenience, we define the augmented state
vectors for the legacy PTs and the new PTs as y(i)

k,s :=

[x
(i)T
k,s , r

(i)
k,s]

T and y
(m)
k,s := [x

(m)T
k,s , r

(m)
k,s ]T, respectively.

The joint augmented state vector at time k is given by
yk,s := [yT

k,s
,yT

k,s]
T.

2.4 Factor Graphs and BP
The factor graph (FG) is a graphical model to describe
the factorization of pdfs [22]. We denote V and F as

the index sets of the variable node i and the factor node
φ in a FG with respect to the random variable x(i) and
the factor pφ, respectively. In a FG, the variable node
i and the factor node φ are connected by an edge if
and only if x(i) is an argument of pφ(·). Let Fi and
Vφ denote the sets of the factor nodes connected with
the variable node i and the variable nodes connected
with the factor node φ, respectively. Consider that a
posterior pdf p(x|z) can be factorized as [22]

p(x|z) ∝
∏
φ∈F

pφ (xφ) (5)

where x := (x(i) : i ∈ V)T and xφ := (x(i) : i ∈ Vφ)T

are the stacked vectors of i ∈ V and i ∈ Vφ, respectively.
According to the factorization, BP provides an efficient
way to approximate the marginal distributions, which
computes the message of each node in the FG and
passes the node’s message to the connected nodes [22].
Specifically, if the variable node x(i) is connected with
the factor node φ, we denote the message passed from
the variable node x(i) to the factor node φ and the
message passed from the factor node φ to the variable
node x(i) as ϕφ→i(x(i)) and υi→φ(x(i)), respectively,
which are computed by

ϕφ→i(x
(i)) =

∫
pφ(xφ)

∏
i′∈Vφ\i

υi′→φ(x(i′))d(xφ\x(i))

υi→φ(x(i)) =
∏

φ′∈Fi\φ

ϕφ′→i(x
(i))

(6)

where the symbol “→” indicates the flow of the
message, Vφ\i is short for {i′ : i′ ∈ Vφ, i′ 6= i},
and ∫ ·d(xφ\x(i)) is denoted as the integration over
x except x(i). Eventually, for each variable node x(i),
a belief p̃(x(i)) is obtained by the product of all the
incoming messages with the normalizing constraint,
which provides an approximation of the marginal pdf
p(x(i)|z).

2.5 Derivation of the Posterior pdf of GTBP
Let y1:k, g1:k, a1:k, b1:k and z1:k denote the stacked
vectors of joint augmented state, group partition,
target-oriented association, measurement-oriented
association and measurements up to time k,
respectively. Herein, the subscript s representing the
sensor node is omitted for notational convenience
when there is no confusion. Following some
regular assumptions [23, 32], the joint posterior pdf
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p(y1:k,g1:k,a1:k,b1:k|z1:k) is written as

p(y1:k,g1:k,a1:k,b1:k|z1:k) ∝ p(z1:k,a1:k,b1:k,y1:k,g1:k)

=

k∏
k′=1

p(zk′ ,ak′ ,bk′ ,yk′ ,gk′ |yk′−1,gk′−1)

(7)

with
p(zk,ak,bk,yk,gk|yk−1,gk−1)

= p(zk,ak,bk,yk,gk|yk,gk)p(yk,gk|yk−1,gk−1)

where the calculation of p(zk,ak,bk,yk,gk|yk,gk) isprovided in [32], and the augmented state and group
structure transition pdf p(y

k
,g

k
|yk−1,gk−1) can be

written as
p(y

k
,g

k
|yk−1,gk−1)

= p(y
k
|g
k
,yk−1,gk−1)p(g

k
|yk−1,gk−1)

(8)

Let Λg
k
(j) := {i : g

(i)
k = j, i = 1, . . . , nk} denote

the index set of PTs included in the group j in the
group partition g

k
and use y

k,Λg
k

(j)
to denote the joint

augmented state of the PTs i ∈ Λg
k
(j). Then, we have

p(y
k
|g
k
,yk−1,gk−1) =

n(g
k
)∏

j=0

p(y
k,Λg

k
(j)
|yk−1,Λg

k
(j))

(9)

where p(y
k,Λg

k
(0)
|yk−1,Λg

k
(0)) is given by

p(y
k,Λg

k
(0)
|yk−1,Λg

k
(0)) =

∏
i∈Λg

k
(0)

p(y(i)
k
|y(i)
k−1)

and the pdf p(y
k,Λg

k
(j)
|yk−1,Λg

k
(j)), j 6= 0 describing

the augmented state transition density of the group j
in the group partition g

k
can be factorized as

p(y
k,Λg

k
(j)
|yk−1,Λg

k
(j)) =

( ∏
i∈Λg

k
(j)\Λ̃g

k
(j)

p(y(i)
k
|y(i)
k−1)

)
×
( ∏
i∈Λ̃g

k
(j)

p(s)
e (x

(i)
k−1)

)
p(x

k,Λ̃g
k

(j)
|x
k−1,Λ̃g

k
(j)

)

(10)

where Λ̃g
k
(j) := {i : r

(i)
k−1 = r

(i)
k = 1, i ∈ Λg

k
(j)} is

the index set of survival PTs in the group j, pe(x
(i)
k−1)

is the survival probability, and xk,Λg
k

(j) represents
the joint state of the group j. Here, the group
transition density p(x

k,Λ̃g
k

(j)
|x
k−1,Λ̃g

k
(j)

) describes the

evolution of the group j, and there are several studies
on group dynamics models that can be referenced
[4, 33–35]. For the group structure transition pmf
p(g

k
|yk−1,gk−1), a pseudo group structure transition

pmf is constructed as follows by introducing a scoring
function s(g

k
|xk−1, rk−1) [32, 35],

p(g
k
|yk−1,gk−1) :=

s(g
k
|xk−1, rk−1)∑

g′
k
∈G

k
s(g′

k
|xk−1, rk−1)

(11)

By using BP, the scalable GTBP method is developed,
providing an approximation of the posterior pdf
p(yk|z1:k). For further implementation details, please
refer to [32].

