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Abstract
Related concepts of entropy play a very important
role in dealing with uncertainty in terms of
Shannon’s information theory. However, for
uncertain information involving epistemic
uncertainty, which is usually modelled by using
Dempster-Shafer theory, the concepts of cross
entropy and relative entropy are still not well
defined currently. Facing this issue, by reviewing
and importing existing related work, this study
gives new definitions of cross entropy and relative
entropy of mass functions, which are respectively
named as cross plausibility entropy and relative
plausibility entropy since they are both based
on an uncertainty measure called plausibility
entropy. The properties of cross and relative
plausibility entropies are also given, which shows a
strong connection with classical cross entropy and
relative entropy in Shannon’s information theory.
An example of application regarding parameter
estimation is provided to show the effectiveness
and reasonability of the presented entropies, which
has implemented the parameter estimation for a
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generalized Bernoulli distribution with plausibility
distribution observations.
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Nomenclature

Symbol Meaning

Ω Frame of discernment (FOD)
2Ω Power set of a FOD
m Mass function
Bel Belief function
Pl Plausibility function
Pl_Pm Plausibility transformation of a mass function
U(m) Dezert’s entropy of a mass function
U(m1,m2) Dezert and Dambreville’s cross entropy
U(m1||m2) Dezert and Dambreville’s relative entropy
HD(m) Deng’s entropy of a mass function
HD(m1,m2) Gao et al.’s cross entropy
Hpignistic(m) Pignistic entropy of a mass function
Hpignistic(m1,m2) Cross pignistic entropy
HYager(m) Yager entropy of a mass function
HYager(m1,m2) Cross Yager entropy
HPl(m) Plausibility entropy of a mass function
HPl(m1,m2) Cross plausibility entropy
HPl(m1||m2) Relative plausibility entropy
HS(P ) Shannon’s entropy of a probability distribution
HS(P1, P2) Shannon’s cross entropy
HS(P1||P2) Shannon’s relative entropy
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1 Introduction
How to represent and measure the uncertainty is one
of the central issues in information sciences. In general,
the uncertainty can be briefly classified into random
uncertainty and epistemic uncertainty [33]. Attributed
to Shannon’s innovative contributions [1], quantifying
the randomness of uncertain information is solved
through the mathematical framework of information
theory. Dempster-Shafer theory [2, 3], also known
as belief function theory, is a widely used framework
to represent information with epistemic uncertainty,
where a mathematical structure called mass functions
is provided to simultaneously describe discord and
non-specificity involved in the given information [4].
However, measuring the uncertainty of mass functions
is not yet well solved currently, especially it still has not
a consensus with respect to the definitions of entropy,
cross entropy, and relative entropy of mass functions.

With respect to the entropy of mass functions, many
researchers have paid attention on the problem [5–7].
Klir [8] has proposed generalized information theory
(GIT) which aims to generalize Shannon’s information
theory for probabilities to various uncertainty theories
including imprecise probabilities, fuzzy sets, belief
functions, and so on. However, the proposed
aggregated uncertainty (AU) inGIT formass functions
is of some shortcomings [9], especially some of the
underlying axiomatic requirements of AU have been
challenged [10]. Recent years, with the proposal
of Deng’s entropy [11], a new entropy measure for
calculating the uncertainty of a mass function, the
research of uncertainty measures in Dempster-Shafer
theory has welcomed a “strong resurgence” [12].
Many novel entropy definitions of mass functions have
been put forward [13–15]. For example, Jirousek and
Shenoy [10] designed an entropy measure for mass
functions by combining plausibility transformation
and weighted Hartley entropy. Zhou and Deng
[16] proposed a fractal-based belief entropy on the
basis of Deng’s entropy. In terms of belief intervals
of single elements, Moral-Garcia and Abellan [17]
developed an uncertainty measure of mass functions
which is analogous to AU. Besides, Cui and Deng
[18] presented a total uncertainty measure of mass
functions based on plausibility function, which is
called plausibility entropy. Facing existing uncertainty
measures, Dezert and Tchamova [19] have raised the
effectiveness problem of uncertainty measures, and
provided four desiderata to check if an uncertainty
measure is effective, and a new effective measure of
uncertainty for mass functions has been proposed in

[20].

