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Abstract

With the rise of data engineering-driven
automatic annotation strategies, deep learning has
demonstrated remarkable performance and strong
competitiveness in
However, the inherent limitations of automatic
annotators inevitably introduce noisy labels, which
in turn hinder the generalization and accuracy of
diagnostic models. Although numerous Learning
with Noisy Labels (LNL) methods attempt to
alleviate the impact of label noise through sample
selection or label correction, most rely heavily
on model predictions to guide training. This
self-reinforcing mechanism frequently leads to
confirmation bias, especially under high-noise

conditions, thereby limiting their effectiveness.

To address these challenges while preserving
the full data utility, this paper proposes a novel
approach termed the Multi-granularity Evidence
Labels (MGEL), inspired by the principles of
quantum entanglement and collapse. In MgEL, we
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intelligent fault diagnosis.

perform feature-space fusion between entangled
sub-distributions to construct a superposition
state, from which two auxiliary labels are derived:
a pseudo-label obtained by selecting the class
with the maximum amplitude and a collapsed
label sampled probabilistically according to
the class-wise amplitude distribution. The
collapsed label represents an uncertainty-aware
observation, while the pseudo-label represents
the most confident class estimation. These are
then fused with the original annotation to form
multi-granularity evidence labels. This approach
allows MgEL to suppress confirmation bias and
improve robustness under noisy supervision.
Extensive experiments validate the effectiveness
and reliability of MgEL, particularly in high-noise
scenarios (e.g., noise intensity n >  80%),
underscoring its potential for practical deployment
in low-cost, data-driven intelligent fault diagnosis
systems.
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1 Introduction

With the rapid development of big data technologies,
deep learning has made remarkable strides in both
theoretical research and practical applications of
intelligent fault diagnosis [3, 5]. However, the
success of these models hinges on the availability
of large-scale, high-quality annotated data, which
often entails substantial manual labeling costs [4].
This requirement severely limits the scalability
and industrial deployment of deep learning-based
diagnostic models, especially in scenarios with
constrained annotation resources [1].

To address this bottleneck, cost-effective alternatives,
such as crowdsourcing [6] and data-engine-driven
automatic labeling [7], have been widely adopted.
While these strategies significantly reduce
annotation efforts, they inevitably introduce noisy
labels—instances [8] where the annotated label
deviates from the true class (Y = k # JA/) Such label
noise distorts the data distribution, misaligns decision
boundaries [9], and ultimately undermines both the
accuracy and generalization of diagnostic models [10].

To enhance model robustness under noisy supervision,
Learning with Noisy Labels (LNL) [11] has emerged
as a prominent research direction. Two mainstream
strategies have been extensively explored: sample
separation [17] and label correction [12]. Sample
separation aims to iteratively identify clean samples
via model predictions and use only those for further
training [13], while label correction refines noisy labels
by integrating observed labels with predictive cues
(e.g., latent features [14] or logits [15]). Despite
their empirical success, both approaches suffer from
a key limitation: they are heavily reliant on model
predictions, which are themselves corrupted by
noise [16], leading to the accumulation of confirmation
bias during self-guided training.

Essentially, these models are guided by their
own decisions in noisy environments. Erroneous
predictions may be repeatedly reinforced, eventually
forming a biased representation of the data
distribution (see Figure 1), which motivates the
central question of this work:

How can we effectively leverage the full information
of noisy datasets while mitigating confirmation bias
caused by inaccurate predictions during self-gquided
training, in order to improve the generalization of
diagnostic models under severe noise?

To address this challenge, we draw inspiration from
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quantum entanglement [18] and collapse, proposing
a novel framework called “Multi-granularity
Evidence Labels (MgEL)”. MgEL constructs a set of
multi-granularity labels by integrating three label
sources: the original annotation labels ), dynamically
generated pseudo-labels )’, and probabilistic
collapsed labels Y derived from the feature space.
This process of combining two sub-distributional
structures simulates the observation-collapse process
of a quantum-entangled system, enabling more robust
supervision in the presence of label noise.

Specifically, MgEL conceptualizes a feature cluster
C containing conflicting labels as a superposition
state ¢ = >, cklor). The complex amplitudes
¢k are transformed into real-valued probabilities by
borrowing the Born rule—P(k) = |cx|? = A\y—to
enable probabilistic reasoning. Beyond this, class-wise
evidential values are introduced to quantify the "belief
mass" that a sample belongs to each latent class
(or basis state). These evidential values are not a
direct conversion from the Born rule but rather are
derived by modeling the internal distribution within
each feature cluster under uncertainty, providing a
structured representation of decision confidence.

Unlike conventional classification schemes that treat
each sample as a single independent observation,
MgEL constructs a pseudo-multi-source observation
framework in the feature space, which better reflects
the multi-view nature of real-world noisy data.
The fusion of the original label y;, pseudo-label
y., collapsed label 7;, and evidential & = {ek}le
simulates repeated observations across different
measurement bases. This design suppresses
overreliance on single predictions and alleviates the
accumulation of confirmation bias, thereby improving
robustness during training.

We conduct extensive experiments on three fault
diagnosis datasets to validate the effectiveness of
MgEL, which demonstrate that MgEL outperforms
other methods, particularly under scenarios with
severe label noise (i.e., noise intensity n > 80%),
significantly improving diagnostic accuracy and
reducing sensitivity to annotation quality. These
findings suggest that MgEL has the potential to reduce
annotation costs and enable the reliable deployment
of intelligent diagnostic models in practical industrial
settings.