3 Consensus-based DGTTMethod
3.1 Basic Idea
The KLA fusion rule provides an efficient and robust
way for distributed fusion over the network. However,
when executing KLA fusion, there exists a premise that
the targets from different local sensors are correctly
matched. For the DGTT problem, the fusion may be
problematic for the following reasons:
• In practice, sensors may have different sensing

capabilities and FoVs, leading to the difference in
the numbers of detected targets.

• Moreover, since each sensor in the network
processes its own data locally, the identities of
the same target may be different at these sensors.

• Particularly, GTT suffers more difficulties in data
association, filtering and computation than MTT,
and these challenges may be further complicated
in the DSN.

In this paper, we consider solving these problems
within the BP framework, where the flowchart of the
proposed method is shown in Figure 1. Specifically,
for each sensor in the DSN, the GTBP method is used
to track the group targets locally and then obtains
the local posterior pdf [32]. After exchanging the
information between sensors and their neighbors, the
track association problem is formulated by a FG andwe
obtain the track association probabilities by running BP.
Finally, the KLA fusion is performed iteratively at each
sensor according to the received local posterior pdfs
from its neighbors and corresponding track association
probabilities. Notably, our proposedmethod for DGTT
using limited FoV sensors does not rely on any specific
local tracker, other GTT methods can also be used.
Details of the proposed DGTT method are presented
in the following subsections.
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GTBP algorithm 

Probabilistic 
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Sensor \ss s
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at time k
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Sensor s

Sensor Network
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Fused pdf at time k

Fused pdf at time k-1

Local pdf at time k

Local pdf 

at time k

Sensor s

Figure 1. The flow of the proposed DGTT method.

3.2 Track Association and Consensus Fusion
For simplicity, let us consider the track association
between two sensors and the consensus fusion at
sensor 1 (reference sensor), which receives the local
pdfs from sensor 2 (neighboring sensor). Note that
under the setting of limited FoVs of sensors, the
KLA fusion rule cannot preserve the information
difference and tends to discard the targets located
outside the overlapping FoV [16]. To address this issue,
we consider dynamically introducing the undetected
targets inside the FoV (UTIF) and new targets outside
of the FoV (NTOF) of the reference sensor. Specifically,
subsections 3.2.1-3.2.2 propose the track association
and consensus fusion between the targets inside the
FoV of the reference sensor, and subsection 3.2.3
presents the consensus fusion for targets outside the
FoV of the reference sensor.

3.2.1 Probabilistic Consensus Fusion
In this subsection, we mainly consider the fusion
between the targets inside the FoV of sensor 1.
According to the FoV of sensor 1, the targets of its own
and received from sensor 2 can be divided into two
disjoint sets (i.e., inside or outside the FoV of sensor
1), respectively. We denote Ik,s := {1, . . . , nk,s}, s =
1, 2 as the index sets of targets at sensor s that are
inside the FoV of sensor 1, and the corresponding
local posterior pdfs are denoted as p(yk,s|z1:k,s), where
nk,s is the corresponding number of targets. Similar
to the introduction of new PTs at local sensors, the
UTIF at sensor 1 are modeled by introducing nk,2
new PTs (that may be available from sensor 2), i.e.,

yk,1 := [y
(1)T
k,1 , . . . ,y

(nk,2)T
k,1 ]T. Let y̆k,1 := [yT

k,1,y
T
k,1]T

denote the joint augmented state at sensor 1 to be fused,
and Ĭk,1 := {1, . . . , n̆k,1} denote the corresponding
index set of targets, where n̆k,1 := nk,1 + nk,2. Herein,
the target indices are ordered, i.e., y̆

(i)
k,1, i ∈ Ĭk,1

corresponds to the original target y(i)
k,1 (at sensor 1)

for i ≤ nk,1, or the introduced new PT y
(i−nk,1)
k,1 for

i > nk,1.
The track association between sensors 1
and 2 is described by an association vector
τ := [τ (1), . . . , τ (n̆k,1)]T for sensor 1, where the
entries τ (i), i ∈ Ik,1 are defined as

τ (i) :=


j ∈ Ik,2,

if x(i)
k,1 at sensor 1 and x

(j)
k,2 at

sensor 2 indicate the same target

0,
if the target indicated by x

(i)
k,1 is

undetected by sensor 2,

and for the introduced new PT i ∈ Ĭk,1\Ik,1, τ (i) := j

if the target indicated x
(j)
k,2, j ∈ Ik,2 at sensor 2 is

the UTIF at sensor 1. Otherwise, τ (i) = 0, which
means the target x(i)

k,1 does not exist. Analogously, it is
assumed that a PT at sensor 1 can be associated with
at most one PT at sensor 2, and vice versa. We denote
Tc and T as the set of all possible τ and its subset
satisfying the constraint, respectively. Let yτk,2 :=

[y
(τ (1))T
k,2 , . . . ,y

(τ
(n̆k,1)

)T
k,2 ]T be the reordered vector of

yk,2 according to τ . Note that y(0)
k,2 is the dummy state

introduced for the indices i with τ (i) = 0, and thus
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yτk,2 has matched dimension with y̆k,1. Then, the KLA
fusion rule with given τ for sensors 1 and 2 can be
rewritten as

pτ (y̆k,1|z1:k,1, z1:k,2) =

(
p1(y̆k,1)

)π1
(
p2(yτk,2)

)π2

Cτ
(12)

where π1 + π2 = 1, the pdf ps(yk,s) is short for
p(yk,s|z1:k,s) of sensor s, and the coefficient Cτ ∈ [0, 1]
is given by

Cτ :=

∫ (
p1(y̆k,1)

)π1
(
p2(yτk,2)

)π2dy̆k,1 =
∏
i∈Ĭk,1

Ci,τ (i)

(13)

where Ci,τ (i) :=
∫ (
p1(y̆

(i)
k,1)
)π1
(
p2(y

(τ (i))
k,2 )

)π2dy̆
(i)
k,1.

