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Abstract

Considering the large-area distribution, smooth
brightness gradients, and blurred boundaries
of Mura defects in real industrial scenarios,
as well as the challenge of balancing accuracy
and efficiency in existing methods, we propose
a lightweight deep learning-based detection
method for large-area Mura defects, termed SIFNet.
The SIFNet adopts a classical encoder-decoder
architecture with MobileNet-V2 as the backbone.
Furthermore, we design a Graph-based Semantic
Interscale-fusion Block (GSIB) that integrates the
Semantic Fluid Aggregation Module (SFAM) and
the Semantic Graph Inference Module (SGIM)
to collaboratively extract high-level semantic
features across multiple scales and establish
abstract semantic representations for accurately
localizing large-area Mura defects. Specifically,
SFAM leverages a global attention mechanism to
extract cross-spatial semantic flows, guiding the
model to focus on potential brightness anomaly
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regions in the image and SGIM explicitly models
the semantic relationships between multi-scale
features using graph convolution, enhancing the
model’s ability to interpret regions with blurred
boundaries and ambiguous structures. To further
improve the model’s sensitivity to edges in regions
with smooth brightness transitions, we introduce
a NeighborFusion Edge Enhancement Module
(NEEM). This module integrates depthwise
separable convolutions with a spatial attention
mechanism and introduces a CrossNorm-based
feature alignment strategy to enhance spatial
collaboration across feature layers. Additionally,
an edge enhancement mechanism is employed
to significantly improve the model’s ability to
delineate blurred Mura defect boundaries, while
keeping computational cost low and strengthening
edge perception and representation. Extensive
quantitative and qualitative experiments on three
large-area Mura defect datasets constructed in this
study demonstrate that SIFNet achieves excellent
detection performance with only 3.92M parameters
and 6.89 GFLOPs, striking an effective balance
between accuracy and efficiency, and fully meeting
the demands of industrial deployment.
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1 Introduction

As a core component of modern electronic devices,
the display panel plays a critical role in shaping the
end-user’s visual experience. However, due to inherent
limitations in material properties, manufacturing
techniques, and production environments, surface
defects on display screens remain difficult to avoid
during the fabrication process [1]. Among the various
display quality defects, Mura defects, which refer to
brightness non-uniformity, are particularly prominent.
They often cause visible brightness variations on
the screen and significantly impair the overall visual
experience [2]. Unlike local defects such as dot
or line defects, Mura defects typically span large
areas, exhibit complex and diverse patterns, and
involve subtle brightness variations, posing significant
challenges for traditional detection methods in terms
of both identification and localization. Moreover,
this brightness non-uniformity not only affects visual
performance but may also reduce the lifespan of the
display. Therefore, accurately detecting and effectively
segmenting non-uniform regions on the screen has
become a critical issue that demands urgent attention

[3].

Traditional Mura defect detection methods are
primarily based on image processing techniques,
including frequency domain analysis [4, 20], filtering
and statistical analysis [5, 6], and low-rank matrix
decomposition. Frequency domain approaches, such
as Fourier transform and discrete cosine transform,
achieve defect segmentation by removing background
textures. However, their high computational cost in
background reconstruction limits their applicability in
real-time scenarios. Filtering and statistical methods
rely on techniques like mean filtering [7] and Gaussian
filtering [8] to highlight non-uniform regions, followed
by threshold-based segmentation. However, these
methods are prone to interference from local features
when handling complex or subtle defects and are
highly sensitive to parameter settings, resulting in
limited adaptability. Low-rank matrix decomposition
models the background as a low-rank matrix and
treats defects as sparse components, separating the
two via optimization algorithms. Although this
approach shows promising performance in Mura
defect detection, its high computational complexity
similarly restricts its use in real-time industrial
applications. Overall, while traditional methods may
be effective in specific scenarios, they generally suffer
from strong dependence on background regularity,
high computational costs, and poor generalization,
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making them insufficient for the diverse demands of
Mura defect detection in practical industrial settings

[9].

In recent years, the rapid advancement of display
technology has led to high-resolution and large-size
panels becoming the market mainstream, imposing
greater demands on large-area Mura defect detection.
Higher resolutions require algorithms to process
significantly larger volumes of data, while increased
panel sizes add complexity to the detection task. At
the same time, the rise of deep learning has introduced
new perspectives for tackling Mura defects. Detection
methods based on Convolutional Neural Networks
(CNNs) have become the dominant approach, offering
efficient feature extraction and semantic segmentation
through end-to-end training frameworks. Significant
progress has been made in applying deep learning
to LCD defect detection, with three main research
directions emerging: (1) Optimization and application
of enhancements of object detection model to classical
architectures such as YOLO [10] and RetinaNet
[11], combined with attention mechanisms, have
improved performance in complex backgrounds
and for various defect types; (2) Addressing the
scarcity of labeled data through transfer learning
and unsupervised learning approaches, reducing
the reliance on large-scale annotated datasets and
improving model adaptability [12, 13]; (3) Combining
lightweight network designs with data augmentation
strategies to reduce computational overhead and
enable real-time detection in resource-constrained
environments [14]. Nevertheless, existing object
detection networks remain limited in their ability
to handle large-area Mura defects with blurred
boundaries, and often struggle to balance detection
accuracy with the stringent real-time requirements of
industrial settings, as illustrated in Figure 1.