Cross entropy and relative entropy are another
two important concepts according to Shannon’s
information theory. Although the research of entropy
of mass functions is flourishing, cross entropy and
relative entropy of mass functions, however, are
relatively rare. Thismatter of fact is easy to understand,
because cross and relative entropies are strongly
connected with the concept of entropy, their forms
are usually on the basis of the definition of entropy.
Many existing entropy measures of mass functions
are hard to yield corresponding cross and relative
entropies. Very recently, Dezert and Dambreville
[21] have provided definitions of cross entropy and
relative entropy of mass functions in terms of Dezert’s
effective measure of uncertainty presented in [20]. In
addition, Gao et al. [22] proposed a definition of cross
entropy of mass functions based on Deng’s entropy
[11]. However, as will be analyzed in this paper, the
existing definitions of cross entropy of mass functions
are of some defects in underlying properties, new cross
entropy, as well as corresponding relative entropy, of
mass functions are required, which is the purpose of
the study.

Specifically, inspired by the plausibility entropy, a total
uncertainty measure of mass functions, presented in
[18], new cross entropy and relative entropy of mass
functions are given in this paper, which are named
as cross plausibility entropy and relative plausibility
entropy, respectively. The properties of cross and
relative plausibility entropies are given, which shows
a strong connection with classical cross entropy and
relative entropy in Shannon’s information theory.
In addition, an illustrative example in parameter
estimation is given to show the potential application
of the presented entropies.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the basic knowledge of
Dempster-Shafer theory. Related work regarding
existing definitions of cross entropy of mass functions
are reviewed in Section 3. Then, new cross and relative
entropies of mass functions are given in Section 4. An
example of application is provided in Section 5. Finally,
Section 6 concludes the study.

2 Basics of Dempster-Shafer theory
Dempster-Shafer theory [2, 3] has provided a
well-defined framework to represent and deal with
uncertainty information with epistemic uncertainty.
In this theory, the set of possible answers to a given
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question of interest is called as a frame of discernment
(FOD), denoted as Ω = {θ1, θ2, · · · , θn}, in which the
set is collectively exhaustive and all elements in a FOD
are mutually exclusive. The power set of FOD Ω is
represented by 2Ω.

In order to represent the uncertain information
involving epistemic uncertainty, mass functions, also
known as basic probability assignments (BPAs), are
defined in Dempster-Shafer theory. A mass function is
amapping from the power set of a FOD to interval [0, 1],
denoted as m : 2Ω → [0, 1], satisfying the following
conditions

m(∅) = 0 and
∑
A∈2Ω

m(A) = 1 (1)

where A is called as a focal element ofm ifm(A) > 0,
and m(A) measures the belief assigned exactly to A.
In general, a probability distribution can be treated as
a Bayesian mass function in Dempster-Shafer theory,
where ∀Awith |A| ≥ 2 there ism(A) = 0.

Belief functionBel and plausibility functionPl are two
equivalent forms of mass functions, which respectively
express the lower bound and upper bound of the
support degree of a set A based on a given mass
function m, A ⊆ Ω. Given a mass function m, Bel
and Pl are defined as follows

Bel(A) =
∑
B⊆A

m(B) (2)

Pl(A) = 1−Bel(Ā) =
∑

B∩A 6=∅

m(B) (3)

where Ā = Ω−A. For each A ⊆ Ω, there is Bel(A) ≤
Pl(A), and [Bel(A), P l(A)] is called the belief interval
of A. In general, the wider the belief interval of a
set A, the larger the uncertainty it contributes to the
whole mass function. Therefore, in Dempster-Shafer
theory, given a FOD Ω, the vacuous mass functionmγ ,
in whichmγ(Ω) = 1, has the largest uncertainty.