Note that ps(y(i)
k,s) = p(x

(i)
k,s|r

(i)
k,s, z1:k,s)p(r

(i)
k,s|z1:k,s),

and if r(i)
k,s = 1, we abbreviate p(x(i)

k,s|r
(i)
k,s, z1:k,s) and

p(r
(i)
k,s|z1:k,s) as ps(x(i)

k,s) and ps(r
(i)
k,s), respectively. Here,

the pdf p(x(i)
k,s|r

(i)
k,s, z1:k,s) represents the dummy pdf

when r(i)
k,s = 0. We denote pi,τ (i)

π (y̆
(i)
k,1) as

pi,τ
(i)

π (x̆
(i)
k,1, r̆

(i)
k,1 = 1) :=(

p1(x̆
(i)
k,1)p1(r̆

(i)
k,1 = 1)

)π1
(
p2(x

(τ (i))
k,2 )p2(r

(τ (i))
k,2 = 1)

)π2

Ci,τ (i)

=
pi,τ

(i)

π (r̆
(i)
k,1 = 1)pi,τ

(i)

π (x̆
(i)
k,1)

Ci,τ (i)

(14)

with

pi,τ
(i)

π (r̆
(i)
k,1 = 1) =

(
p1(r̆

(i)
k,1 = 1)

)π1
(
p2(r

(τ (i))
k,2 = 1)

)π2

pi,τ
(i)

π (x̆
(i)
k,1) =

(
p1(x̆

(i)
k,1)
)π1
(
p2(x

(τ (i))
k,2 )

)π2

and Ci,τ (i) can be rewritten as

Ci,τ (i) = pi,τ
(i)

π (r̆
(i)
k,1 = 0)

+ pi,τ
(i)

π (r̆
(i)
k,1 = 1)

∫
pi,τ

(i)

π (x̆
(i)
k,1)dx̆

(i)
k,1

(15)

Thus, Equation (12) can be rewritten as

pτ (y̆k,1|z1:k,1, z1:k,2) =
∏
i∈Ĭk,1

pi,τ
(i)

π (y̆
(i)
k,1)

Notably, the coefficient Cτ can be used for measuring
of similarity between the local densities to be fused.
Under given τ , the larger is the coefficient Cτ among
the local densities, the more the corresponding KLA

fusion is coherent with the Principle of Minimum
Discrimination of Information. Thus, given local
densities to be fused, different track association vectors
τ result in different coefficients, and a larger Cτ
indicates that the corresponding track association
vector τ is more likely. Based on this motivation,
we consider the track association problem in a
probabilistic way, where the track association vector τ
is random and the pmf of τ is defined as

p(τ) :=

{
αCτ , if τ ∈ T
0, otherwise,

(16)

where α := 1/
∑

τ∈T Cτ . Consequently, the fused
posterior pdf p(y̆k,1|z1:k,1, z1:k,2) is obtained by
p(y̆k,1|z1:k,1, z1:k,2) =

∑
τ∈T

p(y̆k,1, τ |z1:k,1, z1:k,2)

=
∑
τ∈Tc

p(y̆k,1|τ, z1:k,1, z1:k,2)p(τ)

(17)
where p(y̆k,1|τ, z1:k,1, z1:k,2) := pτ (y̆k,1|z1:k,1, z1:k,2)
is the conditional fused posterior pdf. The second
equality uses the definition that p(τ) = 0 if τ ∈ Tc\T .
Similar to [28], we use the product of the marginal
pmfs of p(τ) to approximate the pmf p(τ), i.e.,

p(τ) ≈
∏
i∈Ĭk,1

p̃(τ (i)), τ ∈ Tc

where p̃(τ (i)) :=
∫
p(τ)d(τ\τ (i)) denotes the marginal

pmf of the track association vector τ . Thus, the fused
posterior pdf p(y̆k,1|z1:k,1, zk,2) is approximated by

p(y̆k,1|z1:k,1, z1:k,2) ≈
∑
τ∈Tc

∏
i∈Ĭk,1

p̃(τ (i))pi,τ
(i)

π (y̆
(i)
k,1)

=
∏
i∈Ĭk,1

∑
τ (i)∈Ik,2∪{0}

p̃(τ (i))pi,τ
(i)

π (y̆
(i)
k,1) =

∏
i∈Ĭk,1

p̃π(y̆
(i)
k,1)

(18)

with p̃π(y̆
(i)
k,1) =

∑
τ (i)∈Ik,2∪{0} p̃(τ

(i))pi,τ
(i)

π (y̆
(i)
k,1), and

the second equality uses the fact that∑
τ∈Tc

=
∑

τ (i)∈Ik,2∪{0}

· · ·
∑

τ
(n̆k,1)∈Ik,2∪{0}

Remark 1 Notably, the original KLA fusion rule tends to
retain only targets that exist in all the local posteriors over the
network, which makes it unsuitable for the distributed fusion
under sensors with limited and different FoVs. Equation
(18) provides a probabilistic way to calculate the fused
density, where the information difference among sensors
is preserved.
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Since the knowledge of UTIF is unknown at sensor
1, we construct the prior pdf of UTIF as follows.
Let Jk,2 := {j : ∃ i ∈ Ĭk,1\Ik,1, τ (i) = j ∈
Ik,2, 1FOV1(x

(j)
k,2) = 1} denote the index set of targets

at sensor 2 that are UTIF of sensor 1, the pdf p(x̆(i)
k,1|zk,1)

is given by the following Gaussian mixture model

p(x̆
(i)
k,1|zk,1) :=

1

|Jk,2|
∑
j∈Jk,2

N (x̆
(i)
k,1;E[x

(j)
k,2],P) (19)

where E[·] is the expectation operator, and P is a
prior covariance. The existence probability of UTIF
is a parameter, which may be set to a value related
to the detection ability of sensor 1 and the existence
probability of the corresponding PT received from
sensor 2. Furthermore, if the new PT i ∈ Ĭk,1\Ik,1
at sensor 1 is matched with a dummy PT at sensor 2
(i.e., τ (i) = 0), then it does not exist and is represented
by a dummy pdf fD(x̆

(i)
k,1).