Moreover, compared to conventional display defect
detection, Mura defect detection presents distinct
differences in both research focus and technical
requirements. It emphasizes the overall brightness
distribution across the screen rather than the specific
shapes of localized defects. As a result, the task
requires capturing large-scale brightness gradients and
non-uniformities, which often lack clear boundaries
or geometric features. Furthermore, Mura defects
typically exhibit diffuse patterns and are influenced
by complex factors such as backlighting, display
environment, and screen content, making general
object detection methods difficult to apply effectively.
Large-area Mura defect detection faces several key
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Figure 1. A visual comparison between our method and commonly adopted object detection methods (YOLOv11 [15],
YOLOvVS8 [16]) in industrial applications.

challenges: (1) Mura defects often appear as subtle
brightness gradients or broad regions of uneven
illumination, making them difficult to differentiate
from the background; (2) These defects generally
lack sharp boundaries or distinct structural cues,
complicating accurate localization; (3) Limited
availability of annotated defect samples hinders model
training and restricts generalization capabilities; (4)
Processing high-resolution images demands greater
computational efficiency and detection accuracy,
requiring methods that balance precision with
real-time performance.

To address the above challenges, we focus on
developing a lightweight deep learning-based method
for large-area Mura defect detection. We propose
a novel lightweight Semantic Interscale Integration
and Neighbor Fusion-based network, termed SIFNet,
which aims to enhance Mura defect detection
performance while maintaining a lightweight design
suitable for industrial applications. Specifically, we
adopt a commonly used encoder-decoder structure
with MobileNet-V2 [17] as the backbone. To effectively
capture large-area Mura defects and enhance the
model’s sensitivity to subtle brightness variations,
we design a Graph-based Semantic Interscale Fusion
Block (GSIB). This block integrates high-level semantic
information across spatial scales and models global
feature relationships within Mura defect regions,
while maintaining low computational complexity.
GSIB consists of two submodules: the Semantic
Fluid Aggregation Module (SFAM) and the Semantic
Graph Inference Module (SGIM). SFAM adopts a
holistic strategy to extract global semantic cues,
while SGIM employs graph convolution operations
to explicitly model cross-scale semantic relationships
by constructing higher-order connections between
layers. To further improve the model’s ability to
detect fine boundary features in regions of brightness
non-uniformity, we introduce the NeighborFusion
Edge Enhancement Module (NEEM). NEEM enhances

edge representation by mining spatial correlations
between multilevel features. Finally, to address the
diverse scales and morphologies of Mura defects, we
design a lightweight multiscale decoder for accurate
detection across varying defect sizes. In summary, our
main contributions are as follows:

1. We propose a novel lightweight network, SIFNet,
for large-area Mura defect detection, and
construct three high-resolution large-area Mura
defect datasets to support model training and
evaluation.

2. We design a lightweight Graph-based Semantic
Interscale-fusion Block (GSIB) to effectively
capture large-area Mura defects and subtle
brightness variations. GSIB integrates multi-level
deep semantic features and models cross-scale
relationships through two components: SFAM,
which extracts holistic semantic cues, and SGIM,
which builds high-order dependencies via graph
convolution.

3. We propose a lightweight NeighborFusion Edge
Enhancement Module (NEEM) that strengthens
spatial correlations among multi-level features
and reinforces edge representations, thereby
improving the model’s sensitivity to subtle
boundary features in Mura defect regions.

4. Comprehensive experiments on the proposed
datasets demonstrate that our method achieves
state-of-the-art performance while being
lightweight, highlighting its suitability for
industrial applications.

2 Related Work

2.1 Traditional image processing-based Mura defect
detection methods

Early traditional defect detection methods primarily
relied on thresholding, edge information, feature
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extractors, and classifiers for defect classification and
localization. Sun et al. [18] proposed a cascaded Mura
detection approach based on mean shift and level set
algorithms, where the mean shift algorithm is first
used to locate potential defect regions, followed by
segmentation using the level set method. Chen et al.
[19] addressed the challenge of detecting Mura defects
with low brightness contrast against the background
by proposing a background reconstruction method
based on discrete cosine transform (DCT), generating
a background image separated from the defect. They
further quantified the saliency of Mura defects using
the Just Noticeable Difference (JND) model. Tsai et
al. [20] tackled the difficulties of detecting defects
in large-size, high-density LCDs with complex and
irregular patterns by applying Fourier-based image
reconstruction to remove periodic backgrounds from
1D line patterns, enabling accurate segmentation of
local anomalies. Cui et al. [21] employed three
visual-based techniques for display defect detection
and used OTSU thresholding to segment multiple
defect types across various uniform background colors.
Chen et al. [22] proposed a salt-and-pepper defect
detection method using mean filtering and statistical
control charts. The method first identifies defect pixels
via mean filtering and binarization, then monitors
the number of detected pixels with a control chart
to determine panel-level defects. However, these
traditional methods typically rely on background
regularity, involve high computational costs, and have
limited adaptability in complex or variable scenarios.
Moreover, their accuracy is often unstable, making
them unsuitable for direct deployment on industrial
production lines.