The key contributions of this work are summarized as
follows:
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Figure 1. Confirmation bias in LNL: Model predictions, inherently corrupted by label noise, are repeatedly used to guide
training, leading to the accumulation of bias A and degraded generalization.

1. Theory: We establish a pseudo-multi-source
observation modeling method in the feature
space, extending the theoretical foundation of
decision-level information fusion.

. Methodology: We propose a robust
multi-granularity  label  construction  strategy
by introducing class-wise evidential values
under uncertainty, which enhances the model’s
tolerance to noisy supervision.

. Empirical validation: We conduct extensive

experiments across three real-world fault
diagnosis datasets with varying noise intensities.
MgEL consistently outperforms baselines,
especially under severe corruption (e.g.,
n > 80%), demonstrating its practical
feasibility for robust learning under noisy
supervision—though not yet deployed in full
industrial pipelines.

2 Preliminary

2.1 Nomenclature

To improve clarity and reduce potential ambiguity,
Table 1 provides a formal summary of all key notations

used throughout the paper.

2.2 Problem formulation (Fault diagnosis with
noisy labels)

Fault diagnosis with noisy labels is typically
formulated as a multi-class classification task under
annotation uncertainty [4]. Let the training dataset
be D = {X,V} = {(=,v:)},, where each z; € RE*F
represents a multivariate time-series signal with C'
channels and L sampling points, and y; € [1, K] is the
corresponding fault label drawn from K predefined
categories. These samples typically come from
industrial systems, including mechanical, electrical,
and structural components [21], where condition
monitoring sensors collect time-series signals for
predictive maintenance and fault detection [19].

In practice, noisy labels are prevalent due to multiple
factors [20], including ambiguous or overlapping
fault manifestations, inconsistencies among domain
experts, and, more importantly, the limited reliability
of automated annotation systems [23], which may
mislabel large volumes of data due to heuristic rules
or insufficient context [22]. Let y; denote the latent
true label of z;. If y; # vy, the sample is considered
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Table 1. Notation summary table.

Symbol Description
z; € ROXL Input sample with C' channels and L time points
y; € {1,..., K}  Annotated label for z;
z € R4 Latent feature of z; extracted by the backbone network
Za,2B Randomly partitioned feature subspaces (entangled sets)
S5y B4 Exponential cosine similarity between features z; and z;
C; Feature cluster centered at z;
¢; € RE Superposition state encoding class affiliation amplitudes
i € [0, 1] Amplitude associated with class k for sample i
lor) € RE Canonical basis vector for class k
&= {ex}, Evidence vector obtained from pseudo-source fusion
y; € RE Multi-granularity fused label used for training
F(0p,0c;-) Diagnostic model with backbone 6, and classifier 6.
n € [0,1] Estimated noise intensity for dynamic cluster adjustment
Ha, Hp Hilbert spaces of entangled subsystems A and B
p; € RE Model prediction vector for input x;
Lor(pi, i) Cross-entropy loss between prediction p; and label y;
D = {(z;,y;)}Y, Training dataset containing N noisy samples
Y Pseudo-label derived via superposition collapse
Ui Collapsed label via multinomial sampling from ¢;
Ui Final fused label
My: Clean class-conditional manifold for ground-truth label
Fa Feature extractor perturbed by label noise rate 7
& Noise-induced deviation of z; from its clean manifold
T Probability of class-k label being flipped to class-

mislabeled. However, the noise distribution or
transition matrix 7'(Y | J*) is typically unknown [24].
Depending on whether the noise occurs randomly
or in a class-dependent fashion, it is commonly
categorized as symmetric (uniform) or asymmetric
(class-dependent)—the latter often reflecting realistic
diagnostic confusion among fault types with similar
signal patterns [13].

The learning objective is to construct a diagnostic
model F(6y,6.;-), comprising a backbone 6, and a
classifier 6., that maintains robust generalization to
clean labels despite being trained on corrupted data,
which can be formalized as:

aré)gr;ﬁn {Ep~x (| F(Op,0c;2:) — 95 |)} - (1)
byYe

2.3 Related works on LNL

Deep neural networks (DNNSs) tend to overfit when
trained on noisy labels, leading to poor generalization
and unreliable predictions [26]. To address this,
numerous strategies have been proposed to enhance
model robustness under label noise [11], which are
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broadly categorized into three research areas: robust
loss functions [27], sample separation [28], and label
correction [29].

Robust loss functions reduce the negative impact of
mislabeled samples during training. For example,
SCE [30] includes a symmetric regularization term to
reduce the dominance of noisy labels, while NLS [31]
uses label smoothing to lower label confidence.
However, these approaches often rely on strong
assumptions about the noise distribution, such as the
need for access to or accurate estimation of the label
transition matrix 7() | J*), which is difficult to obtain
in practical scenarios [32].