3.2.2 BP-based Track Association
To perform the probabilistic fusion rule (18), it is
necessary to calculate marginal pmfs of p(τ). In this
subsection, we obtain the approximate marginal pmfs
of p(τ) by running BP on the FG devised for track
association. According to (16), we have

p(τ) ∝ Ψ(τ)
∏
i∈Ĭk,1

Ci,τ (i) , τ ∈ Tc (20)

where Ψ(τ) = 1 if τ ∈ T and Ψ(τ) = 0 otherwise.
Similarly, we introduce the association vector ϑ :=[
ϑ(1), . . . , ϑ(nk,2)

]T for sensor 2, where the entries
ϑ(j) ∈ Ik,1 ∪ {0}. Herein, we make convention that
ϑ(j) = 0 means that the target indicated by x

(j)
k,2 at

sensor 2 is the UTIF at sensor 1, i.e., τ (nk,1+j) = j. The
association vector ϑ for sensor 2 is redundant with τ
for sensor 1, that is, one of the two association vectors
is determined and the other is determined as well. By
introducing ϑ, Ψ(τ) can be stretched and equivalently
expressed as

Ψ(τ, ϑ) :=
( ∏
i∈Ik,1

∏
j∈Ik,2

Ψ i,jk
) ∏
i′∈Ĭk,1\Ik,1

Ψ i
′,1
k

where

Ψ i,jk :=

{
0, τ (i) = j, ϑ(j) 6= i or ϑ(j) = i, τ (i) 6= j

1, otherwise,

Ψ i
′,1
k :=

0,
τ (i′) = i′ − nk,1, ϑ(i′−nk,1) 6= 0 or
ϑ(i′−nk,1) = 0, τ (i′) 6= i′ − nk,1

1, otherwise.

Thus, the pmf p(τ) in (20) can be rewritten as

p(τ, ϑ) ∝
( ∏
i∈Ik,1

Ci,τ (i)

∏
j∈Ik,2

Ψ i,jk
) ∏
i′∈Ĭk,1\Ik,1

Ci,τ (i)Ψ
i′,1
k

(21)

A FG representation of the factorization (21) is shown
in Figure 2, which enables the use of efficient BP
scheme for the track association problem.

Inside-FoV Targets

UTIF

Sensor 1

Sensor 2
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Figure 2. Factor graph representation for the factorization
of p(τ, ϑ) in (21). Herein, C(i) is short for Ci,τ(i) , i ∈ Ĭk,1.

Specifically, once the incoming messages Ci,τ (i) to
the track association part have been calculated, the
iterative message calculation between τ (i), ϑ(j) and
Ψ i,jk are performed. In the iteration, the messages
ϕ

[`]

Ψ i,jk →ϑ(j)
(ϑ(j)), and φ

[`]

Ψ i,jk →τ (i)
(τ (i)) are iteratively

updated, where the superscript ` denotes the number
of iterations. Hereafter, we abbreviate them as ϕ[`]

i→j

and φ[`]
j→i for notational convenience. The calculation

of ϕ[`]
i→j for i ∈ Ik,1 and j ∈ Ik,2 are given by

ϕ
[`]
i→j =

∑
τ (i)∈Ik,2∪{0}

Ci,τ (i)Ψ
i,j
k

∏
j′∈Ik,2\j

φ
[`]
j′→i (22)

and ϕ[`]
i→j =

∑
τ (i)∈{0,j}Ci,τ (i)Ψ

i,1
k with j = i− nk,1 for

i ∈ Ĭk,1\Ik,1. Similarly, the messages φ[`]
j→i for j ∈ Ik,2

and i ∈ Ik,1 are computed by

φ
[`]
j→i =

∑
ϑ(j)∈Ik,1∪{0}

Ψ i,jk ϕ
[`−1]
nk,1+j→j

∏
i′∈Ik,1\i

ϕ
[`−1]
i′→j (23)
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and φ[`]
j→i =

∑
ϑ(j)∈Ik,1∪{0} Ψ

i,1
k

∏
i′∈Ik,1 ϕ

[`−1]
i′→j with i =

nk,1 + j for j ∈ Ik,2. The iterative loop of (22)-(23) is
initialized by setting

ϕ
[0]
i→j =

∑
τ (i)∈Ik,2∪{0}

Ci,τ (i)Ψ
i,j
k , i ∈ Ik,1

ϕ
[0]
i→i−nk,1 =

∑
τ (i)∈{0,i−nk,1}

Ci,τ (i)Ψ
i,1
k , i ∈ Ĭk,1\Ik,1

(24)

The implementation and termination of the iteration
(22)-(23) is analogous to the iteration data association
at local sensors [32]. We denote the number of
iterations when meeting the stopping criteria as LT ,
then the beliefs p̃(τ (i) = j) approximating themarginal
pmfs of p(τ) are obtained as

p̃(τ (i) = j) =
Ci,jφ

[LT ]
j→i∑

j′∈Ik,2∪{0}Ci,j′φ
[LT ]
j′→i

(25)

with φ[LT ]
0→i := 1 for i ∈ Ik,1 and j ∈ Ik,2 ∪ {0}, and

p̃(τ (i) = j) :=


Ci,jφ

[LT ]
j→i

Ci,0+Ci,jφ
[LT ]
j→i

, j = i− nk,1
Ci,0

Ci,0+Ci,jφ
[LT ]
j→i

, j = 0,
(26)

for i ∈ Ĭk,1\Ik,1. We summarize the BP-based
probabilistic track association algorithm as follows:

Algorithm 1 BP-based Probabilistic Track Association
Input: Local pdfs p1(yk,1) and p2(yk,2) from sensors
1 and 2, respectively;
Output: Beliefs p̃(τ (i)), i ∈ Ĭk,1, j ∈ Ik,2 ∪ {0};
1: According to (15) and (19), compute the messages
Ci,τ (i) by using local pdfs;

2: Initialize ϕ[0]
i→j by (24), and iteratively compute the

messages φ[`]
j→i, ϕ

[`]
i→j for ` = 1, . . . , LT ;

3: Compute the beliefs p̃(τ (i)) via (25) and (26);
4: return the beliefs p̃(τ (i)), i ∈ Ĭk,1, j ∈ Ik,2 ∪ {0};

3.2.3 Consensus Fusion for Outside-FoV Targets
LetMk,s, s = 1, 2 denote the index sets of targets at
sensor s, which are outside the FoV of the reference
sensor 1. Wepresent the fusion scheme for targetsMk,1

andMk,2 that are outside the FoV of the reference
sensor 1 as follows.
• Step 1: For each target i ∈ Mk,1 (maintained

at sensor 1) that received from sensor 2 at the

previous time step, update it by corresponding
new information received from sensor 2 at the
current time step.