2.2 Deep learning-based Mura defect detection
methods

With the rapid development of deep learning,
many methods have adopted end-to-end training
frameworks that enable efficient extraction of display
defect features and semantic segmentation. In the
field of LCD defect detection, deep learning-based
approaches have made notable progress, with research
primarily centered on the optimization and application
of general object detection models. Zhu et al. [23]
employed YOLOV3 as the detection framework to
identify defects and noise under varying backgrounds
and viewing angles. By subtracting the noise detection
results from the defect results, the method achieved
a more accurate defect localization. Celik et al. [24]
analyzed deep learning-based LCD defect detectors
using RetinaNet, YOLOvV3, and M2Det, and found
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that RetinaNet offered the best balance between
accuracy and processing time. Luo et al. [9]
improved the YOLOv5 backbone by widening both
shallow and deep convolutional layers, and proposed
a shallow semantic fusion module to enhance the
utilization of low-level features. They also introduced a
contrast-enhancing attention mechanism to strengthen
feature representations across spatial and channel
dimensions.

Furthermore, extensive efforts have been made to
design efficient neural network architectures that
reduce computational overhead while improving
detection accuracy. Lin et al. [25] used MobileNet
as a baseline and incorporated a channel attention
mechanism to enhance channel-wise features for
Mura defect detection in LCDs.  Chen et al.
[14], building upon the YOLOv4-tiny framework,
integrated atrous spatial pyramid pooling and
depthwise separable convolutions to expand the
receptive field, while spatial and channel attention
modules were applied to further enhance feature maps.
These improvements enable faster and more precise
defect detection, supporting real-time applications in
resource-constrained environments.

3 Method

In this section, we provide a detailed description of
the proposed lightweight SIFNet. Section 3.1 presents
an overview of the overall architecture. Sections 3.2
and 3.3 explain the two lightweight modules, GSIB
and NEEM, respectively. Finally, Section 3.4 describes
the decoder structure and the loss function used for
training.

3.1 Overview

As shown in Figure 2, the proposed lightweight SIFNet
is built upon a common encoder-decoder architecture
[29, 30] and consists of six key components: Mv2
encoder, Graph-based Semantic Interscale-fusion
Block (GSIB), Semantic Fluid Aggregation Module
(SFAM), Semantic Graph Inference Module (SGIM),
NeighborFusion Edge Enhancement Module (NEEM),
and lightweight decoder. For the encoder of SIFNet, we
adopt the lightweight MobileNet-V2 [17]. Specifically,
we retain the first 17 inverted residual bottlenecks
while truncating the last two convolutional layers
and average pooling layer to make it suitable for
Mura detects detection. We divide MobileNet-V2 into
five blocks based on the first, third, sixth, 13th, and
last bottlenecks. The output five-level features are
denoted as F; € Re*hixwi j =172 5 where h; and
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Figure 2. Overall architecture of the proposed SIFNet. It consists of six key components: Mv2 encoder, Graph-based
Semantic Interscale-fusion Block (GSIB), Semantic Fluid Aggregation Module (SFAM), Semantic Graph Inference
Module (SGIM), NeighborFusion Edge Enhancement Module (NEEM), and lightweight decoder.

w; are (640/2%), and ¢; € {16,24,32,96,320}. Next,
to fuse multi high-level semantic features and model
abstract semantic concepts for more precise defect
localization, the features {F3, Fy, F5} are processed
by the GSIB, which integrates SFAM and SGIM to
extract global contextual information and aggregate
cross-scale semantics via hierarchical flow fusion and
graph convolution. In addition, NEEM explores
the correlation between shallow features {Fi, F>},
enhancing the model’s ability to perceive fine-grained
structures and represent spatial details more effectively.
Furthermore, edge information is extracted using a
pooling subtraction operation [31], and the Canny
[32] operator is applied to generate edge supervision
for correcting edge errors. Finally, three decoders are
employed in a progressive manner to emphasize target
objects and restore resolution.

3.2 Graph-based Semantic Interscale-fusion Block

Mura defects typically exhibit large-area distribution,
accompanied by uneven brightness variations and
blurred boundaries, making precise segmentation
challenging. To address these issues, we propose
the Graph-based Semantic Interscale Fusion Block
(GSIB), which integrates high-level semantic
information across spatial scales and efficiently
extracts semantic cues from the spatial context.
By combining graph-based modeling with a soft
attention mechanism, GSIB excels at capturing
long-range dependencies and maintaining global
semantic consistency. It effectively activates high-level
features in potential defect regions and enhances
synergy between spatial location and semantic
representation, enabling accurate modeling of
global feature relationships within Mura-affected
areas. GSIB improves the model’s ability to perceive
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large-scale brightness gradients while maintaining low
computational complexity and parameter overhead,
achieving a strong balance between performance and
efficiency. As shown in Figure 2, GSIB comprises two
key components: the Semantic Fluid Aggregation
Module (SFAM) and the Semantic Graph Inference
Module (SGIM).