3 Related work
In this section, two existing definitions of cross
entropy of mass functions, proposed very recently, are
reviewed.

3.1 Dezert and Dambreville’s cross entropy
Dezert [20] has given an entropy definition to measure
the uncertainty of a mass functionm on a FOD Ω

U(m) =
∑
A∈2Ω

s(A) (4)

with

s(A) = −m(A)(1− u(A)) ln(m(A)) + u(A)(1−m(A))
(5)

where ln(·) represents the natural logarithm, and
u(A) = Pl(A)−Bel(A) for any A ∈ 2Ω.

On the basis of U(m), Dezert and Dambreville
[21] have further proposed a cross entropy of mass
functions

U(m1,m2) =
∑
A∈2Ω

s1,2(A) (6)

with

s1,2(A) = −m1(A)(1− u1(A)) ln(m2(A))
+u1(A)(1−m2(A))

(7)

where u1(A) = Plm1(A)−Belm1(A) for any A ∈ 2Ω.

In addition, a relative entropy of mass functions was
also proposed in [21] as below

U(m1||m2) =
∑
A⊆Ω

m1(A)(1− u1(A)) ln
(
m1(A)
m2(A)

)
+
∑
A⊆Ω

u1(A)(m1(A)−m2(A))

(8)

It is proved in [21] that U(m), U(m1,m2), and
U(m1||m2) can respectively degenerate into classical
Shannon’s entropy, cross entropy, and relative entropy
(also known as Kullback-Leibler (KL) divergence),
and they own a relation U(m1,m2) = U(m1||m2) +
U(m1).

3.2 Gao et al.’s cross entropy
Gao et al. [22] presented another cross entropy
definition of mass functions as below

HD(m1,m2) = −
∑
A⊆Ω

m1(A)log2

m2(A)

2|A| − 1
(9)

in which the underlying entropy definition for mass
functions is based on Deng’s entropy [11] as follows

HD(m) = −
∑
A⊆Ω

m(A)log2

m(A)

2|A| − 1
(10)

Since the relative entropy inspired by Deng’s entropy
is not defined at present, quantitative relation between
HD(m) and HD(m1,m2) is not established yet.
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4 New cross and relative entropies of mass
functions

4.1 Analysis of existing cross entropy definitions
In this subsection, these two cross entropy definitions
of mass functions mentioned in the above section are
analyzed simply.

At first, Gao et al.’s cross entropy HD(m1,m2) has
been questioned in [21] because the underlying Deng’s
entropy HD(m) is non-effective. According to the four
desiderata proposed in [19], “unicity of max value of
MoU” (D4), i.e., MoU(mγ) > MoU(m) for any m 6=
mγ in which mγ is the vacuous mass function, is not
satisfied by HD(m). In terms of Deng’s entropy, given
a FOD Ω, the vacuous mass function, i.e., m(Ω) = 1,
does not have the maximum uncertainty. Please refer
to literature [21, 31, 32] for more details.

Secondly, based on a similar consideration, Dezert
and Dambreville’s cross entropy U(m1,m2) may also
not be recommended since its underlying entropy
measure U(m) violates the monotonicity [17] of
a rational uncertainty measure in belief function
theory. Specifically, the monotonicity means that
Uncertainty(m1) ≤ Uncertainty(m2) holds if ∀A ⊆
Ω : [Belm1(A), P lm1(A)] ⊆ [Belm2(A), P lm2(A)] for
arbitrary BPAs m1, m2 defined on a same FOD Ω.
Literature [23] has first revealed the problem of U(m),
however the given counterexample in [23] is a little
problem in the calculation of U(m) (specifically, log2

is misused). In this paper, a real counterexample of
U(m) on the monotonicity is given as below.