• Step 2: For the rest of targets (in Mk,1) at
sensor 1, perform the track association and
consensus fusion with the rest of targets (in
Mk,2) received from sensor 2 (as described in
subsections 3.2.1-3.2.2).

• Step 3: For the unmatched targets (in Mk,2)
received from sensor 2, maintain them at sensor
1.

3.3 Summary of the Proposed DGTTMethod
As presented before, Equation (18) provides the fusion
rule for two sensors in a probabilistic way, where the
track association problem can be efficiently solved
by running BP on the devised FG. While in practical
distributed fusion system with multi-sensor, it is often
that more than two local posterior pdfs to be fused
and a common method is to perform the pairwise
fusion. Thus, the fusion of |Cs| > 2 sensors can be
implemented by sequentially using the BP-based track
associationmethod and the pairwise fusion (18) |Cs|−1
times. Specific procedure is summarized in Algorithm
2.

Algorithm 2 Consensus Fusion Algorithm
Input: |Cs| local pdfs to be fused at sensor s ∈ S;
Output: The fused pdf at sensor s;
1: for s′ ∈ Cs\s do
2: Divide the targets at sensors s and s′ into two

disjoint sets according to the FoV of sensor s,
respectively;

3: For the targets at sensors s and s′ that are inside
the FoV of sensor s, compute the marginal track
association probabilities byAlgorithm1using local
pdfs (at sensors s and s′), and compute the fused
pdf at sensor s via (18);

4: For the targets at sensors s and s′ that
are outside the FoV of sensor s, performing
the consensus fusion scheme as described in
subsection 3.2.3;

5: Substitute the fused pdf for the local pdf at
sensor s;

6: end for
7: return the fused pdf at sensor s;

Thus, the main steps of the overall DGTBP algorithm
is concluded as follows:
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• GTBP for local sensors: Each local sensor s ∈ S
receives the local measurements zk,s at time k, and
runs GTBP [32] to obtain the local posterior pdf;

• Iterative consensus fusion for each local sensor: After
the processing of local sensors, LC consensus
iterations are performed over the DSN. In each
iteration, each sensor s receives the local pdfs
from its neighboring sensors s′ ∈ Cs\s. After the
information exchange, each sensor s performs the
consensus-based fusion via Algorithm 2. Note
that the original local posterior pdf at each sensor
s is replaced by corresponding fused pdf after
running Algorithm 2, which is used in the next
consensus iteration.

• State estimation and pruning: After performing
LC consensus iterations, the state estimations
and existence probabilities are obtained for each
sensor s ∈ S through the corresponding fused
pdf. Finally, a pruning step is performed at each
local sensor to remove unlikely PTs based on the
existence probabilities.

3.4 Computational Complexity and Scalability
By exploiting the scalability of BP, we propose a
DGTBPmethod. For ease of representation, we analyze
the computational complexity of DGTBP under the
assumption of a fixed number of BP iterations, and we
use the maximum possible number of PTs Nmax :=
max{N1, . . . , NS} appearing in the DSN to analyze
how the computational complexity scales in the
number of PTs. In fact, this upper bound Nmax
will not be reached in most cases due to the FoV
limitations. Specifically, for each sensor s ∈ S, the
overall computational complexity mainly contains the
following two parts:
• The computational complexity of GTBP: As shown

in [32], the prediction of the group structure
requires to be computed |Gk,s| times, that is,
its computational complexity scales as O(|Gk,s|).
Furthermore, the computational complexity of the
measurement evaluation and iterative data steps
association scales as O(Nmaxmk,s).

• The computational complexity of consensus fusion:
Each sensor s requires to perform |Cs| − 1
times of the pairwise consensus fusion based on
Algorithm 2. Thus, the computational complexity
of performing consensus fusion at sensor s scales
as O(|Cs|). Since the maximum possible number
of PTs is Nmax, the computational complexity of
(15), (22), and (23) scales as O(N2

max) in each

pairwise fusion.
Thus, the overall computational complexity of DGTBP
at each sensor s ∈ S scales linearly in the numbers
of group partitions, local measurements, and its
neighboring sensors, and quadratically in the number
of PTs.
Remark 2 Notably, the computational complexity can be
further reduced in different ways, e.g., gating preprocessing
of targets and measurements [5], censoring of messages
[29], preserving the M -best group partitions, etc.
Specifically, gating technology can be employed for keeping
the number of considered group partitions and the size
of iterative data association at a tractable level. Message
censoring ignores these messages related to new PTs that
are unlikely to be an actual target. Preserving theM -best
group partitions at each time step reduces the computational
complexity of calculating the messages that involve the
summation over possible group partitions.

4 Algorithm Implementation
For the suitability of general nonlinear and
non-Gaussian dynamic system, we consider the
Monte Carlo (MC) implementation of the proposed
DGTBP method in this section. Due to limited space,
we mainly present the details of the particle-based
probabilistic track association and consensus fusion
(i.e., step 3 in Algorithm 2), where the particle
implementation of M -best GTBP for local sensors is
provided in [32].

Let {{(x(i,l)
k,s , w

(i,l)
k,s )}Lsl=1}

nk,s
i=1 denote the particle

representation of the belief p̃(xk,s, rk,s) approximating
the local posterior pdf ps(yk,s), s ∈ {1, 2}, where Ls
is the number of particles. Note that the summation∑Ls

l=1w
(i,l)
k,s provides an approximation of the marginal

posterior pmf ps(r(i)
k,s = 1). Before performing

the consensus fusion (18), the beliefs p̃(τ (i)) and
the pdfs pi,τ (i)

π (y̆
(i)
k,1) are required to be computed.