A second class of methods focuses on sample
separation, aiming to distinguish clean from noisy
samples based on training dynamics. Many early
works exploit loss-based heuristics, assuming that
samples with lower loss are more likely to be correctly
labeled. Representative methods include JoCoR [33],
which trains peer networks on mutually selected
small-loss samples to refine the dataset. ~More
recent approaches, such as DISC [25], introduce
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memory-based dynamic thresholding to categorize
training data into clean, hard, and correctable subsets.
However, these methods depend fundamentally on the
model’s own predictions to estimate sample reliability.
As a result, incorrect assessments during early
training stages may be reinforced across epochs—this
phenomenon is known as confirmation bias (see
Figure 1). Even dynamic sample selection strategies
cannot fully overcome this limitation, as the thresholds
are still updated based on past model behavior [34].

To mitigate data underutilization caused by sample
removal, label correction approaches that generate
pseudo-labels from model predictions to supervise
training have emerged as a promising alternative [35].
For instance, SED [32] uses a mean-teacher framework
to stabilize label updates. Despite their effectiveness,
these methods also suffer from confirmation bias:
initial incorrect predictions can propagate and become
increasingly difficult to reverse during subsequent
training [16].

This shared limitation in both sample separation
and label correction methods arises from their
"self-guided" nature—they rely solely on the model’s
internal signals, making them vulnerable to early-stage
errors that propagate unchecked. To overcome this,
inspired by principles of quantum mechanics,
MgEL emulates the repeated observation-collapse
mechanism of entangled quantum systems,
introducing controlled uncertainty throughout
the training process. By periodically re-evaluating
fused labels with multi-granularity representations,
MgEL disrupts confirmation bias and prevents
training from being overly influenced by prior
incorrect predictions. In this way, MgEL fully
leverages the information contained in the original
dataset, even when labels are partially corrupted, and
improves the robustness of the corrected supervision
signals.

2.4 Differentiation from previous works

This work extends our earlier research on learning
with noisy labels, specifically MgCF [40] and
MgL [41], both of which leverage feature clustering
for robust label correction.  Although MgCF,
MgL, and the proposed MgEL share a unified
design philosophy: transforming noisy labels into
structured supervision via latent-space modeling,
they differ significantly in terms of label granularity
representation, fusion strategy, belief assignment, and
computational scalability. To clarify these distinctions
and avoid any confusion regarding academic overlap,

we provide a comparative analysis, also visually
summarized in Figure 2.

First, regarding label granularity semantics, all three
frameworks aim to suppress confirmation bias by
constructing multi-granularity supervisory signals.
In this context, MgCF introduces a dual-granularity
labeling scheme: fine-grained labels are formed when
annotation and pseudo-labels agree, indicating high
class certainty, whereas coarse-grained labels are
used when disagreement occurs, signaling ambiguity.
MgL builds on this structure by incorporating an
additional label source—the collapsed label sampled
from the superposition state ,—which allows the
construction of medium-grained labels when only
partial agreement exists among the three sources
(annotation, pseudo, collapsed). In contrast, MgEL
reverts to a two-level granularity structure as in MgCF
but complements it with a downstream decision
deferral mechanism that handles fully inconsistent
labels by reverting to the original superposition state
©;. While this does not introduce an explicit third
granularity level, it implicitly absorbs semantically
hesitant cases through adaptive rejection, thereby
preserving the interpretive flexibility offered by
multi-granularity labeling.

In terms of label fusion mechanisms, both MgCF and
MgL directly use the fused multi-granularity label ) as
the supervisory signal in training. MgL distinguishes
itself by explicitly incorporating collapsed labels
Y into the fusion rule alongside annotations and
pseudo-labels, thus enabling medium-grained
representations. MgEL, in contrast, restricts the fusion
to annotation and pseudo-labels but introduces a
Coherence Mechanism (Sec. 3.5) that evaluates whether
any two of the three available labels (annotation,
pseudo, collapsed) are consistent. If no consistency is
found, the fused label 37 is rejected and replaced with
¢_1, effectively reverting supervision to a probabilistic
representation. This mechanism guards against
overconfident but unreliable updates and introduces
an adaptive rejection pathway not present in either
MgCF or MgL.

The belief assignment strategies adopted by the three
methods also exhibit fundamental differences. In
both MgCF and MgL, the amplitude probabilities
derived from the superposition state ¢,—which
reflects the relative class distribution within each
feature cluster—are directly treated as empirical belief
masses. These unregularized values are used to assign
fusion weights between annotations and pseudo-labels,
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Figure 2. Comparative illustration of the MgCF [40], MgL [41], and the proposed MgEL, which highlights the core
distinctions among the three methods in terms of computational scalability, granularity expressiveness, uncertainty
modeling, and the belief assignment strategy adopted during label fusion.

implicitly treating intra-cluster frequencies as reliable
class evidence. In contrast, MgEL introduces a belief
regularization mechanism. Rather than using the
raw amplitudes in ¢;, MgEL calibrates the belief
assignment by incorporating a global noise estimate
7, constructing an evidential vector & = {ek}le
that reflects class-wise reliability under dataset-level
uncertainty. This transformation from empirical
frequencies to noise-aware belief masses enhances the
robustness of label fusion, particularly in high-noise
scenarios, and aligns with the principles of uncertainty
modeling in evidential reasoning frameworks.

Finally, in terms of computational scalability, MgCF
and MgL both compute global similarity matrices of
size O(N?) to construct feature clusters across the
full dataset, which incurs substantial memory and
runtime costs. MgEL, inspired by the partitioned
structure of entangled quantum systems, proposes an
entangled subspace design: the latent feature space
is randomly split into two disjoint subsets, with each

sample querying only across the opposite subspace.