Given a FOD Ω = {a, b, c}, m1 and m2 are two mass
functions defined on Ω, in which

m1(a) = 0.05, m1(ac) = 0.05, m1(bc) = 0.9;

m2(ab) = 0.05, m2(ac) = 0.05, m2(bc) = 0.9.

Obviously, there are Belm1(A) ≥ Belm2(A) and
Plm1(A) ≤ Plm2(A) for any A ⊆ Ω. Therefore, it
clearly should be Uncertainty(m1) ≤ Uncertainty(m2)
in terms of the monotonicity. However, by means of
the uncertainty measure U(m) expressed in nats, it
obtains U(m1) = 3.9549 and U(m2) = 3.9153. Namely,
there is U(m1) > U(m2). Therefore, the monotonicity
is violated by U(m).

Based on the above analysis, new cross entropy
definition of mass functions is required and it is exactly
the purpose of the study.

4.2 Cross and relative plausibility entropies
In this paper, new cross and relative entropies of mass
functions are presented, which is on the basis of an
uncertainty measure called plausibility entropy.

The plausibility entropy was recently proposed in [18],
which is defined as

HPl(m) = −
∑
θi∈Ω

Pl(θi)log2

Pl(θi)∑
θj∈Ω

Pl(θj)
(11)

where m is a mass function defined on FOD Ω =
{θ1, θ2, · · · , θn}. Alternatively, the plausibility entropy
HPl(m) can also be expressed in the form of Shannon’s
entropy

HPl(m) =
∑
θi∈Ω

Pl(θi)×HS(Pl_Pm) (12)

where Pl_Pm is the plausibility transformation [24]
of m, satisfying Pl_Pm(θi) = Pl(θi)∑

θj∈Ω
Pl(θj)

, θi ∈ Ω,

and HS(Pl_Pm) = −
∑
θi∈Ω

Pl_Pm(θi)log2Pl_Pm(θi) is

Shannon’s entropy of probability distribution Pl_Pm
on Ω.

It can be proved that the plausibility entropy HPl(m)
has satisfied four desiderata given in [19] for an
effective measure of uncertainty (MoU) including
“zero min value of MoU” (D1), “increasing of MoU
of vacuous BPA” (D2), “compatibility with Shannon’s
entropy” (D3), and “unicity of max value of MoU”
(D4). In addition, many other desirable properties are
also satisfied by HPl(m), please refer to [18, 25, 26]
for more information. Based on the well-defined
plausibility entropy, new cross and relative entropies
of mass functions, named as cross plausibility entropy
and relative plausibility entropy respectively, are given.

Cross plausibility entropy. Given twomass functions
m1 and m2 on a same FOD Ω = {θ1, θ2, · · · , θn}, a
cross plausibility entropy, denoted as HPl(m1,m2), is
defined as

HPl(m1,m2) = −
∑
θi∈Ω

Plm1(θi) log2

Plm2(θi)∑
θj∈Ω

Plm2(θj)

(13)

Moreover, the cross plausibility entropy HPl(m1,m2)
can also be represented as

HPl(m1,m2) =
∑
θi∈Ω

Plm1(θi)×HS(Pl_Pm1 , P l_Pm2)

(14)
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where Pl_Pm1 and Pl_Pm2 are the
plausibility transformations of m1 and m2

respectively, and HS(Pl_Pm1 , P l_Pm2) =
−
∑
θi∈Ω

Pl_Pm1(θi) log2 Pl_Pm2(θi) is the classical

cross entropy between probability distributions
Pl_Pm1 and Pl_Pm2 .

In terms of Eq. (14), a series of properties satisfied
by the cross plausibility entropy HPl(m1,m2) can be
obtained easily.

Proposition 1 HPl(m1,m2) ≥ HPl(m1), the equality
holds if and only if Pl_Pm1 = Pl_Pm2 .

Proposition 2 HPl(m1,m2) 6= HPl(m2,m1), i.e., the
cross plausibility entropy is not symmetric in general.

