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Abstract

Existing deep learning-based methods for infrared
and visible image fusion typically operate
independently of other high-level vision tasks,
overlooking the potential benefits these tasks could
offer. For instance, semantic features from image
segmentation could enrich the fusion results by
providing detailed target information. However,
segmentation focuses on target-level semantic
feature information (e.g., object categories), while
fusion focuses more on pixel-level detail feature
information (e.g., local textures), creating a feature
representation gap. To address this challenge,
we propose a self-supervised segmentation
feature alignment fusion network (SegFANet),
which aligns target-level semantic features
from segmentation tasks with pixel-level fusion
features through self-supervised learning, thereby
bridging the feature gap between the two tasks and
improving the quality of image fusion. Extensive
experiments on the WHU and Potsdam datasets
show our method’s effectiveness, outperforming
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the state-of-the-art methods.
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feature alignment, feature interaction, deep learning.

1 Introduction

Infrared images, formed by capturing thermal
radiation, offer strong anti-interference but suffer
from low resolution and lack fine details. In
contrast, visible images, formed by utilizing light
reflected from objects, exhibit high spatial resolution
and provide abundant texture details and color
information. However, their performance is
significantly degraded under low-light or other
extremely harsh conditions, thereby compromising
target saliency [6, 7]. Consequently, infrared and
visible images exhibit inherent complementarity.
By fusing these two modalities, the resulting
composite image preserves the abundant textural
details from the visible image while simultaneously
highlighting the salient target information captured
by the infrared image. Infrared and visible image
fusion technology has demonstrated extensive
applicability across diverse domains including
military reconnaissance [1], security surveillance [2],
video surveillance [3], person re-identification [4]
and remote sensing [5].
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Image fusion focuses on pixel-level detail information,
but rarely integrates target-level semantic information.
In contrast, image segmentation focuses on target-level
semantic information such as object categories.
Image segmentation can provide target-level semantic
information for image fusion, helping it better fuse
the target area during the fusion process. Therefore,
the core task of this study is to utilize leverage
the advantages of multi-task learning, using the
segmentation task to provide target-level semantic
information for the fusion task, thereby guiding the
fusion process to preserve and enhance target regions
and improve the quality of image fusion. To this end,
we focus on solving the problem of "how segmentation
task can assist fusion task" and bridging the feature
gap between the two tasks.

Existing deep learning-based image fusion methods
can be roughly divided into the following four
categories: CNN-based methods [19, 22-25, 36-38],
AE-based methods [11, 13, 14, 20, 32], GAN-based
methods [8, 15, 16, 21, 33-35] and methods that jointly
learn image fusion and high-level vision tasks [9,17, 18,
39]. The core idea of CNN-based methods is to design
network structures and loss functions so that the model
can automatically learn the optimal fusion strategy
and achieve end-to-end feature extraction, feature
fusion, and feature reconstruction. The core idea of
AE-based methods is to achieve feature extraction

(al)

(a2)

(b2)

and image reconstruction by training an autoencoder
network. GAN-based methods generate high-quality
fused images through adversarial learning between
the generator and the discriminator. In addition, some
studies attempt to jointly optimize image fusion and
high-level vision tasks by designing a loss function
based on multi-task learning, but it is still difficult to
overcome the fundamental problem of the feature gap
caused by hierarchical differences. To address this
problem, we propose a self-supervised segmentation
feature alignment fusion network for infrared and
visible image fusion (SegFANet). This network uses
a self-supervised approach to achieve segmentation
feature alignment. By converting the semantic-level
features of segmentation into pixel-level features
suitable for image fusion, it bridges the feature gap
between the two tasks and achieves collaborative
collaboration.

Specifically, we design an image reconstruction
module whose core function is to process the
semantic-level features output by the segmentation
network. This module is trained wusing a
self-supervised strategy and can reconstruct
the semantic-level features generated by image
segmentation into pixel-level features suitable for
image fusion. In detail, this module converts a
semantic-level feature into a reconstructed image
through convolution, then uses the original image as

(c2) (d2)

Figure 1. Visualizations of feature distributions before and after alignment. (al-d1) and (a2-d2) represent visible image,
infrared image, the visualization result before alignment, and the visualization result after alignment, respectively.
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Figure 2. Visual comparison with the state-of-the-art methods. (a-h) are visible image, infrared image, UMFusion,