This reduces similarity computation to O(N?/4) and

introduces randomization effects similar to dropout.
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This modification not only improves training efficiency
but also enhances cluster robustness by avoiding
deterministic, potentially biased global modeling.

In summary, MgEL consolidates and extends the
prior frameworks by integrating evidential trust
modeling, a coherence-driven rejection mechanism,
and a more scalable partitioned clustering strategy.
These contributions allow it to generalize effectively
across high-noise environments while maintaining
theoretical and algorithmic distinctions from both
MgCF and MgL.

2.5 Entangled Quantum-inspired foundations

In quantum mechanics, the observation-collapse
mechanism explains how the measurement of one
particle in an entangled system causes the entire
wavefunction to collapse instantaneously into a
corresponding eigenstate [36]. This collapse not only
determines the measured particle’s state but also
instantaneously defines the state of its entangled
counterpart, reflecting a non-local correlation [37].
This principle embodies measurement-induced
state transitions and decision outcomes under
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uncertainty [38], providing rich inspiration for
information fusion in noisy, uncertain environments.

Formally, we consider a bipartite quantum system
composed of two subsystems A and B, with a joint
entangled state expressed as:

K
0) =" Melar) albr) 5, (2)

k=1
where |¥) denotes the overall quantum state in the
composite Hilbert space H4 ® Hp, with H4 and
Hp denoting the Hilbert spaces of subsystems A
and B, respectively. The vectors |aj) 4 and |by)p are
orthonormal eigenstates of the respective subsystems,
and )\, € C is the complex amplitude associated
with each joint basis pair, normalized such that
Zﬁil |\¢|? = 1. Theindex k € {1,..., K} enumerates
the possible entangled basis components, forming the
mathematical foundation of our analogy.

Upon measuring subsystem A and obtaining the
outcome |ai)4, the entire system collapses into
the product state |ax)a|bx) s, With a probability of
|\k|?. This structure implies that the state of B is
instantaneously determined by observing A, without
direct interaction with B. Such non-local inference
allows one subsystem to act as an informational proxy
for the other—a foundational feature of quantum
entanglement.

In MgEL, this collapse mechanism serves as a
conceptual inspiration, rather than a physical
simulation. =~ We draw an analogy between the
measurement-induced resolution of uncertainty and
the process of integrating multiple label sources into
a consistent supervisory signal. Concretely, three
label sources are constructed for each sample: (I) the
original annotation, (II) a pseudo-label corresponding
to the maximum-amplitude component in the
superposition state, and (III) a collapsed label
probabilistically sampled based on the amplitude
distribution. These label sources represent diverse,
imperfect observations of the same latent feature
representation.

To further emulate the informational interdependence
observed in entangled systems, we partition the
latent feature space Z into two disjoint subspaces,
Z, and Zp, and construct feature clusters through
cross-subspace querying—samples in Z 4 are clustered
based on their similarity to samples in Zp, and vice
versa. This design allows feature clusters derived
from one subspace to act as interpretive surrogates

for evaluating the class membership of samples in the
other. In doing so, each subspace imposes a structural
constraint on its counterpart, akin to the inference
structure in bipartite entanglement. Additionally, since
each sample observes only a subset of the latent space
per epoch, this formulation introduces Dropout-like
stochasticity, reducing memory complexity and
enhancing generalization.

When partial agreement arises among the
constructed label sources, it is interpreted as a
consistency-triggered decision signal, and the fused
label is then adopted for training. Conversely,
when all sources disagree, no definitive decision is
made; the model retains the superposition-based
representation, deferring commitment due to
measurement incoherence.

We emphasize that all quantum-theoretic terminology
is used metaphorically to guide the modeling of
uncertainty, structural supervision, and decision
consistency. No physical entanglement or non-local
interaction is simulated or implied.
2.6 Manifold perturbation under label noise:
Modeling and implications

To theoretically examine whether extreme label noise
(e.g., m > 80%) induces structural shifts in the latent
space, we first formalize the notion of label-induced
manifold perturbation. We posit that such shifts do
not alter the marginal distribution P(X) but instead
distort the conditional representation P(Z|)*) learned
by the model. The following assumption summarizes
our conclusion:

Assumption 1 (Noise-induced manifold
perturbation) Under label noise with a corruption
rate of n, the latent representation z; = JF,(x;) deviates
from its ideal, noise-free class manifold M, with an
expected squared perturbation:

E [Dist(zi, Myr)?] o< - Tr(S7),

where X is the covariance of the perturbation process
governed by the label transition matrix T'. This distortion
causes a representation-level structural shift that scales with
noise intensity.

We now justify Assumption 1 through formal
modeling and analysis.

Let (z;,y;) denote a clean training sample, and y; the
observed (potentially corrupted) label. Due to the
incorrect supervision, the model learns a perturbed
representation:
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zi = Fylxi) = 2 + &, (3)

where & denotes the feature-level perturbation
induced by the label error. Since this perturbation
accumulates over multiple training steps via gradient
descent, we express it as:

T
&= A (). (4)
t=1

We consider the label corruption process governed by
a class transition matrix 7" = {T}; } with T, = P(y; =
l | yf = k). The induced perturbation distribution is
thus:

&~ Py=(L=n)-do+n-QT), (5)

where §y denotes the no-perturbation case (correct
labels), and Q(T') is a distribution over perturbations
generated by incorrect labels sampled according to T'.