(1) Semantic Fluid Aggregation Module. SFAM
employs a holistic strategy to capture global semantic
features, enabling comprehensive extraction of
semantic cues across the entire image. As shown in
Figure 2, taking the encoder feature F5 € RE*H*W
as an example, SFAM introduces a global attention
mechanism to selectively extract visual primitives
along the spatial dimension, thereby generating a
semantic flow representation F. Specifically, F3 is
passed through two parallel 1 x 1 convolutional
branches to produce a feature query Fy € RO*#W and
attention weights F, € REW>N _ The attention branch
applies a softmax function to normalize the spatial
dimension, resulting in a saliency distribution across
the spatial domain. Finally, matrix multiplication is
used to integrate the attention-guided global semantic
representation, producing the semantic flow feature
F e ROXN:

Fy = o(F;W,) e R&HAW,
E! = softmax(8(F; Wy)) " € REWXN,
F=F,®F,],

(1)
(2)
(3)

where ® denotes matrix multiplication. ¢ and
0 represent two independent 1 x 1 convolution
operations, with W, and W} denoting their respective
convolution parameters.

Due to the semantic gap between high-level features at
different scales, direct multi-scale fusion may amplify
inconsistencies between adjacent layers. To address
this issue, the semantic flow F is further refined
using a soft attention mechanism that selectively
emphasizes informative input features before passing
them to the SGIM for interscale fusion. Specifically,
the input feature F; is upsampled and processed
through a 1 x 1 convolution, followed by a softmax
operation along the channel dimension, producing
an N-dimensional attention map Fuy € RVXFIXEW,
where k£ = 2 in our experiments. Guided by this
attention map, the semantic flow F € REXN g
adaptively integrated into the spatial domain, resulting
in a semantic description map Fy € REXFHXEW
Finally, the semantic description map Fj is fused with
the original high-level feature F3 via element-wise
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addition to obtain the final output of SFAM, denoted
as Fyram € REXKHXEW The computation is formally
defined as:

Fan = softmax(¢p(UP(F); W),
Fs — F ® Fatt7
stam:Fs+F57

(4)
(5)
(6)

where U P(-) denotes the upsampling operation, and
¢ represents the 1 x 1 convolution.

In summary, SFAM effectively enhances global context
understanding by integrating semantic flow with
high-level features, while the use of soft attention helps
bridge the semantic gap between features at different
scales, providing a solid foundation for subsequent
feature fusion in SGIM.

(2) Semantic graph-inference module. =~ When
dealing with complex Mura defect regions, traditional
feature fusion methods often struggle to effectively
capture the diversity of brightness variations and the
inherent structural ambiguity. Therefore, we propose
the Semantic Graph Inference Module (SGIM),
which introduces an efficient graph-based feature
aggregation mechanism to integrate receptive field
information across multiple feature levels. Specifically,
SGIM constructs high-order interscale relationships
within the graph convolution domain, enabling explicit
modeling of semantic dependencies through graph
convolution operations. For Mura defects with
smooth brightness transitions and blurred boundaries,
SGIM effectively captures global brightness variation
patterns across spatial regions, significantly improving
both detection accuracy and robustness. Additionally,
SGIM employs depthwise separable convolution
blocks to reduce computational overhead. The detailed
architecture is illustrated in Figure 2.

Taking the example shown in Figure 2, the SFAM
output feature Fjt,y, and encoder feature F3 are
first processed through two learnable linear mapping
functions, ¢ and g9, producing spatially aligned
feature sequences S; and S, respectively: S; =

<;01(1"_‘sfam)a Sa :SOQ(F?))-

Next, a softmax function is then applied to S; to
generate the attention map W: W = Softmax(S1).

The attention map is then multiplied with S>, and the
resulting features are fed into a Graph Convolutional
Network (GCN) [39] to learn high-order semantic

. relationships among regions (sets of pixels with similar

features). To reconstruct the graph domain features
back into their original structural features, the inner
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product of GCN(-) is computed and transformed
back into a 2D image feature map with the same
dimensions as the original features using a linear
mapping function ¢¢. Finally, the reconstructed
features are then combined with feature F3 to produce
the final output of SGIM, Fy;,, which is then passed
to SFAM (if present) and the decoder. Notably, the
number of nodes in the GCN is set to 16.

Fagim = of(WT @ GCN(WT @ S9)) + F3.  (7)

3.3 NeighborFusion Edge Enhancement Module

Shallow features contain rich texture details and
edge information, which are critical for accurately
delineating Mura defect boundaries, but they
also introduce considerable background noise.
Moreover, Mura defects typically exhibit gradual
brightness transitions characterized by smooth
intensity variations and indistinct boundaries
without clear geometric structures. These features
pose significant challenges for most existing defect
detection methods. Since Mura defects typically
exhibit gradual brightness transitions, their smooth
intensity changes and blurred boundary characteristics
often lack discernible geometric structures, making
such regions particularly challenging for most
methods to handle effectively. Thus, we propose the
NeighborFusion Edge Enhancement Module (NEEM),
which is designed to capture spatial correlations
across multilevel features and enhance the model’s
sensitivity to boundary features in regions with
uneven brightness. This enables more accurate
identification of Mura defects in complex display
environments. Additionally, NEEM is lightweight
and computationally efficient, providing a practical
solution for large-area Mura defect detection. The
specific implementation details are illustrated in
Figure 2.