Proposition 3 Ifm1 andm2 are Bayesian mass functions,
the cross plausibility entropy coincides with the classical
cross entropy for probabilities, i.e., HPl(m1,m2) =
−
∑
θi∈Ω

m1(θi) log2m2(θi).

Having the above definition of cross plausibility
entropy, the relative entropy of mass functions can
be defined immediately in a similar means. We have
noted that reference [27] provided aKLdivergence as a
straightforward derivative of the plausibility entropy, it
is exactly the expected form of relative entropy, which
is introduced as follows.

Relative plausibility entropy. Letm1 andm2 be two
mass functions defined on a FOD Ω = {θ1, θ2, · · · , θn},
a relative plausibility entropy, denoted asHPl(m1||m2),
is defined as follows

HPl(m1||m2)

=
∑
θi∈Ω

Plm1(θi) log2

Plm1 (θi)

/ ∑
θj∈Ω

Plm1 (θj)

Plm2 (θi)

/ ∑
θj∈Ω

Plm2 (θj)

(15)

Similarly, the relative plausibility entropyHPl(m1||m2)
can also be simply represented as

HPl(m1||m2) =
∑
θi∈Ω

Plm1(θi)×HS(Pl_Pm1 ||Pl_Pm2)

(16)
where HS(Pl_Pm1 ||Pl_Pm2) is the classical
cross entropy between probability distributions
Pl_Pm1 and Pl_Pm2 , i.e., HS(Pl_Pm1 ||Pl_Pm2) =∑
θi∈Ω

Pl_Pm1(θi)log2
Pl_Pm1 (θi)

Pl_Pm2 (θi)
.

From Eq. (16), some properties of the relative
plausibility entropyHPl(m1||m2) are derived as below.

Proposition 4 HPl(m1||m2) ≥ 0, the equality holds if
and only if Pl_Pm1 = Pl_Pm2 .

Proposition 5 HPl(m1||m2) 6= HPl(m2||m1) in general,
i.e., the cross plausibility entropy is not symmetric.

Proposition 6 For two Bayesian mass functionsm1 and
m2, the cross plausibility entropy degenerates into classical
relative entropy (or KL divergence) for probabilities, i.e.,
HPl(m1||m2) =

∑
θi∈Ω

m1(θi)log2
m1(θi)
m2(θi)

.

What’s more, as same as the equality relation for
probability distributions P1 and P2 in terms of
Shannon’s entropy, classical cross entropy and relative
entropy, i.e., HS(P1, P2) = HS(P1||P2) + HS(P1),
the presented HPl(m1,m2), HPl(m1||m2), as well as
plausibility entropy HPl(m1), of mass functions also
meet the following equality relation

HPl(m1,m2) = HPl(m1||m2) +HPl(m1) (17)

5 An example of application
In this section, an illustrative example regarding
parameter estimation is provided to show the potential
application of proposed cross plausibility entropy
HPl(m1,m2). The example is originally from literature
[28].

Assuming there are n patients randomly taken from a
population which has a proportion θ to suffer from
a disease, and each of them is represented by Xi

to show if he/she has the disease (i.e., Xi = 1) or
not (i.e., Xi = 0). Then, these random samples
X = (X1, X2, · · · , Xn), which are independent and
identically distributed (iid), can be viewed as the
outcome of a Bernoulli variable. For realizations x =
(x1, x2, · · · , xn) ∈ ΩX = {0, 1}n, the probability can be
calculated by

pX(x; θ) =

n∏
i=1

θxi(1− θ)1−xi (18)

The task is to estimate the unknown parameter θ
according to state descriptions x = (x1, x2, · · · , xn).
However, due to the uncertainty, these states are only
partially known, and let mi be the mass function
concerning the state xi associated with patient i.
Table 1 gives a data set composed of n = 6
observations, in which the fourth onem4 is uncertain
and represented by m4({1}) = α, m4({0}) = β, and
m4({1, 0}) = 1− α− β, where α, β, 1− α− β ∈ [0, 1].