This mixture formulation in Eq. (5) provides a
unified framework for modeling both symmetric
and asymmetric label noise. In the symmetric case,
where T, = ﬁ for all £ # [, the perturbation
distribution Q(7") approximates an isotropic Gaussian,
i.e., N'(0,0%I). In contrast, under asymmetric noise
where T is sparse and class-dependent, Q(7") becomes
a mixture of Gaussians with non-zero means, as
defined in Eq. (6).

o(T) = ZTkl N (i, Xt
12k

(6)

We define the manifold perturbation error (MPE) as
follows:

MPE; := mi i — 2|2 = &l 7
zénj\;n;Hz zll2 = [1&]| (7)

and hence,
E[MPE?] = n- B¢, [IG]1°] = n- Tr(Zr),  (8)

where Y7 is the effective covariance structure
aggregated over the perturbation distribution. This
result confirms that as 7 increases, the average
deviation from the class-specific latent manifold grows
linearly, reflecting a progressive distortion in P(Z|)*).
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To quantify the global structural deformation, we
define the manifold distortion index (MDI) as:

N
MDI(7) := %ZMPEZ- x /0 -Te(Zp).  (9)
=1

The derivation above substantiates the hypothesis in
Assumption 1 by showing how high-intensity label
noise induces representation-level perturbations that
scale with both the noise rate n and the structural
properties of the label transition matrix 7. In particular,
the manifold distortion index MDI(n) provides a
global quantitative measure of such perturbations,
confirming that noisy supervision leads to a pseudo
distribution shift that manifests not in the input space
but in the conditional representation space P(Z|)*).
This shift disrupts the geometric coherence of latent
class manifolds and ultimately impairs generalization
performance.

These findings motivate the core design of MgEL:
to suppress the emergence and propagation of
noise-induced structural drift by fundamentally
rethinking how label supervision is incorporated
during training. Rather than relying solely on
potentially corrupted labels or unstable model
predictions, MgEL introduces controlled structural
uncertainty and diversified supervisory signals
to counteract the convergence toward biased
representations. This is achieved not by architectural
overhauls or post hoc corrections, but by embedding
uncertainty-aware regularization into the label
construction process itself. By doing so, MgEL aims
to retain the semantic integrity of the class manifolds
even under extreme noise, thereby preserving the
model’s capacity for generalization.

3 Methodology
3.1 Design rationale of MgEL

DNNs with strong generalization capabilities tend to
induce class-discriminative clustering structures in the
latent feature space [16], where the similarity between
two sample embeddings reflects the likelihood that
they share the same true class. Empirical observations
confirm [40] that the closer two representations z;, z; €
Z are, the more likely y; = y;.

Assumption 2 (Label consistency) For Vz;,x; €
X, if their feature similarity S(z;,z;) approaches the
self-similarity limit, i.e., S(z;, zj) — S(2i, 2:) = S(z5, 2j),
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the probability of label consistency increases:

P(@Z = @j) —1 XX S(Zi,Zj) — S(zi,zi) = S(Zj,Zj)

Motivated by Assumption 2, MgEL (see Figure 3)
draws inspiration from the observation-collapse
process in quantum entangled systems. To simulate
such a system, the latent feature space Z is randomly
divided into two disjoint subsets, Z4 and Z3. For
a sample x; € Z4, a feature cluster C; C Zp is
formed by retrieving its top-n most similar neighbors,
each associated with the observed annotation y;.
These cluster members are treated as independent
observations of z; under different measurement
conditions, with their label distribution abstracted
as a probabilistic superposition over possible class
outcomes.

Through these local observations, MgEL simulates
multi-view fusion from pseudo sources by leveraging
the structured observations of these clusters (see

of labels in its feature cluster. This pseudo-label is then
fused with the original annotation y; € ) to create
an evidence-aware multi-granularity label 7; € .
Based on the principles of Dempster-Shafer theory
(DST) [39], we interpret the label distribution in the
feature cluster as a class-supporting evidence mass
function. The fusion process assigns different weights
to the pseudo and observed labels, reflecting their
respective levels of credibility under uncertainty.

To further enhance interpretability and control, MgEL
categorizes the fused label y; into two levels of
semantic granularity based on the consistency between
the pseudo-label y, and the annotation y;. When
the two labels are identical, the fused result is
interpreted as a fine-grained confident label, reflecting
strong agreement across sources and indicating high
certainty in the class assignment. In contrast, if the
pseudo and original labels disagree, the resulting
label is considered a coarse-grained hesitant label,
capturing ambiguity in the sample’s class attribution

Figure 4). Specifically, for each sample z;, a and preserving the possibility of it belonging to
pseudo-label y; € )’ is derived from the distribution multiple candidate classes.
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Figure 3. Conceptual workflow: The MgEL establishes a quantum-inspired label fusion mechanism by simulating the
observation-collapse process inherent to entangled systems. Given a noisy dataset D = {(x;,y;)}¥ ,, features Z are
extracted via a backbone encoder F(fy; -), and the dataset is randomly split to mimic entangled subsystems. For each
sample, a feature cluster C; is constructed from its most similar counterparts in the other subset and abstracted as a
superposition state ;. From this, a pseudo-label y;, a collapsed label ;, and an evidence &; are derived. These are fused
with the original annotation y; to form a multi-granularity label ;. A Coherence mechanism assesses label consistency to
decide whether to reintegrate y; into ¢, for mitigating confirmation bias. The final evidence labels Yis used to supervise
training, improving generalization under severe noise.
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Figure 4. Illustration of multi-view fusion from pseudo sources in MgEL: This method simulates multi-view observations
by leveraging structured feature clusters, where each cluster C; is approximated by a set of proxy samples. The belief b; of

(@)

9

each pseudo-source z

is assigned based on its similarity S(z;, #

()

%

) to the cluster center z;, simulating multiple

independent observations. These pseudo sources are fused by aggregating the evidence from belief-weighted samples,
effectively simulating multi-source information fusion.