First, the encoder features F, and F; are spatially
aligned through upsampling. Depthwise separable
convolutions (DSConv) are then applied to adjust
their channel dimensions to match those of I3, with
spatial attention independently applied to each feature
to enhance detail representation and prepare for
subsequent fusion. The resulting feature maps are
denoted as F and Fj € R24x320%320,

To facilitate information interaction between different
feature levels, CrossNorm [40] is employed to compute
and exchange the mean and variance of Fj and F,
enabling structured context transfer and improving
the perception of fine-grained structures. Finally, the

two refined features are fused via concatenation, and a
residual connection is introduced to generate the final
enhanced representation, improving the consistency of
edge depiction and semantic expression. This process
can be expressed as follows:

F{" = F{ + CrossNorm(F|, F}), (8)
F§o" = F) + CrossNorm(F|, F), ©)
FCOTT‘ — Cat(FlcOTT7 2007’7’)? (10)

where cat(-) indicates channel-wise concatenation.

Next, a boundary enhancement module is applied
to further refine the representation of edge features
in Mura defect regions, generating the NEEM output
Fcem, which is subsequently passed to the decoder.
This process is defined as follows:

Fy = DSConv(F'™), (11)
fe = Fy © AvgPool(Fy), (12)
Fyeem = Sigmoid (PWConv( f.)) © F, @ F,, (13)

where Sigmoid(-) denotes the activation function, and
@ represents element-wise addition.

3.4 Decoder and Loss Function

Mura defects often exhibit diverse scales and
brightness variations across different regions of
a display, necessitating precise feature fusion at
multiple levels. Therefore, we introduce a lightweight
multi-scale decoder that adaptively integrates
hierarchical features while progressively restoring
spatial resolution. This approach enables accurate
detection of Mura defects across varying scales,
ensuring reliable localization and classification of both
small, subtle imperfections and large-area brightness
non-uniformities. Each decoder follows a consistent
architecture, as illustrated in Figure 2. Specifically,
each decoder sequentially consists of a DSConv layer,
a Concate layer (if present, to merge NEEM or SGIM
outputs), another DSConv layer, an upsampling
layer, a final DSConv layer, and a Head layer. The
final DSConv layer provides the decoder’s output for
the next stage, while the Head layer generates the
prediction output for deep supervision. Specifically,
the Head layer consists of a dropout layerand a 1 x 1
convolutional layer, which generate three saliency
maps with different resolutions: ™ ¢ [0, 1] "%,

é)re c [07 1]1><320><320/ and f%)re c [0, 1]1><640><640. The
tirst two are used for deep supervision, while the last
serves as the final output of SIFNet.

After obtaining the saliency maps {f/"“},i = 1,2,3
and the edge prediction map {fI"“}, we train our
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SIFNet using a combination of BCE loss and IoU loss
[33]. Therefore, our total loss consists of two parts,
that is, the saliency loss and the edge loss. Moreover,
we introduce a loss weight to balance the two losses,
enabling more effective training. The total loss function
Liotq1 can be formulated as follows:

Ltotal = Lbce(fpre

Z

=1

e)+

fi7.G) + Liou(f", @)

(14)
where Ly, and Ly, represent the BCE loss and
IoU loss, respectively, which are used to supervise
f7"¢ with the ground truth G. G, denotes the edge
supervision map, generated from G using the Canny
operator.

4 Experiments

4.1 Experiment Settings

Implementation Details. We use MobileNetV2 as the
encoder, pre-trained on the ImageNet dataset [34],
and the other modules are randomly initialized. For
training and testing, all input images are resized to
640x 640, and random flipping and rotation are applied
to augment the training data. We use Adam as the
optimizer, with the learning rate initialized to 1e-4 and
then scaled down by 10 every 30 epochs. Our model
is trained end-to-end using PyTorch on an NVIDIA
A100-SXM for 100 epochs with a batch size of 8.

Datasets. Given the limited availability of Mura
defect samples from display screens, we have
constructed three specialized datasets for Mura defect
detection: the black screen scenario (Uneven_Black),
the white screen scenario (Uneven_White), and a
mixed black-and-white screen scenario (Uneven_Mix).
All images have a resolution of 3612x1358 pixels.
The Uneven_Black dataset consists of 350 images
exhibiting uneven displays on a black background,
with 245 images allocated for training and 105 for
testing. The Uneven_White dataset also comprises 350
images captured on a white background, following
the same training/testing split. The Uneven_Mix
dataset combines scenes from both black and white
backgrounds, comprising 700 images in total, with 490
used for training and 210 for testing. Representative
image samples are illustrated in Figure 3.