LiMFusion, ITFuse, Tardal, YDTR and our model.

a reference label to constrain through reconstruction
loss. This process bridges the feature gap between
segmentation and fusion, enabling effective feature
alignment. As shown in Figure 1, the feature
map before alignment only retains category-based
semantic information, with blurred edges and
missing pixel-level details; after alignment, the feature
map exhibits pixel-level details. Building on this
module, we incorporate an attention mechanism to
facilitate feature interaction between the two tasks,
enabling effective collaboration and complementary
enhancement between image segmentation and
fusion processes, thereby improving the quality of
image fusion. As illustrated in the locally enlarged
areas of Figure 2, our method not only preserves the
texture details and color information from visible
images but also successfully integrates the thermal
radiation information from infrared images. The main
contributions are summarized as follows:

e We design an image reconstruction module that
bridges the feature gap between image fusion and
segmentation tasks by converting semantic-level
features from the segmentation network into
pixel-aligned feature representations suitable for
image fusion.

e We introduce an attention mechanism to promote
feature interaction between the two tasks. In

this way, the segmentation task can provide
semantic information for the fusion task, better
improving the performance of the fusion network
and generating high-quality fused images.

e The experimental results demonstrate that our
method has certain effectiveness in performance.
As shown in Figure 2, compared with the
state-of-the-art methods, our fusion results
demonstrate superior performance.

2 Related Work

2.1 CNN-based fusion methods

CNN-based fusion methods can automatically learn
the features of the input image by designing a specific
network structure and loss function, and fuse these
features to generate a high-quality fused image. This
process is mainly divided into three steps: feature
extraction, feature fusion and image reconstruction.
For example, Zhang et al. [22] propose IFCNN,
which first uses two convolutional layers to extract
salient features from multiple input images, then
selects appropriate fusion rules to fuse the extracted
features, and reconstructs the fused image through
two convolutional layers. Ma et al. [23] propose
STDFusionNet, which uses salient object masks to
assist fusion tasks. Considering illumination, Tang
et al. [24] propose a progressive image fusion network
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based on illumination perception. Wang et al. [25]
propose UMFusion, which generates pseudo-infrared
images through a crossmodality perceptual style
transfer network (CPSTN) and uses a multi-level
refinement registration network (MRRN) for image
registration. Finally, the feature interaction fusion
module (IFM) is used to adaptively select features
for fusion in the dual-path interaction fusion network
(DIEN). Furthermore, transformer has shown excellent
performance in the visual field due to its powerful
modeling ability. Therefore, Tang et al. [19] propose
YDTR, which obtains local features and important
contextual information through the Y-shaped dynamic
transformer module.

2.2 AE-based fusion methods

AE-based fusion methods achieve feature extraction
and image reconstruction by using pre-trained
autoencoders, and use manually designed fusion
rules in the fusion process. Li et al. [13] propose
DenseFuse. Unlike traditional convolutional networks,
the encoder of DenseFuse consists of convolutional
layers, fusion layers and dense blocks. Li et
al. [14] propose NestFuse, which introduces a nest
connection architecture and retains multi-scale feature
information. Li et al. [20] propose an end-to-end
fusion network architecture (RFN-Nest), using RFN
to replace traditional methods.

2.3 GAN-based fusion methods

The Generative Adversarial Network (GAN) consists
of a generator and a discriminator. GAN-based fusion
methods use the adversarial training mechanism of
the generator and the discriminator to extract features
from the input image and generate the fused image.
For example, Ma et al. [15] propose FusionGAN, which
constructs an adversarial game mechanism between
the generator and the discriminator. In addition, Ma
et al. [16] propose a dual-discriminator conditional
generative adversarial network (DDcGAN), which
achieves the fusion of infrared and visible images
with different resolutions through adversarial training
between generators and two discriminators.

However, most of these existing deep learning-based
image fusion methods are independent of other
high-level visual tasks, such as object detection [30]
and image segmentation [31]. Currently, Tang et
al. [18] propose SeAFusion, which cascades the
image fusion module and the semantic segmentation
module, and designs a loss based on multi-task
learning to constrain the fusion network. But existing
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multi-task learning methods are mainly applicable
to tasks at the same level. As two vision tasks,
image fusion and image segmentation have significant
differences in feature representation, so bridging the
feature gap between the two tasks is still a difficult
problem. To bridge this gap, our method adopts
the self-supervision idea to convert the segmentation
features into pixel-level features that match the image
fusion task, thereby narrowing the difference in feature
representation between the two tasks.