Since this correction is based on model-generated
latent representations and predictions, it risks
amplifying confirmation bias during self-guided
training. To mitigate this, MgEL introduces a
coherence mechanism that assesses the consistency
among multiple label sources (pseudo, original,
collapsed). When inconsistency is high, the fused
label y; is reverted to its superposition state ¢;,
preserving uncertainty and deferring final decisions
until further optimization.

Overall, MgEL reinterprets noisy or conflicting
labels as structured evidence, offering a principled
framework to improve robustness by aligning
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quantum-inspired modeling with uncertainty-aware
label correction.

3.2 Constructing feature clusters via entangled
partitioning

Consider a noisy dataset D = {(z;,9;)}, with

latent representations Z = {z@-}fil extracted using a

backbone network F(0y; -).

Drawing upon quantum collapse dynamics and
superposition principles, we establish a pseudo
multi-source label fusion framework where each
latent representation z; models an analogous
quantum state. Central to this approach is the
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entanglement-emulating partition: Z undergoes
random bisection into disjoint subsets Z4 and Zp of
equal cardinality. This bipartite configuration achieves
two objectives: reducing computational complexity
of similarity tensors from O(N?) to O(N?/4) and
implementing stochastic structural dropout.

Furthermore, each subset acts as an independent
measurement apparatus, simulating the observational
asymmetry inherent in quantum systems. The
bipartite design is a deliberate computational
compromise. While multi-partite partitioning
(n > 2) incurs prohibitive O((N/n)"™) complexity and
generates intractable similarity tensors, the current
formulation maintains theoretical fidelity while
ensuring computational tractability.

For each sample z;, neighborhood retrieval is
performed exclusively from the complementary subset.

These neighbors {zi(J ) _, are not merely correlated
instances but simulate independent measurements
of the underlying quantum state. Each neighbor
thus represents an eigen-label state |k) (class k
collapse) under different measurement contexts. This
quantum interpretation underpins the formulation of
the superposed label state:

K
0i= > Aiklk) (10)
k=1

where ¢; € RE encodes amplitude-based label
uncertainty, with coefficients \;, € [0, 1] quantifying
class evidence strength (see Sec. 3.3). Neighborhood
retrieval uses exponentially transformed cosine
similarity to circumvent the curse of dimensionality.

Based on Assumption 2, for Vx; € &, with latent
representation z; = F(0y; x;), we identify its n most
similar feature vectors from the entangled subset to
form a feature cluster C;. These neighbors { zi(J ) 7, are
ranked such that

Sz, 2) > Sz, 20)) i 5 > 1

i i (11)
To quantify sample similarity, we use an exponential
cosine similarity function (see Eq. (17)). This decision
is motivated by the well-known phenomenon of
distance concentration in high-dimensional spaces,
which makes traditional distance metrics, such as
Euclidean distance, ineffective. Specifically, for two
normalized vectors z;, z; € R", the squared Euclidean
distance is defined as:

d*(zi, zj) = |z — 2 |1° = zll>+ 12 1* = 2(z1, 25) (12)

Assuming ||z;|| = ||z;|| = 1, we have:
(24, 2) = 2 — 2cos( (24, 2))), (13)
where (z;,z;) is the angle between z; and z;. As
dimensionality n — oo, most angles (z;, z;) — 7, and
hence cos((z;, zj)) — 0, implying:
d*(zi, zj) — 2, (14)

which leads to the so-called concentration of measure,
where almost all pairwise distances converge to a
constant. Formally,

P (|d(zi, 2j) — pa| <€) =1 as n—o00, (15)

making it nearly impossible to discriminate between
samples based on Euclidean distance.

To avoid this, we use the cosine similarity:

zZi X Z]T
Seos((#i, 25)) = cos((z;, 25)) = Wﬂ (16)
i J

which measures angular similarity and is less
sensitive to magnitude and dimensionality. Still, in
high dimensions, even cosine similarities between
neighbors may vary only slightly. To accentuate
such differences, we introduce the exponential
transformation:

) = eoosllen)) — g [ 25
Sleiz) = P (HZZ»H - Hzﬂ\) (17)
This maps cosine similarity from [—1,1] to [e™}, el],
ie. S(zi,2;) € [e7l,el] ~ [0.37,2.72], nonlinearly
amplifying differences between close neighbors and
enabling sharper separation of structurally similar
samples in latent space.