However, since each sensor has its own particle-based
implementation with its own support, the particle
representation of the fused pdf cannot be directly
computed. A natural and common way is to use the
union of the particles as the support, and adopt the
kernel density estimation (KDE) method[13]. A KDE
approximation of ps(x(i)

k,s) is given by

K̃s(x
(i)
k,s) :=

1

Vh

Ls∑
l=1

w
(i,l)
k,s K(

x
(i)
k,s − x

(i,l)
k,s

h
) (27)

where w(i,l)
k,s := w

(i,l)
k,s /

∑Ls
l=1w

(i,l)
k,s , K(·) is a Kernel

203



Chinese Journal of Information Fusion

function, h is the bandwidth, and Vh is the volume
ofK which depends also on h. The use of a Gaussian
KDE and corresponding choice of the bandwidth can
be seen in [13].

LetXi,τ (i) := {x(i,l)
k,1 }

L1
l=1∪{x

(τ (i),l)
k,2 }L2

l=1 denote the union
of the particles1 to represent pi,τ (i)

π (x̆
(i)
k,1) in (14), which

can be seen as the samples drawn from the following
the mixture important sampling density,

pIS(x) :=
L1

(
p1(x̆

(i)
k,1 = x)

)π1 + L2

(
p2(x

(τ (i))
k,2 = x)

)π2

L1 + L2

and the weights for particles x(l)

i,τ (i) ∈ Xi,τ (i) are given
by

ζ
(l)

i,τ (i) ∝

(
p1(x

(l)

i,τ (i))
)π1
(
p2(x

(l)

i,τ (i))
)π2

L1

(
p1(x

(l)

i,τ (i))
)π1 + L2

(
p2(x

(l)

i,τ (i))
)π2

By using the KDE approximation (27), the weights can
be approximated computed as follows:

ζ̃
(l)

i,τ (i) = D̃−1

ζ̃
i,τ(i)

(
K̃1(x

(l)

i,τ (i))
)π1
(
K̃2(x

(l)

i,τ (i))
)π2

L1

(
K̃1(x

(l)

i,τ (i))
)π1 + L2

(
K̃2(x

(l)

i,τ (i))
)π2

where D̃
ζ̃
i,τ(i)

is the normalization constant that
provides an approximation of the integral of
pi,τ

(i)

π (x̆
(i)
k,1),

D̃
ζ̃
i,τ(i)

≈
|X
i,τ(i) |∑
l=1

(
K̃1(x

(l)

i,τ (i))
)π1
(
K̃2(x

(l)

i,τ (i))
)π2

L1

(
K̃1(x

(l)

i,τ (i))
)π1 + L2

(
K̃2(x

(l)

i,τ (i))
)π2

The particles x
(l)

i,τ (i) ∈ Xi,τ (i) with weights ζ̃
(l)

i,τ (i)

provide a particle representation of pi,τ (i)

π (x̆
(i)
k,1). Thus,

a particle-based approximation of Ci,τ (i) in (15) is
given by

C̃i,τ (i) :=(1−
L1∑
l=1

w
(i,l)
k,1 )π1(1−

L2∑
l=1

w
(τ (i),l)
k,2 )π2

+ (

L1∑
l=1

w
(i,l)
k,1 )π1(

L2∑
l=1

w
(τ (i),l)
k,2 )π2D̃

ζ̃
i,τ(i)

(28)

Substituting C̃i,τ (i) forCi,τ (i) in (22) and (24), and then
the track association between sensors are implemented
by running (22)-(23) iteratively. After the iteration

1For the introduced new PT i ∈ Ĭk,1\Ik,1, the particles
{x(i,l)

k,1 }L1
l=1 are sampled from the pdf (19).

terminated, the beliefs p̃(τ (i)) approximating the
marginal pmfs of p(τ) are obtained by (25)-(26). Let
Xi := ∪{τ (i):p̃(τ (i))>0}Xi,τ (i) denote the union of the
sets of particles with p̃(τ (i)) > 0. Therefore, the
fused posterior pdf p̃π(y̆

(i)
k,1) in (18) can be represented

by the particles {x̆(i,l)
k,1 }

|Xi|
l=1 , where each particle x̆

(i,l)
k,1

equals to one of the particle belonging to Xi, and the
corresponding weight is given as follows:

w̃
(i,l)
k,1 = p̃(τ (i))

(
L1∑
l′=1

w
(i,l′)
k,1 )π1(

L2∑
l′=1

w
(τ (i),l′)
k,2 )π2 ζ̃

(l)

i,τ (i)

C̃i,τ (i)

Next, a resampling step is performed to reduce the |Xi|
particles toL1 uniformlyweighted particles at sensor 1,
which are used for the next time of the pairwise fusion.
Remark 3 Note that in each consensus iteration, each
sensor is required to transmit its own particles to the
neighbors of sensors, which may be impractical in the
case of limited communication bandwidth. To reduce the
communication burden, one may further approximate the
particle representation of pdfs at local sensors by Gaussian
pdfs. Then, the Gaussian parameters (i.e., mean and
covariance) are exchanged between sensors as an alternative
[15, 28]. By this way, the consensus fusion are performed
by using the collected Gaussian pdfs at each sensor, followed
by the conversion of the fused pdfs into particles.

5 Experiments
5.1 Simulation Setting, Comparison Methods and

Performance Metrics
We simulate three GTT scenarios using different DSNs
of increasing complexity to verify the performance of
the proposed method. Specifically,
• Scenario 1 simulates two sensor nodeswith limited

FoVs, merging and splitting group targets, which
is applied to validate the capability of handling
group splitting and merging of the proposed
method.

• Scenario 2 simulates multiple sensor nodes
with limited FoVs, multiple group targets, and
ungrouped targets, which is used for evaluating
the tracking performance of the proposedmethod.

• Scenario 3 simulates a large number of sensors
with limited FoVs and is used to validate the
scalability of DGTBP.