Literature [28] proposed an evidential
expectation-maximization (E2M) algorithm to
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Table 1. Data set for the example of parameter estimation.

Observation i 1 2 3 4 5 6

mi({1}) 0.0 0.0 0.0 α 1.0 1.0
mi({0}) 1.0 1.0 1.0 β 0.0 0.0
mi({1, 0}) 0.0 0.0 0.0 1− α− β 0.0 0.0

estimate the parameter θ, in terms of a maximum
likelihood principle. Figure 1 gives the results
of using E2M algorithm with respect to different
α and β. It is found that, by using the E2M
algorithm, the result of estimated θ is unchanged
if the plausibility transformations of different
m4 caused by changed α and β are the same.
For example, let m1

4 and m2
4 be m1

4({1}) = 0.6,
m1

4({0}) = 0.4, m1
4({1, 0}) = 0, and m2

4({1}) = 0.4,
m2

4({0}) = 0.1, m2
4({1, 0}) = 0.5, respectively.

There are Pl_Pm1
4
({1}) = Pl_Pm2

4
({1}) = 0.6

and Pl_Pm1
4
({0}) = Pl_Pm2

4
({0}) = 0.4, i.e.,

Pl_Pm1
4

= Pl_Pm2
4
. Then, by using the E2M algorithm,

parameter θ is estimated as θ1,∗ = 0.4201 associated
with m1

4 and θ2,∗ = 0.4201 associated with m2
4. Two

observations with different uncertainty degrees, m1
4

andm2
4, lead to the same estimation of θ.
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Figure 1. Estimation of θ with the use of E2M algorithm by
considering different values of α and β.

Now, let us use a cross entropy-based method to
solve the issue of estimating parameter θ, where θ is
derived byminimizing a total cross entropy loss, which
coincides with the maximum likelihood principle
widely used in machine learning.

For the data set shown in Table 1, since there
is uncertain observation m4 involving epistemic

uncertainty, the proposed cross plausibility entropy is
used to calculate the total cross entropy loss LPl. Let P
be a distribution relying on parameter θ with P (1) = θ
and P (0) = 1− θ, then

LPl =
6∑
i=1

HPl(mi, P )

= −3log2(1− θ)− 2log2θ
−(1− β)log2θ − (1− α)log2(1− θ)

= −(4− α)log2(1− θ)− (3− β)log2θ

By letting ∂LPl
∂θ = 0, we have

θ∗Pl =
3− β

7− α− β

Figure 2 shows the results of using the proposed cross
plausibility entropy with the consideration of different
α and β. Compared with the results of E2M algorithm,
the estimated θ is changing withm4 having different
uncertainty degrees. For example, for the cases of
m4 = m1

4 andm4 = m2
4, it is obtained that θ1,∗

Pl = 0.4333

and θ2,∗
Pl = 0.4462.
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Figure 2. Estimation of θ with the use of proposed cross
plausibility entropy by considering different values of α

and β.

For the comparison, Dezert and Dambreville’s cross
entropy U(m1,m2) is also used in the example to
obtain the estimation of parameter θ. Let mθ be the
estimation of θ, in which mθ({1}) = θ, mθ({0}) =
1 − θ − ε, and mθ({1, 0}) = ε, where ε → 0. Then, in
terms of Dezert and Dambreville’s cross entropy, the
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total loss is

LU =
6∑
i=1

U(mi,mθ)

= −3 ln(1− θ − ε)− 2 ln θ
−α(α+ β) ln θ + (1− α− β)(1− θ)
−β(α+ β) ln(1− θ − ε)− (1− α− β) ln ε
+(1− α− β)[1− (1− θ − ε)]

By means of ∂LU∂θ = 0, it obtains

θ∗U =
2 + α(α+ β)

5 + (α+ β)2 (1− ε)

where ε → 0. Figure 3 graphically shows the results
obtained by using Dezert and Dambreville’s cross
entropy U(m1,m2).
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Figure 3. Estimation of θ with the use of Dezert and
Dambreville’s cross entropy by considering different values

of α and β.