Based on this similarity, the feature cluster C; is
formally defined as:

|

(n)

(Zi,Zi ),Zj EZA} ifZi GZB,
(24, zgn)), z; € Zp} otherwise.
(18)

{25 | S(2i, 25)
zj

>S
{Zj | S(zia ) Z 8
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The cluster size n is dynamically adapted based on
the estimated noise intensity 7 (see Sec. 3.4) from the
previous training epoch:

n = max () X Initialize(n), Truncation(n))  (19)

In this work, Initialize(n) = 27 and Truncation(n) =
23.  This allows the framework to flexibly adjust
the neighborhood scope: under high noise, more
neighbors are included to stabilize superposition
formation; under low noise, smaller clusters avoid
introducing irrelevant variance.

3.3 Simulating pseudo-source observations via
cluster fusion

Cluster fusion simulates the integration of multiple
pseudo-observations by leveraging the feature and
label distributions within the feature cluster C; (as
constructed in Eq. (18)). This process is analogous
to quantum state tomography [42] in quantum
mechanics, where the quantum state is reconstructed
by sampling probability distributions across different
measurement bases, determining the amplitude
probabilities of the eigenstates in a superposition.

In MgEL, the superposition state ¢; constructed for
each sample z; can be interpreted as the probability
distribution of x;’s class membership across all
potential categories. The associated belief mass
& = {er < | encodes the basic belief assignment for
each class, which is used to fuse the pseudo-label
and the original annotation during label correction,
considering the current dataset’s noise level.

To improve the robustness and accuracy of the
superposition state ¢;, MgEL adopts the evidence
combination concept from DST. Each sample in the
feature cluster C; is treated as an independent source
of evidence, and a cluster-based fusion process based
on similarity is designed:

=iy ik k) S

Pi

5. e, (i) L(u;=h)
Aik = ~722j€ci$(zi,zj) 5 (20)
|¢k> = OneHot(k), ke [LK]-

where K represents the total number of classes, and
1(y; = k) is an indicator function that equals 1 when
y; = k, and 0 otherwise.

Using this similarity-based fusion method, MgEL
combines the feature distribution and label frequency
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information within the feature cluster C; to form
the superposition state ¢;. This enables MgEL to
robustly model the class membership probability
distribution for sample z;, even in noisy and uncertain
environments.

However, considering the potential misleading effects
of noisy labels, there is a risk that the feature mapping
during training may inaccurately represent the data,
leading to imprecise class probabilities in ¢;. If these
probabilities were directly used as fusion belief masses
for label correction, they could amplify errors and
introduce confirmation bias.

To address this, MgEL does not use ¢;’s class
probabilities directly as belief masses in the fusion
of annotations and pseudo-labels. Instead, after
considering the estimated noise intensity 77, MgEL
adjusts the evidence &; for each class membership
distribution:

szECi S(zl’ Zj) ’ ]l(yj = k)
> S ) T KX

ex = (21)

3.4 Multi-granularity labels construction with
evidence awareness

After obtaining the superposition state ¢; and class
evidence &; through feature cluster fusion, MgEL
generates pseudo-labels y, using the maximum
posterior decision rule (commonly applied in
multi-class classification tasks, e.g. [1]).  The
amplitude probability «,, associated with the
pseudo-label represents the frequency or intra-cluster
label consistency of the dominant class within the
feature cluster. This is used to estimate the noise
intensity of the current dataset by calculating the
mean label consistency oy across all feature clusters:

/

y; = argmax(p;),
ay = lyp) x ] = max(e),

(22)
zilil ayg
- N

n =

At this stage, both the pseudo-label and the original
annotation label serve as independent evidence
sources for making decisions about sample z;. MgEL
then fuses these two sources to correct the noisy labels,
based on their respective confidence levels. Specifically,
if the pseudo-label and original annotation labels agree,
it is highly likely that the original annotation is not
noisy and can be used for training. In contrast, when
the two labels disagree, the pseudo-label is more likely
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to be accurate. The confidence in the decision-making
process is captured by the evidence vector &;, which is
derived from the pseudo-source fusion.

This allows the original annotation label to be corrected
toward the pseudo-label, with a weighted confidence:

:LE-:(\y£>><5f)-y£+(1—\y§>><5f)'yz' (23)

The fused multi-granularity labels Y integrate
both fine-grained and coarse-grained information,
reflecting the model’s certainty in the predicted class.
When the pseudo-label and the original annotation
agree, the label corresponds to a fine-grained confident
label, offering a more precise supervision signal.
When the labels disagree, the output represents
a coarse-grained hesitant label, with the decision
uncertain between two potential classes, and the
confidence distributed between them according to the
evidence mass &;. This distinction allows the model to
dynamically adjust its decision-making process based
on the consistency of the label sources.

3.5 Coherence mechanism triggered by consistency
of labels

To mitigate the confirmation bias that may arise
from directly using pseudo-labels to correct original
annotations, MgEL employs a resampling strategy
on the superposition state y;, simulating a random
collapse process. This generates a collapsed label
Ui, where the sampling probability for each class
corresponds to the amplitude probability of the
corresponding eigenstate in ;.

Subsequently, MgEL introduces a Coherence
mechanism triggered by label consistency. Before
performing supervised training, the fused labels Y go
through an additional processing step. In this step,
the system accepts a fused label only when at least
two of the following labels are consistent: the original
annotation y;, the pseudo-label y., and the collapsed
label 3;. If none of these labels are consistent, the
system retains the superposition state ¢;, deferring
the final label commitment until more evidence is
provided in subsequent training iterations.