3 Methodology

3.1 Overview

Our SegFANet framework is shown in Figure 3, which
consists of three sub-networks: the segmentation
network aims to extract target-level features, while the
fusion network focuses on pixel-level feature extraction
and integration. In order to take advantage of the
complementary advantages of multi-task learning,
we introduce stage-interactive networks (SINets)
between the encoder stages of the two networks.
The stage-interactive network aims to assist the
fusion network with the semantic information of the
segmentation network to help the fusion network
better understand the image content. This is achieved
through 3 key modules: image reconstruction module
(IRM), cross attention module (CAM) and feature
fusion module (FFM).

Specifically, SegFANet conducts cross-task feature
interactions between the corresponding encoder levels
of the segmentation network and the fusion network
through n stage-interactive networks. In each network,
first, segmentation features and fusion features are
extracted from the infrared and visible inputs:

fgi = EZS(IiraIvis), (1)

ffz = Ez‘F(Iirv Lyis), (2)
where I, and I,is denote the infrared and visible
input images, £7(-) and E(-) are the i-th encoders
of the segmentation and fusion branches, fgi and eF i
represent their corresponding encoder features.

Then, we construct IRM based on a self-supervision
mechanism, which transforms the target-level
semantic features fes:i from the segmentation network
into pixel-level features f7* to bridge the feature gap
between image fusion and segmentation:

= Ri(f5), (3)

where R;(-) denotes the function of the i-th IRM,
which includes four "Convolution with 3x3 kernel +
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Figure 3. The overall workflow of the proposed model. The upper part describes the architecture of the segmentation
network. The middle part details the proposed stage-interactive network. The lower part outlines the structure of the

fusion network.

ReLU" layers, and f. fz denotes the segmentation feature
produced by the segmentation branch’s i-th encoder
and serves as the input for IRM.

In addition, CAM takes the features er and fF
obtained by the fusion network and IRM as inputs,
and interacts to obtain a new fusion feature 6FJ., which
can be formulated as:

73

F
eq SZ( e,

1, (4)

where S;(-) denotes the function of the i-th CAM, er is
the fusion feature, and f/* is the reconstructed feature.

Moreover, we develop the FFM, which takes the
feature f/* and the feature fJ, ,,, from the fusion
decoder stage at the corresponding resolution as inputs
and performs feature fusion. This process enhances
the fusion network decoder’s ability to understand
semantic information, thereby enabling the fusion
network to generate high-quality and semantically rich
fusion images, which can be formulated as:

f(fjn—i—i—l = Fi(sz’ f(fn—i-i—l)a (5>

where F;(-) denotes the function of the i-th FFM. In
the following subsections, we introduce the detailed

architectures of CAM and FFM, respectively. In

addition, we elaborate on the design of the loss
function, which plays a crucial role in guiding the
model to improve image fusion quality.

3.2 Cross Attention Module

o
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Figure 4. The structure of the cross attention module.

The specific structure of the cross attention module
(CAM) is shown in Figure 4. In this module, the
input feature f ; is first processed by adaptive average
pooling to compress the spatial dimension, and then
the Query Q and Value V are generated through the
batch normalization layer. At the same time, the same
adaptive average pooling and batch normalization
operations are performed on another input feature f
to generate a Key K, which provides a clear semantic
prior. By calculating the similarity between K and Q,
the fused feature is guided to focus on the target area.
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Then the softmax function is applied for normalization
to generate the attention weight. Finally, the attention
weight is used to compute a weighted sum of the
V, completing the feature fusion operation. The
interacted feature is concatenated with the original
fused feature f to obtain the final fused feature F .

The concatenated feature ffi is then directly fed mto
the convolutional layer of the next stage in the image
fusion encoder as its input. This process can be defined
as:

@ = BN(AAP(/))), (6)
V =BN(AAP(f/))), (7)
K = BN(AAP(f), (8)
O = Softmax <Q\/{(T -V, (9)
fF. = Concat(O, ff ), (10)

where ez denotes the output feature of the i-th
stage of the fusion network encoder and f# denotes
the reconstructed feature of the i-th IRM. BN(:)
represents the batch normalization operation, which
stabilizes training and accelerates convergence. AAP(-)
denotes the adaptive average pooling operation, which
dynamically adjusts the size of the feature map.
Concat(-) represents feature concatenation operation,
used to preserve more information. Additionally,
softmax is used to normalize scores, ensuring that
the sum of weights is 1, which is typically applied
in attention mechanisms.