And the cross entropyHD(m1,m2) fromGao et al. [21]
is also used in the example. Similarly, a total loss LD
is calculated as follows

LD =
6∑
i=1

HD(mi,mθ)

= −3log2(1− θ − ε)− 2log2θ
−αlog2θ − βlog2(1− θ − ε)− (1− α− β)log2

ε
3

Then, the estimation of θ is derived via ∂LD
∂θ = 0 as

below
θ∗D =

2 + α

5 + α+ β
(1− ε)

in which ε → 0. The results with the use of cross
entropy HD(m1,m2) are shown in Figure 4.
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Figure 4. Estimation of θ with the use of cross entropy by
considering different values of α and β.

In addition, cross entropies inspired by two
widely used entropies of mass functions,
pignistic entropy [4, 29] and Yager entropy
[30], are also considered for comparison. In
terms of the formula of pignistic entropy
Hpignistic(m) = −

∑
θi∈Ω

BetPm(θi)log2BetPm(θi),

where BetPm(θi) =
∑
θi∈A

m(A)
|A| , cross pignistic

entropy is naturally defined as Hpignistic(m1,m2) =
−
∑
θi∈Ω

BetPm1(θi)log2BetPm2(θi). Then, a total cross

entropy loss can be obtained by

Lpignistic =
6∑
i=1

Hpignistic(mi, P )

= −3log2(1− θ)− 2log2θ

−1+α−β
2 log2θ −

1−α+β
2 log2(1− θ)

= −5+α−β
2 log2θ −

7−α+β
2 log2(1− θ)

where P (1) = θ and P (0) = 1 − θ. By letting
∂Lpignistic

∂θ = 0, we have

θ∗pignistic =
5 + α− β

12

whose graphical results with different values of α and
β are given in Figure 5.

Similarly, according to the expression of Yager
entropy HYager(m) = −

∑
A∈Ω

m(A)log2Plm(A), cross

Yager entropy is defined as HYager(m1,m2) =
−
∑
A∈Ω

m1(A)log2Plm2(A). Then, the corresponding
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Figure 5. Estimation of θ with the use of cross pignistic
entropy by considering different values of α and β.

total cross entropy loss is

LYager =
6∑
i=1

HYager(mi, P )

= −3log2(1− θ)− 2log2θ
−αlog2θ − βlog2(1− θ)− (1− α− β)log21

= −(2 + α)log2θ − (3 + β)log2(1− θ)

By calculating ∂LYager

∂θ = 0, it obtains

θ∗Yager =
2 + α

5 + α+ β

which is same with θ∗D that is obtained by using cross
entropy HD(m1,m2). Figure 6 shows the results of
using cross Yager entropy by considering different α
and β.

For the sake of further comparison of thesemethods, by
letting α = β, the uncertain observationm4 becomes
m4({1}) = m4({0}) = α and m4({1, 0}) = 1 − 2α,
where α ∈ [0, 0.5]. If α = 0, m4 has the maximum
uncertainty, and the uncertainty of m4 is the least
while α = 0.5. And it is noted that there is not any
preference inm4 between states {1} and {0} because
Belm4({1}) = Belm4({0}) = α and Plm4({1}) =
Plm4({0}) = 1 − α. Figure 7 shows the estimation
results of θ by using different methods for the case of
newm4 in which α = β.