Evaluation Metrics. To comprehensively evaluate the
performance of the model, we performed an extensive
evaluation from both the object-level and pixel-level
perspectives. The details of these evaluation metrics

244

(b)

Figure 3. Examples of display defect under black and white
screen conditions. (a) the black background scenario, (b)
the white background scenario. The images from left to
right are the original image, the contrast-enhanced image,
and the corresponding ground truth mask, respectively.

are as follows:
(1) Object-level:

Precision and Recall. In object detection, precision
refers to the proportion of correctly predicted positive
samples among all samples predicted as positive, while
recall represents the proportion of correctly predicted
positive samples among all actual positive samples.
They are defined as follows:

. TP
Precision = m, (15)
TP
Recall = 7 FN (16)

where TP (True Positive) refers to correctly detected
objects, FP (False Positive) denotes incorrectly
identified objects, and FN (False Negative) indicates
actual objects that were missed by the model.

(2) Pixel-level:

Precision and Recall. In pixel-level detection,
precision is defined as the ratio of correctly predicted
regions to the total predicted regions, while recall is
defined as the ratio of correctly predicted regions to
the total ground truth regions. The formal definitions
are as follows:

ST NG]|
Precision = STy (17)
Recall = |5 (Téﬂ G’, (18)
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where S(T') represents the predicted object region
by the model and G denotes the ground truth object
region.

S-measure [35] is used to evaluate region-aware(.S, )
and object-aware(S,) structural similarity between
predictions and GT and defined as:

S=aS,+ (1 —-a)S,, (19)

where « is set to 0.5.

F-measure [36] is a holistic metric that considers both
precision (P) and recall (R), which is defined as:

(32 +1)PR

P PP+R (20)

where 8 is the balance parameter and 32 is set as 0.3.

E-measure [37] is used to measure pixel-level
matching and image-level statistics, which is defined

as:
1 N
=+ D OFM(i),
=1

where ¢ F'M denotes the enhanced-alignment matrix
and N is the total pixels of the image.

(21)

Mean absolute error [38] is to calculate the average
absolute error of the prediction of salient objects (P)
and ground truth (G), which is defined as:

1 N
7ﬁz_:

(22)

4.2 Comparison with State-of-the-Art Methods

We conducted a systematic comparative analysis
of recent visual models that have shown strong
performance in object detection and instance
segmentation tasks. In this study, we selected
five representative versions from the YOLO series:
YOLOvV7 [26], YOLOvVS [16], YOLOv9 [27], YOLOv10

[28], and YOLOv11 [15] as our research targets.

These models are built on advanced deep learning
architectures and significantly improve detection
accuracy and segmentation quality while maintaining
high real-time performance.  They have been
widely applied in industrial settings and defect
detection tasks, especially in scenarios that require
both speed and precision, such as display panel
inspection and surface quality analysis. We carried
out a comprehensive evaluation of these models
across several aspects, including object-level and

pixel-level performance, computational efficiency, and
generalization ability.

Quantitative Results. Tables 1, 2, and 3 summarize
the quantitative results of our proposed method and
competing methods on the three challenging large-area
Mura defect datasets. As can be seen from the results:

e On the Uneven_Black dataset (Table 1), our
method achieves the highest scores in all
object-level and pixel-level metrics. It outperforms
all baseline models with a precision of 0.839
and a recall of 0.865 at the object level, and
leads in pixel-level evaluation with strong
results in structural similarity, alignment quality,
and minimal error (M = 0.067). These
results highlight our model’s superior ability to
detect Mura defects under low-contrast, dark
background conditions.

e On the Uneven_White dataset (Table 2),
our method again delivers the best overall
performance. It achieves the highest object-level
precision and recall (0.912 and 0.906, respectively)
and leads in key pixel-level metrics such as
F-measure (F"¢" = 0.626). Our method
also attains a very low error rate (M = 0.029),
confirming its robustness in handling subtle
defects under high-brightness settings.

e On the Uneven_Mix dataset (Table 3), which
combines both dark and bright regions, our
model consistently achieves top performance.
It records the highest object-level precision
(0.859) and recall (0.823), and outperforms
all baselines across pixel-level metrics. These
results demonstrate that the proposed SIFNet not
only performs well on specialized datasets, but
also generalizes effectively to more diverse and
complex industrial defect scenarios.

Qualitative results. In the Mura defect detection
task, accurately segmenting defective regions is
critical for improving quality control in display panel
manufacturing. Figures 4 and 5 illustrate the detection
results under two different background conditions
(black screen and white screen), comparing various
methods. As can be seen from the results:

e Under the black screen scenario, YOLOv11 and
YOLOV?7 generally capture the overall shape of the
defects but suffer from boundary inaccuracies and
occasional over- or under-segmentation. YOLOVS
and YOLOV10 perform less effectively, producing
coarser segmentations and distorted defect shapes.
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Table 1. Performance comparison of different methods on the "Uneven_Black’ dataset. The best and second performing
methods of each category are highlighted in bold and underlined, respectively.