3.3 Feature Fusion Module

As shown in Figure 5, the feature fusion module
(FFM) is mainly composed of convolutional layers
and the activation function is ReLU, which is designed
to enhance the fusion network decoder’s ability to
understand semantic information. Specifically, the
reconstructed feature £ is firstly encoded with double
3 x 3 convolutions and concatenated with the fusion
network decoder feature f(f n—it1- The concatenated
features are further deepened and fused through
two 3 x 3 convolutional layers. This process can be
represented as:

feoncat = Concat(ConV;ng(CoanXg(f ), fdn it1)s
(11)

fdeepened = Convsx3(Convix3( feoncat)), (12)

where Convsys denotes the operation of a 3x3
convolutional layer, mainly used for feature extraction
of input features.
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Subsequently, the deepened features are concatenated
with the original f f n—it1 again, and finally the number
of channels is adjusted through a 1 x 1 convolutional
layer and output:

= Convyy (Concat(fdeepened, fcfn—i—&-l ),

(13)
where Conviy; denotes a 1x1 convolutional layer
operation, mainly used to adjust the number of feature
channels.

a3
fd,n—i—‘rl

3 X3conv
ReLU
3X3conv

: ReLU

3 X3conv
ReLU

3 X 3conv
ReLU
1 X Iconv

L=+

© Concat

Figure 5. The structure of the feature fusion module.

3.4 Loss function

To optimize the proposed model, we design a loss
function. It converts semantic-level segmentation
features into pixel-level features via IRM, bridging
the feature gap between segmentation and fusion,
enabling their interaction, and improving fusion
quality. Specifically, we jointly train fusion,
segmentation and reconstruction tasks. Therefore, the
designed loss function can be expressed as:

Ltotal = Lf + Ls + Lrec, (14)

where Ly and L, represent the image fusion loss and
segmentation loss, respectively. And L.e. represents
the reconstruction loss of segmentation semantic
features.

In the fusion stage, the fusion loss is defined as:

Ly =(1-SSIM(If, Ij)) + (1 = SSIM(IF, Iis)), (15)
where SSIM [26] represents the structural similarity
index, which is used to evaluate the difference between

the fusion result I and the source images I;; and I‘XS.

The reconstruction loss mainly evaluates the similarity
between the reconstructed image and the original
infrared and visible images. The L. is defined as:

n
Lrec = E Lrec,ia
=1

(]. - SSIM( resty VIS))
(17)

(16)

Lresi - (1 - SSIM( rest ))
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where L.; represents the reconstruction loss for
the i-th image reconstruction module, and Irs; is
the feature output by the i-th image reconstruction
module.

In the segmentation stage, the segmentation loss
function L is composed of the cross-entropy (CE) loss
[29] and the dice coefficient loss [27, 28]:

Ls = Lee + Laices (18>
where CE loss is used to measure the difference
between the predicted probabilities and the true labels,
providing a measure of classification accuracy. The
dice coefficient loss, on the other hand, evaluates
the similarity between the predicted and true
segmentations, making it particularly useful for tasks
where the goal is to match the predicted segmentation
with the true segmentation.

4 Experiments

4.1 Experimental configurations

The model is implemented with PyTorch on GTX
2080TI GPU. During training, we employ the Adam
optimizer with a learning rate of 0.0001. The two
momentum values of the Adam optimizer are set to
0.9 and 0.999, respectively. The batch size is set to
2, and the number of epochs is set to 50. We train
the model on the WHU [44] and Potsdam [45]. The
Potsdam dataset provides detailed information about
urban environments, mainly including 6 categories:
Impervious surfaces, Buildings, Low vegetation, Trees,
Cars, and Clutter. It is divided into a training set
of 10,830 images and a test set of 2,527 images. The
WHU dataset describes the scenario of land, covering
7 categories: Farmland, City, Village, Water, Forest,
Road, and Others [46]. It is divided into a training
set of 17,280 images and a test set of 4,320 images.
Before training, we preprocess the data by cropping
the images into patches of size 320x320.