These scenarios are simulated in the 2-D case with 100
time steps and the time sampling interval ∆T = 2 s,
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where the individual targets are described by the state
vectors x(i)

k = [x
(i)
k , ẋ

(i)
k , y

(i)
k , ẏ

(i)
k ]T of planar position

and velocity. The numbers of group targets and
ungrouped targets are time-varying, and the ground
truths are simulated using the constant velocity (CV)
model and the coordinate turn (CT) model [5].
The target x

(i)
k generates a measurement z

(m)
k,s :=

[x
(i)
k , y

(i)
k ]T − pk,s + η

(m)
k,s by sensor s if and only

if 1FOVs(x
(i)
k ) = 1 and it is detected by sensor s,

where pk,s is the location of sensor s at time k and
N (η

(m)
k,s ;0,R) is a zero-mean Gaussian process noise

with R = diag(σ2
η, σ

2
η) and ση = 10 m. The clutter

pdf f (s)
c (z

(m)
k,s ) is assumed uniform in the FoV of

sensor s. Furthermore, we employ the same birth pdf
f

(s)
b (x

(m)
k,s ) constructed by using the measurements at

the previous time step [36] for the fair comparison
of all tested methods. The Poisson mean numbers of
clutter measurements and new PTs for each sensor are
set to µ(s)

c = 1 and µ(s)
b = 5× 10−4 in these scenarios,

respectively.
We consider the particle-based implementation of
DGTBP, which adopts the algorithm paradigm in
Figure 1 for networks of sensors with limited FoVs.
To verify the performance of DGTBP, we compare it
with the distributed BP (DBP) method, which can be
obtained by employing the same algorithm paradigm
as DGTBP with the BP method [23] substituted for
GTBP executing at local sensors. Furthermore, we
also consider a centralized GTBP (CGTBP) method,
which is a generation of the GTBP method [32]
to multi-sensor case by using a sensor-sequential
processing summarized in [23] (cf. Section IX-B). The
results of BP, GTBP for local sensors are provided
as well. Due to the settings of limited FoVs, we
adopt the following detection probability p(s)

d (x
(i)
k,s) =

W
(i)
k,s × PD at any sensor s, where PD = 0.99 and

W
(i)
k,s :=

∑Ls
l=1 1FOVs(x

(i,l)
k,s )w

(i,l)
k,s /(

∑Ls
l=1w

(i,l)
k,s ) is the

summation of normalized weights of these particles
inside FOVs. Herein, the coefficient W (i)

k,s is used
to handle the case that targets move across the
boundaries of limited FoVs, whichmakes the detection
probability more adaptive. The number of particles
(for representing each legacy PT or new PT state),
the survival probability, and the thresholds for target
declaration and pruning are set to Ls = 1000,
p

(s)
e (x

(i)
k ) = 0.99, Pc = 0.8, and Ppr = 10−3,

respectively. In all simulations, a target is pruned if
its existence probability is less than Ppr. Since DBP
and DGTBP do not require sharing FoV information

between sensors, an additional pruning rule is also
used for DBP and DGTBP, i.e., a target is pruned if it
is not associated with local sensor measurements and
other sensors’ targets in Kpr consecutive time steps.
Furthermore, we use the CV model with the process
noise QCV = σ2

vGG
T for filtering, where σv = 3 m/s2

and

G :=

[
∆T 2

2 ∆T 0 0

0 0 ∆T 2

2 ∆T

]T

In the iterative data association for local trackers
and track association between sensors, the iteration
is stopped if the difference in the Frobenius norm
of the beliefs is less than 10−5 in two consecutive
iterations or reaches the maximum number 100 of
iterations. Furthermore, these methods perform
message censoring (described in remark 2) with
thresholds 0.3 and 0.1 for the data association at
local sensors and track association between sensors,
respectively. In the implementation of GTBP, 5-best
group partitions are preserved at each time step. For
DBP and DGTBP, 3 consensus fusion iterations are
performed at each time step2. More specifically, in
each fusion iteration, the conversion of particles and
Gaussian pdfs mentioned in Remark 3 is applied, and
only the approximate pdfs of targets with existence
probabilities exceeding the threshold Pc for target
declaration are transmitted.
To compare the tracking performance, we use theOSPA
distance d(c)

p (·, ·) and the OSPA(2) distance ď(c)
p,q(·, · ;w)

as the performance metrics, which is capable of
capturing a variety of tracking errors, including
location and cardinality errors, track switching and
fragmentation [38, 39]. The cutoff parameter, the order
parameters, and the window length are set to c = 50,
p = 1, q = 2, and w = 10 (with uniform weights),
respectively.

5.2 Scenario 1: Two Nodes with Merging and
Splitting Group Targets

In scenario 1, we consider tracking an unknown
number of group targets with group splitting and
merging by using two sensors with limited FoVs. The
simulated ground truths, sensor locations, and FoVs
are shown in Figure 3. The two sensors are positioned
at [500 m, 3000 m]T and [3200 m, 3000 m]T with the
radius being 2000 m, respectively. Targets 1, 2, and 3
are born at the time step k = 1 in the FoV of sensor

2Since the consensus weight selection problem is not our focus,
we adopt the Metropolis weights [37] in this paper.
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Figure 3. The ground truths simulated in scenario 1. Sensor
nodes, starting and stopping positions are marked with I,

◦, and �, respectively.

1 and then merge into one group and traverse the
overlapping FoV. Followed by the group splitting, the
three targets die at k = 80 in the FoV of sensor 2.
Moreover, the group targets 4 and 5 are born at k = 11
and die at k = 90 in the FoV of sensor 1, respectively.
Target 6 is born at k = 21 in the FoV of sensor 2 and
dies at k = 100 in the FoV of sensor 1. The maximum
possible number of PTs is set to 15 when using CGTBP,
and otherwise 10. The pruning length threshold is set
toKpr = 2 in the implementations of DBP and DGTBP.
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Figure 4. The estimated trajectories tracked by different
methods at sensor 1 in scenario 1, where the color coding
represents target identities. (a) BP; (b) GTBP; (c) DBP; (d)

DGTBP.

Figures 4(a)-4(d) plot the true trajectories and the
estimated trajectories tracked by BP, GTBP, DBP, and
DGTBP at sensor 1 of one example run, respectively.
As shown in Figures 4(a)-4(b), BP and GTBP only
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Figure 5. The average tracking errors of all sensor nodes in
scenario 1. (a) OSPA distance; (b) OSPA(2) distance.

can detect targets in the FoV of sensor 1 due to the
limitation of FoV, and GTBP obtains better tracking
performance (e.g., fewer track switchings) than BP for
the reasons of jointly estimating the group structure
uncertainty and enabling flexible modeling of group
motions and single-target motions. Figures 4(c)-4(d)
show that DBP andDGTBP can successfully detect and
track all targets inside and outside the FoV of sensor
1 with the complement information from sensor 2,
which significantly improve the tracking performance
than BP and GTBP used for a single limited FoV
sensor. Simultaneously, benefiting from the merits
of GTBP for tracking group targets, DGTBP has fewer
track switchings and can handle group splitting and
merging more accurately than DBP, thereby obtaining
better tracking accuracy, which is further verified in
Figure 5.