Methods #Param FLOPs Object-level ‘ Pixel-level

M) (G) P R ‘ P R Sy, Emean  pmean N

YOLOv7 37.8 1419 0.789 0.665 | 0.779 0.576 0.692 0.815 0.690 0.074
YOLOVS 11.7 427  0.783 0.605 | 0.787 0497 0.663 0.782 0.645 0.080
YOLOv9 57.8 371.6 0753 0.684 | 0.704 0.631 0.672 0.815 0.677 0.083
YOLOvV10 8.7 21.6 0750 0.674 | 0.748 0.716 0.664 0.744 0.668 0.086
YOLOv11 10.1 353 0722 0.780 | 0.727 0.736 0.685 0.855 0.699 0.069

Ours 3.92 6.89  0.839 0.865 ‘ 0.800 0.841 0.704 0.832 0.742 0.067

Table 2. Performance comparison of different methods on the "Uneven_White” dataset. The best and second performing
methods of each category are highlighted in bold and underlined, respectively.

Methods #Param FLOPs Object-level ‘ Pixel-level

(M) (G) P R ‘ P R Sm B Frean M

YOLOv7 37.8 1419 0.814 0.809 | 0.820 0.755 0.672 0.578 0.096 0.043
YOLOVS 11.7 427 0.891 0512 | 0.876 0464 0.781 0.892 0456 0.026
YOLOV9 57.8 371.6 0.819 0.823 | 0.859 0.804 0.673 0.569 0.076 0.043
YOLOv10 8.7 21.6 085 0.785 | 0.811 0.768 0.738 0.682  0.087 0.029
YOLOv11 10.1 353 0.889 0.548 | 0.871 0.725 0.794 0904 0464 0.024

Ours 3.92 6.89 0912 0.906 ‘ 0.895 0.803 0.890 0.965 0.626 0.029

Table 3. Performance comparison of different methods on the "Uneven_Mix” dataset. The best and second performing
methods of each category are highlighted in bold and underlined, respectively.

Methods #Param FLOPs Object-level ‘ Pixel-level

(M) (G) P R ‘ P R Sm Eeen Frmean M

YOLOv7 37.8 1419 0799 0.775 | 0780 0.735 0.682 0.696 0.394 0.058
YOLOVS 11.7 427  0.825 0571 | 0.818 0.565 0.722 0.837 0.551 0.053
YOLOv9 57.8 371.6 0778 0.755 | 0.796 0.725 0.673 0.693 0376 0.063
YOLOv10 8.7 216 0807 0.723 | 0.782 0.746 0.691 0.714 0412 0.057
YOLOv11 10.1 353 0787 0.735|0.821 0.731 0.740 0.879 0.581 0.047

Ours 3.92 6.89 0.859 0.823 ‘ 0.824 0.831 0.803 0.902 0.632 0.042

Table 4. Ablation results of evaluating the contribution of each module in SIFNet on the Uneven_Mix dataset. The best
one in each column is Bold.

Methods FPS #Param FLOPs _pectlevel | Pixel-level

(M) (G) P R P R S, Emen pmean )
m m

No.1 61 2.355 258 0794 0773 | 0.761 0.777 0.740 0.840 0561 0.112
No.2 57 2.781 346 0818 0.792 | 0.789 0.791 0.766 0.887 0.592 0.083
No.3 50 3.567 597 0.831 0.804 | 0.802 0.811 0.782 0.908 0.611 0.059
No.4 45 3.922 6.89 0.859 0.823 | 0.824 0.831 0.803 0.902 0.632 0.042
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Figure 4. Visual comparison of Mura defect detection results under the black screen scenario.

Figure 5. Visual comparison of Mura defect detection results under the white screen scenario.
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Table 5. Performance comparison of SIFNet on the Uneven_Black and Black_aug datasets.

Sm T Fgw,z T Fénean T ngp T Egzaw T Eglean T E;dp T M \l/

Datasets P R
Uneven_Black 0.800 0.841 0.704 0.832
Black_aug 0.851 0961 0.875 0.976

0.742
0.901

0.852
0.984

0.748
0.924

0.846
0.987

0.748
0.903

0.067
0.010

In particular, YOLOvV11 is prone to false positives,
often misclassifying background artifacts as
defects. On the contrast, SIFNet exhibits a strong
ability to delineate defect boundaries and closely
reconstruct the true shapes of the defective areas.
Its predictions are highly consistent with the GT,
characterized by smooth contours and precise
coverage.

e Under the white screen scenario, the reduced
contrast between defects and background makes
detection more challenging. SIFNet continues to
perform reliably, producing accurate results that
closely align with the ground truth and effectively
retain fine boundary details. In comparison,
the competitors show reduced performance:
YOLOvV11 and YOLOVS often yield blurrier edges
and miss subtle defect regions, while YOLOvV9
and YOLOV10 exhibit more pronounced issues,
such as false positives, incomplete segmentation,
and disrupted boundaries, indicating limited
generalization and detail preservation under
complex scenarios.

Overall, unlike other methods that exhibit inconsistent
performance across different background scenarios,
SIFNet demonstrates consistently strong results,
accurately capturing Mura defect features with strong
robustness.