In addition, for quantitative evaluation, four metrics
are selected to objectively evaluate the fusion
performance, including spatial frequency (SF) [40],
average gradient (AG) [41], the sum of the correlations
of differences (SCD) [10], and visual information
fidelity (VIF) [12]. SF measures the richness of detail
information in the image. AG reflects the clarity of the
image. SCD reflects the degree of correlation between
the information transferred to the fused image and the
corresponding source image. VIF measures the degree
of visual information preservation of the fused image
relative to the source image from the perspective of

human visual perception. The larger the SF, AG, SCD
and VIF of the fusion algorithm, the better the fusion
performance.

4.2 Results and analysis

In this section, we conduct subjective qualitative
and objective quantitative experiments on the WHU
and Potsdam datasets to evaluate the performance
and advantages of our proposed fusion method.
We select five state-of-the-art methods, including
UMFusion [25], YDTR [19], Tardal [17], ITFuse [42]
and LiMFusion [43], to compare with the proposed
model. Next, we conduct a detailed analysis of
the fusion results obtained by these methods on the
WHU and Potsdam datasets from both subjective and
objective dimensions.

4.2.1 Experimental results on the WHU dataset

First, we qualitatively compare the proposed method
with five comparison methods. We select two
representative infrared and visible images from the
WHU dataset for subjective evaluation, as shown
in Figure 6. In the picture, in order to visually
compare the fusion effects of different methods, we
mark the comparison area with a yellow box, and
enlarge the details of the corresponding area and
display it in the lower left corner of the image. From
the visualization results, it can be observed that the
fusion images generated by ITFuse and LiMFusion
exhibit lower clarity, with blurred edges and loss of
some detail information. Although UMFusion and
YDTR have fused infrared and visible information to
a certain extent, there is still room for improvement
in detail preservation and clarity. Tardal has a high
contrast and highlights the infrared thermal radiation
target well, but there are local artifacts, and the
preservation of texture and edge detail information
is not as good as the proposed method. In contrast, the
proposed method performs better in integrating the
complementary features of infrared and visible images,
and the generated fused images have higher clarity,
can well preserve edge and texture detail information,
and are more in line with the characteristics of the
human visual system. Therefore, in the qualitative
comparison of infrared and visible image fusion
methods, the visualization results of the proposed
method outperform those of existing state-of-the-art
methods.

In addition, to comprehensively evaluate the
performance of the proposed method and five
comparison methods, four metrics, SF, AG, SCD and
VIF are used to quantitatively analyze the fused image.
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Figure 6. Visual comparison of our method with five SOTA fusion methods on the WHU dataset. (al-h1) and (a2-h2)
represent visible image, infrared image, UMFusion, LiMFusion, ITFuse, Tardal, YDTR and our proposed model,

respectively.

As shown in Table 1, the average comparison results
of the four metrics of the proposed method and other
comparison methods on the WHU test set are shown,
where the optimal value of each metric is marked
in red and the suboptimal value is marked in blue.
Obviously, the proposed method is higher than the
existing comparison methods in the three evaluation
metrics of AG, SCD and VIF, which shows that the
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fused image generated by the proposed method has
the best performance in clarity and retains more
feature information of the source image, with better
visual performance. Although the proposed method
is not the best in the metric of spatial frequency (SF),
it is second only to LiMFusion, and the gap is not
large, which shows that the fused image generated by
the proposed method contains richer texture and edge
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Figure 7. Visual comparison of our method with five SOTA fusion methods on the Potsdam dataset. (al-h1) and (a2-h2)
represent visible image, infrared image, UMFusion, LiMFusion, ITFuse, Tardal, YDTR, and our proposed model,

respectively.
detail information.

4.2.2 Experimental results on the Potsdam dataset

We further conduct experiments on the Potsdam
dataset and conduct qualitative and quantitative
analysis of the experimental results to demonstrate the
effectiveness and superiority of the proposed method
on different datasets. Figure 7 shows subjective

visualization results of two sets of infrared and visible
images. From the experimental results, it can be seen
that the fused images generated by LiMFusion and
ITFuse have low clarity, some detail loss, and low
overall visual quality. The fused images generated by
UMFusion and YDTR are not clear enough, the contrast
is relatively low, and some texture detail information is
lost. The fused images generated by Tardal can retain
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Table 1. Average quality metrics of different methods on the
WHU dataset. The optimal result is highlighted in red, and
the sub-optimal result is highlighted in blue.