In theory, if we only have observations 1,2,3,5,6,
in terms of the maximum likelihood principle, the
estimation of θ should be θ∗ = 2/5 = 0.4. With
the consideration of observation 4, i.e., unbiasedm4:
(i)When α = 0, the estimation of θ should lie in the
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Figure 6. Estimation of θ with the use of cross Yager entropy
by considering different values of α and β.

interval [2/6, 3/6] (whose midpoint is 2.5/6) since the
existence of epistemic uncertainty in observation 4
withm4({1, 0}) = 1; (ii) When α = 0.5, the estimation
of θ should be 2.5/6 since in this case the example
becomes a mixture model for a two-dimensional
Bernoulli distribution withm4({1}) = m4({0}) = 0.5
in which there is only random uncertainty; (iii)In the
process of increasing α’s value from 0 to 0.5, the value
of θ should be changing monotonically, because for the
unbiasedm4 the only change is its uncertainty degree
which is decreasing monotonically; (iv)Therefore,
there is a path for the estimation of θ from start point
θ|α=0 ∈ [2

6 ,
3
6 ] to end point θ|α=0.5 = 2.5

6 .

From Figure 7, the result of E2M algorithm is not
reasonable since the estimated θ is 0.4 when α = 0.5.
Cross pignistic entropy Hpignistic(m1,m2) produces
insensitive result for the change of observationm4. The
proposed cross plausibility entropyHPl(m1,m2) gives
that the value of θ is declining monotonically with
the rise of α, while Dezert and Dambreville’s cross
entropy U(m1,m2), cross entropy HD(m1,m2), and
cross Yager entropyHYager(m1,m2) present opposite
trend of change. The difference between result of
HPl(m1,m2) and those of U(m1,m2), HD(m1,m2),
and HYager(m1,m2), is caused by the underlying logic
of different entropymeasures. The plausibility entropy
is based on plausibility function and it tends to get the
maximum uncertainty degree that a mass function
could possibly have, therefore the cross plausibility
entropyHPl(m1,m2) gives a relatively big estimation
of θ. In contrast, it seems that U(m1,m2), HD(m1,m2)
and HYager(m1,m2) are to obtain relatively small
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Figure 7. Estimation results of θ generated by using different methods where observation 4 is set as
m4({1}) = m4({0}) = α,m4({1, 0}) = 1− 2α.

Table 2. Generalized Bernoulli distribution with plausibility distribution observations.

Observation i 1 2 3 4 5 6

Pli({1}) 0.0 0.0 0.0 1− β 1.0 1.0
Pli({0}) 1.0 1.0 1.0 1− α 0.0 0.0

estimation of θ.

Compared with U(m1,m2), HD(m1,m2) and
HYager(m1,m2), the proposed HPl(m1,m2) is
more recommended in theory because, at first, the
underlying entropy definitions of the formers are of
some defects as analyzed in Section 4.1 and related
references [5, 19], and the underlying mechanism of
using cross plausibility entropyHPl(m1,m2) to obtain
the estimation of θ is more clear. In this example, with
the use of cross plausibility entropy HPl(m1,m2), the
classical Bernoulli distribution based on probabilities
is generalized to a new Bernoulli distribution with
plausibility distribution observations as shown
in Table 2. According to Table 2, the estimation
of parameter θ can be obtained immediately as
θ∗Pl = 3−β

7−α−β . Moreover, this Bernoulli distribution
with plausibility distribution observations can be
easily extended to the case of multi-dimensional
Bernoulli distribution.

6 Conclusion
In this paper, new definitions of cross entropy and
relative entropy of mass functions have been given
on the basis of a recently presented total uncertainty
measure of mass functions called plausibility entropy.
And, properties of the cross plausibility entropy
and relative plausibility entropy have been presented
in the study. In addition, an illustrative example
of application has been provided to show the
effectiveness of the presented entropies compared
with other methods and entropy definitions of mass
functions. The presented cross plausibility entropy
and relative plausibility entropy of mass functions can
be used in the scenarios of multi-source information
fusion based on Dempster-Shafer evidence theory for
target recognition, fault diagnosis, and so on.

In the future study, on one hand, more theoretical
analysis about the presented cross and relative
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plausibility entropies will be conducted; on the
other hand, practical applications with the use
of cross and relative plausibility entropies for
multi-sensor information fusion, decision support
systems, intelligent diagnosis, and so forth, will be
further considered.
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