4.3 Ablation Studies.

To analyze the contribution of each lightweight
module in our approach to Mura defect detection, we
evaluate four variants of the model: No.1. Baseline
(consists of the MobileNetV2 backbone and our
lightweight decoder); No.2. Baseline + NEEM;
No.3. Baseline + GSIB; No.4. Baseline + NEEM
+ GSIB (our final model). The quantitative results
and computational complexity on the Uneven_Mix
dataset are summarized in Table 4. As shown,
each module contributes positively to the overall
performance of the model in detecting Mura defects.
The baseline model (No.1), which consists of a
MobileNetV2 backbone and a lightweight decoder,
achieves a reasonable balance between speed and
accuracy. However, introducing NEEM (No.2) results
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in improved pixel-level performance, especially in
the F)7°*" score (0.887) and object-level precision
(0.818), confirming the effectiveness of NEEM in
refining local defect boundaries. ~However, the
GSIB-enhanced model (No.3) offers even greater
improvements in both object-level (precision: 0.831,
recall: 0.804) and pixel-level (F}¢*": 0.908, recall:
0.611) performance, highlighting its capability to
capture large-scale brightness inconsistencies. Finally,
the integrated model (No.4), combining both NEEM
and GSIB, achieves the best performance across almost
all metrics, including the highest object-level precision
(0.859) and recall (0.823), highest pixel-level precision
(0.824) and F}'<*™ (0.632), and the lowest mean
absolute error (M = 0.042). These results confirm
the complementary strengths of the two modules:
GSIB enhances global context awareness, while NEEM
improves fine-grained boundary localization. Their
integration leads to a robust and accurate Mura defect
detection framework, demonstrating the effectiveness
of our modular design.

4.4 Feature visualization.

Figure 6 illustrates the comprehensive visual analysis
of the proposed method across various Mura defect
scenarios. From top to bottom, the rows correspond
to the original input images, ground truth (GT)
segmentation masks, predicted segmentation outputs
(Prediction), attention activation maps from three
decoders (Del_attn, De2_attn, De3_attn), ground
truth edge maps (Edge_GT), and the corresponding
predicted edges (Edge_Pre). The segmentation results
demonstrate high consistency with the ground truth,
indicating the model’s strong capability in accurately
localizing Mura defects across different background
conditions and defect morphologies. The attention
maps reveal a progressive refinement of spatial focus
through the decoder hierarchy, with deeper stages
(De2 and De3) exhibiting enhanced sensitivity to
defect contours and intensity transitions. Furthermore,
the predicted edge maps show a close correspondence
to the ground truth boundaries, validating the
efficacy of the proposed edge-guided refinement
strategy in enhancing boundary localization accuracy.
Collectively, these visualizations substantiate the
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Figure 6. Visualization of segmentation, attention, and edge prediction across Mura defect types, demonstrating the
effectiveness of the proposed multi-stage fusion and edge-aware architecture.

effectiveness of our attention-enhanced multi-stage
decoder and edge-aware learning framework in
achieving fine-grained, structurally coherent Mura
defect segmentation.

Image Prediction

Figure 7. Some failure cases.

4.5 Failure Case

Although our model outperforms state-of-the-art
(SOTA) methods in both qualitative and quantitative
evaluations, several cases where detection results
are less satisfactory are illustrated in Figure 7.
Specifically, the first row presents a smooth image
without visible defects, consistent with the ground
truth. However, the prediction map exhibits some
uncertain responses, suggesting that the model may
be less reliable in defect-free white screen scenarios.
This limitation could potentially be addressed by
expanding the annotated white screen dataset. In the
second row, slight defects are present and correctly
labeled in the ground truth. The model detects
part of the defective area but does not achieve full
coverage. The third row shows clear defects, which
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the model identifies well, closely matching the ground
truth, although minor omissions or over-detections
Enhancing image contrast may help
highlight Mura regions and further improve detection
accuracy. Moreover, Table 5 compares the performance
of SIFNet on the original Uneven_Black dataset
versus the augmented Black dataset (Black_aug;
1,500 images), reporting improvements across all
evaluated metrics: Precision (P), Recall (R), S-measure
[35] (Sm), mean F-measure [36] (F3'*""), mean
E-measure [37] (E7“"), max F-measure (Fj"),

remain.

max E-measure (Eg”““/’), adaptive F-measure (F g p ),

adaptive E-measure (Egdp ), and mean absolute error
[38] (M). The results demonstrate SIFNet’s consistent
gains on the augmented dataset while preserving
computational efficiency for industrial applications.

5 Conclusion

This study proposes SIFNet, an efficient deep
learning framework for detecting large-area Mura
defects in industrial applications. By combining a
MobileNet-V2 backbone with our novel GSIB and
NEEM modules, SIFNet achieves accurate defect
localization while maintaining low computational
costs (3.92M parameters, 6.89 GFLOPs). Experimental
results demonstrate its effectiveness in handling Mura
defects with smooth gradients and blurred boundaries,
making it suitable for industrial deployment. The
framework provides a practical solution for quality
inspection while balancing accuracy and efficiency.
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