Methods SF AG SCD VIF
YDTR [19] 14365 501 0.829 1.015
Tardal [17] 15465 5.867 1.033 0.796

UMFusion [25] 13.4735 4.8998 0.8378 1.0329
ITFuse [42] 6.6021 2.8736 0.2886 0.6699
LiMFusion [43] 17.4743 5.7829 0.6069 0.5147
Ours 16.8724 5.9824 1.3197 1.0969

texture detail information, but the visual effects are
poor. In contrast, the proposed method offers better
visual effects, retains more source image information,
has higher contrast, and better meets human visual
system needs.

In addition, Table 2 shows the objective comparison
results of different fusion methods on the Potsdam test
set. The proposed method has achieved optimal or
near-optimal values in most metrics. Specifically, the
proposed method performs best in the three metrics of
AG, SCD and VIF, which shows that the fused image
generated by the proposed method not only has the
highest clarity but also can more effectively fuse the
key feature information in the source image into the
final result, with good fusion quality, which is more
in line with the human visual system. In terms of SF,
the performance of the proposed method is second
only to LiMFusion, which shows that the fused image
generated by the proposed method contains relatively
rich edge and texture detail information.

Table 2. Average quality metrics of different methods on the
Potsdam dataset. The optimal result is highlighted in red,
and the sub-optimal result is highlighted in blue.

Methods SF AG SCD VIF
YDTR [19] 10.180 3.608 0.310 1.396
Tardal [17] 9915 3409 0524 1.238

UMFusion [25] 8.7409 3.3025 0.5245 1.2752
ITFuse [42] 6.1962 2.4580 0.1746 1.0358
LiMFusion [43] 11.4870 4.0733 0.8851 0.7541
Ours 11.3001 4.1599 1.1660 1.5861

In summary, the experimental results on both WHU
and Potsdam datasets show that the proposed method
exhibits superior performance in infrared and visible
image fusion compared with five state-of-the-art
methods.

232

4.3 Ablation study
4.3.1 Effect of stage-interactive network

As shown in Figure 3, we introduce stage-interactive
networks between the encoder stages of the
segmentation network and the fusion network. The
stage-interactive network mainly includes an image
reconstruction module, a cross attention module,
and a feature fusion module. The stage-interactive
network is responsible for bridging the feature gap
between segmentation and fusion tasks, thereby
achieving feature interaction between segmentation
and fusion tasks and improving the performance
of fusion tasks. In this study, a total of three stages
of feature interaction are used. This section aims to
explore the impact of the number of stage-interactive
networks on model performance. Table 3 lists in
detail the quantitative evaluation results of different
numbers of stage-interactive networks on the WHU
dataset.

Table 3. Average quality metrics of different numbers of
stage-interactive networks. The optimal result is bolded.

Number SF AG SCD  VIF

1 16.8547 5.9754 1.3188 1.0966
2 16.8693 5.9798 1.3182 1.0971
3 16.8724 5.9824 1.3197 1.0969

As can be seen from Table 3, as the number of
stage-interactive networks increases, the performance
of the fusion task is generally improved, which
indicates that a greater number of stage-interactive
networks can more effectively enhance the interaction
between the features of the fusion and segmentation
tasks, so that the fusion network can better utilize the
semantic information of the segmentation network.
When the number of stage-interactive network is 3,
most metrics reach the optimal or near-optimal values,
which shows that the fusion effect is better at this time,
the generated fusion image has higher clarity, richer
edge and texture detail information, and has more
advantages in meeting the needs of the human visual
system.

4.3.2 Effect of image reconstruction module

The role of the image reconstruction module (IRM) is
to align the target-level features of the segmentation
network with the pixel-level features of the image
fusion task, thereby bridging the feature gap between
image fusion and image segmentation. In this
section, to fully verify the effectiveness of the
image reconstruction module, we design a series
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(a2)

(b2)

(c2)

(d2) (e2)

Figure 8. Visual comparison of feature alignment results before and after IRM processing. (al-el) and (a2-e2) represent
visible image, infrared image, segmentation feature, reconstructed feature, and fusion feature.

of comparative experiments. Firstly, for the fusion
model containing two stage-interactive networks, we
conduct two experiments: one retains the image
reconstruction module and the other removes the
module while keeping other structures unchanged,
in order to observe the specific impact of the image
reconstruction module on the quality of the fused
image.