Figures 5(a)-5(b) plot the average OSPA and OSPA(2)

distances for scenario 1 over 50 MC runs versus the
time step, where the spikes result from the track
initiation, termination delays and window effects. The
comparison results are consistent with the phenomena
shown in Figure 4. More specifically, DGTBP and
DBP overcome the limitation of FoVs and further
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reduce the tracking errors by making full use of the
complementary information obtained from sensor 2,
and DGTBP obtains better tracking accuracy than DBP.
The reasons are the same as those analyzed for Figure 4.
Furthermore, the performance of DGTBP is close to
that of CGTBP.
Next, we consider a more complex scenario with
multi-sensor, multiple group targets and ungrouped
targets. The simulated ground truths, sensor locations,
and FoVs are shown in Figure 6. A total of 14 targets
(including 5 group targets and 3 ungrouped targets)
are simulated with various birth and death times. The
maximum possible number of PTs is set to 27 when
using CGTBP, and otherwise 18. There are 5 sensors in
the network, where sensors 1-4 have a limited FoVwith
a relative angle of interval [−45◦, 45◦] and a radius of
2100 m, and sensor 5 is with a relative angle of interval
[−180◦, 180◦] and a radius of 1500 m. In this DSN,
sensor 5 can exchange information with the other four
sensors. The pruning length threshold is set toKpr = 3
in the implementations of DBP and DGTBP.
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Figure 6. The sensor nodes and ground truths simulated in
scenario 2.

5.3 Scenario 2: Five Nodes with Multiple Group
Targets and Ungrouped Targets

Figures 7(a)-7(d) plot the true trajectories and the
estimated trajectories tracked by BP, GTBP, DBP, and
DGTBP at sensor 5 of one example run, respectively.
On the whole, the comparison results shown in Figure
7 are similar those shown in Figure 4. Notably,
DBP may further intensify the confusion on target
identities when performing distributed information
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Figure 7. The estimated trajectories tracked by different
methods at sensor 5 in scenario 2, where the color coding
represents target identities. (a) BP; (b) GTBP; (c) DBP; (d)

DGTBP.
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Figure 8. The average tracking errors of sensor 5 in scenario
2. (a) OSPA distance; (b) OSPA(2) distance.

fusion for the targets within groups (that located in
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the overlapping FoV), leading to the performance
degradation (see Figures 7(a) and 7(c)). Furthermore,
DGTBP can successfully detect and seamlessly track all
group targets and ungrouped targets inside or outside
the FoV of sensor 5, which further demonstrate the
effectiveness of DGTBP.
Figures 8(a)-8(b) plot the average OSPA and OSPA(2)

distances for scenario 2 over 50 MC runs versus the
time step. The comparison results are consistent with
the phenomena shown in Figure 7, which confirm
that DGTBP outperforms DBP, BP, and GTBP in terms
of the average OSPA and OSPA(2). The reasons are
the same as those analyzed for scenario 1. Moreover,
the tracking performance of DGTBP is close to that of
CGTBP.

5.4 Scenario 3: A Large-scale DSN
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Figure 9. The sensor nodes and ground truths simulated in
scenario 3.

In scenario 3, we investigate how the fusion time
scales in the network size to demonstrate the excellent
scalability and low complexity of DGTBP. We simulate
a DSN with 20 sensors for tracking 14 targets
(including multiple groups and ungrouped targets)
with different birth and death times, where the
maximum possible number of PTs is set to 30 when
using CGTBP, and otherwise 20. The simulated
ground truths, sensor locations, and FoVs are shown
in Figure 9, where each sensor’s FoV is with a relative
angle of interval [−22.5◦, 22.5◦] and a radius of 2300
m. Due to higher uncertainty of this scenario, the
pruning length threshold is set to Kpr = 5 in the

implementations of DBP and DGTBP.
Figure 10 plots the average fusion time per consensus
iteration, the average OSPA distance, and the average
OSPA(2) distance over 100 time steps and 10 MC
runs versus the number of communication sensors
at sensor 4 (i.e., the number of sensors exchanging
information with sensor 4). The results indicate that
the average fusion time per consensus iteration scales
linearly in the number of neighboring sensors, which
is consistent with the analysis in Section 3.4. Moreover,
DGTBP inherits the same scalability as GTBP in the
processing of local sensor data, i.e., scaling linearly
in the numbers of preserved group partitions and
local sensor measurements, and quadratically in the
number of targets. Furthermore, with the increase of
the number of communication sensors, the OSPA and
OSPA(2) errors decrease. The reason is that the use of
multi-sensor allows for greater temporal and spatial
coverage, and better precision (within the overlapping
FoVs) than individual sensors with limited FoVs. As a
consequence, DGTBP has excellent scalability and low
complexity, which is applicable for the DGTT problem.
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Figure 10. The average fusion time per consensus iteration,
the average OSPA and OSPA(2) distances at sensor 4 versus

the number of its communication sensors.

6 Conclusion
This paper focuses on the DGTT problem under
sensors with limited FoVs, and propose a scalable
DGTBP method. By considering the group structure
uncertainty, the proposed method can seamlessly
track the group targets and ungrouped targets and
accurately capture changes in group structure such
as group splitting and merging. To deal with the
target identity inconsistency of local sensors caused
by different FoVs and distributed architecture, we
efficiently solve the track association problem based
on the BP scheme and perform the consensus fusion in
a probabilistic way. Particularly, DGTBP has excellent
scalability and low computational complexity that only
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scales linearly in the numbers of group partitions,
local measurements, and neighboring sensors, and
quadratically in the number of PTs. Numerical
results for challenging DGTT scenarios demonstrate
the effectiveness of DGTBP.
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