In addition, to further explore the performance of
the image reconstruction module under different
configurations, we also add a set of experiments to
compare the performance difference between retaining
and deleting the image reconstruction module in a
fusion model that includes a three stage-interactive
networks. The experimental results of the objective
evaluation metrics are shown in Table 4.

Table 4. Effect study of image reconstruction module (IRM).
The optimal result is bolded. And w/ means with, w/o
means without.

Setting SF AG SCD VIF

Two-SINets (w/ IRM) 16.86935.9798 1.31821.0971
Two-SINets (w/o IRM) 16.84195.97131.3179 1.0967

proving that the image reconstruction module can
improve the quality of the fused image. Similarly, the
comparison of the results of the last two experiments
also verifies this point, further proving the effect of the
image reconstruction module.

Moreover, we validate the alignment effect of
the image reconstruction module by visualizing
intermediate features (comparing segmentation
features, reconstructed features, and fusion features).
As shown in Figure 8, the segmentation features
before alignment lack pixel-level detail information
(e.g., the edge contours of farmland are blurred).
In contrast, after adding the image reconstruction
module, the boundaries between farmland and water
are clearly presented, and semantic-level features are
reconstructed into pixel-level features suitable for
image fusion, achieving accurate feature alignment.

4.3.3 Effect of cross attention module

The cross attention module (CAM) is responsible
for promoting the interaction of features between
image segmentation and image fusion, thereby helping
the fusion task to better fuse salient targets during
the fusion process to improve the quality of the

Three-SINets (w/ IRM) 16.8724 5.98241.3197 1.0969 fused image. In this section, in order to fully verify
Three-SINets (w/o IRM) 16.8317 5.9695 1.3189 1.0964 the effect of the cross attention module, we design

As shown in Table 4, by comparing the results of the
first two experiments, it can be seen that the setting
including the image reconstruction module is better
than the setting without the module in all metrics,

two sets of comparative experiments. Firstly, for
the fusion model containing two stage-interactive
networks, we conduct two experiments: one retains
the cross attention module, and the other replaces the
cross attention module with a simple feature addition
operation. Secondly, we also compare the performance
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differences when retaining the cross attention module
and replacing the cross attention module with a
feature addition operation in the context of the three
stage-interactive networks. The experimental results
are shown in Table 5.

Table 5. Effect study of cross attention module (CAM). The
optimal result is bolded. And w/ means with, w/o means
without.

Setting SF AG SCD VIF

Two-SINets (w/ CAM) 16.86935.9798 1.31821.0971
Two-SINets (w/o CAM) 16.8699 5.9786 1.317 1.0966

Three-SINets (w/ CAM) 16.8724 5.9824 1.3197 1.0969
Three-SINets (w/0 CAM) 16.8684 5.9815 1.3206 1.0969

As shown in Table 5, the results show that whether it
is a two stage-interactive or a three stage-interactive,
the introduction of the cross attention module is more
helpful in improving the quality of the fused image
than the simple feature addition operation.

To further validate the effectiveness of the CAM
module, we visualize the distribution of attention
weights using heatmaps (see Figure 9). As
observed from the heatmaps, attention weights are
predominantly focused on target regions (e.g., forest),
which enables the segmentation task to effectively
assist the fusion task and thereby enhancing the quality
of image fusion.

(a2)

(b2) (c2)

Figure 9. Qualitative analysis of attention weights. (al-cl)
and (a2-c2) represent visible image, infrared image, and
heatmap.

5 Conclusion

To address the difference in feature representation
between image fusion and image segmentation, this
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paper proposes self-supervised feature alignment for
infrared and visible image fusion. The innovation
of this method lies in the design of an image
reconstruction module, which aligns the target-level
features extracted by the segmentation network with
the pixel-level features extracted by the fusion network
through a self-supervised method, effectively bridging
the feature gap between image fusion and image
segmentation. In addition, the cross attention
module is introduced to promote feature interaction
between the two tasks, thereby achieving efficient
collaboration between image segmentation and image
fusion tasks. Finally, the performance advantages
of the proposed method are demonstrated through
comprehensive qualitative and quantitative analysis
on the WHU and Potsdam datasets. However, the
performance of the proposed method depends on the
supervision information provided by the segmentation
task. In future work, we will explore how to
mine semantic information to improve fusion quality
without segmentation supervision.
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