The update rule for the fused label is formally defined
as follows:

, otherwise. (24)

Yi

In this rule, || - || represents the norm of the vector
formed by the sum of the three labels, and the
condition ensures that the fused label y; is accepted
when at least two of the three labels are consistent.

Through this process, MgEL combines the statistical
consistency of the pseudo-labels, the randomness
introduced by the collapsed labels, and the original
annotation labels to create more robust labels ).
This approach reduces the confirmation bias typically
associated with prediction-based label correction and
improves the model’s generalization ability, especially
in high-noise environments.

3.6 Overview

The Alg. 1 summarizes the key steps of MgEL,
integrating feature clustering, pseudo-label generation,
and evidence-based label fusion for label correction,
simulating quantum-inspired mechanisms and
adapting them for noisy label correction.

Algorithm 1 MgEL Label Correction Process

Input: Noisy dataset D = {X,V} = {(z;,v:)};, model
F (0, 0,;-), estimated noise intensity 77
Output: F(0y,0.; ) # Trained diagnostic model
Initialize model f (65, 0.;-), 7 = 1.0
for epoch in range(Total Epochs) do
Z = F(0y; X) # Extract latent features
Z A, Zp = Split(Z) # Partition dataset into two subsets
N N
Ca = {C}2, < 1,25, Cs = {Ci}2 < 10,24 #
Construct feature clusters via Eq. (18)
N N
o4 = {pi}2, < Ca, o8 = {pi}2, < Cp # Compute
superposition state via Eq. (20)
{EYN, «+ @4 Upp # Get class evidence via Eq. (21)
7,V < @a U pp # Estimated noise intensity and compute
pseudo-labels via Eq. (22)
j}v — {&}f\il, V', Y # Construct fused labels via Eq. (23)
Y < @ U pp # Generate collapsed labels via multinomial
sampling
Y« pa U gog,y, V', YV # Apply Coherence Mechanism for
final multi-granularity labels via Eq. (24)
for each sample (z;,7;) in D do
pi = f(Ov,0c; ;) # Compute prediction
(0p,0.) +— Update(@b,ﬁc, VL (pi,yi)) # Update model
parameters via fused label y;
end for
end for

Considering that MgEL uses exponential cosine
similarity (Eq. (17)) to measure sample similarity
in the latent feature space, we have aligned the
classifier architecture accordingly. Instead of adding
a fully connected layer to the backbone network for
classification, we employ a cosine classifier to directly
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Table 2. The detailed information about all datasets.

Detailed information about three datasets

Parameter

Single

Multiple Damage

No. of categories 6+1=7
Fault location

Damage degree 0.3 mm

(6+1)% =49 4x64+1=25

Inner, Outer, Ball, Inner and Outer, Inner and Ball, Outer and Ball

0.2,0.4, 0.6, and 0.8 mm
[1770,1775] rpm

0.3 mm
[1770,1775] rpm

Motor speed [1443,1478] rpm 2366, 2370] rpm [2366,2370] rpm
2959, 2962] rpm [2959, 2962] rpm

Motor load 0.0,0.1,02and 0.3NM 0.0 and 0.3 NM 0.0 and 0.3 NM

Sampling frequency 12 kHz 12 kHz 16 kHz

No. of tra. samples 4032 46452 34100

No. of val. samples 924 10290 7600

No. of tes. samples 4032 46452 34100

classify the features, which ensures better alignment
with the feature space’s geometry and optimization
direction, as cosine similarity is more suitable for
high-dimensional feature manifolds.

It is important to emphasize that the proposed MgEL
framework operates exclusively during the training
phase. It acts as a robust label correction strategy by
adjusting supervisory signals based on latent-space
evidence fusion. Consequently, the inference pipeline
remains entirely unaltered—both structurally and
computationally. MgEL introduces no additional
latency, memory, or computational overhead at
deployment time. The final diagnostic model inherits
its real-time performance characteristics solely from
the underlying backbone architecture, making MgEL
fully compatible with industrial runtime constraints.

4 Experimental verification and discussion

4.1 Experimental settings

To thoroughly evaluate the performance of MgEL, we
conducted a series of experiments on three benchmark
datasets for bearing fault diagnosis: Single [44],
Multiple [43], and Damage [40]. These datasets consist
of vibration signals collected directly from mechanical
systems during operation, covering various working
conditions, rotational speeds, and load conditions.
These datasets were selected to represent a wide
range of fault scenarios and complexities, ensuring
that MgEL can handle diverse real-world conditions
effectively.

Table 2 summarizes the details of each dataset,
including fault categories, operating conditions, and
the number of samples. Notably, the datasets were
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chosen without addressing class imbalance, ensuring
that the number of training and testing samples for
each class is roughly equal. Each sample consists of
2048 continuous data points, with no overlap between
any two samples, ensuring a clean and consistent
evaluation framework.

With the goal of conducting a comprehensive
evaluation of MgEL under various noise environments,
two types of noise were introduced: class-dependent
asymmetric noise and class-independent symmetric
noise. Asymmetric noise was introduced by swapping
labels between similar classes at five different intensity
levels (n = 25%, 30%, 35%,40%, 45%). For example,
in the Damage dataset, severity labels within the same
fault category were swapped, such as replacing the
"0.2 mm" label with "0.4 mm" or swapping "0.8 mm"
and "0.6 mm". This type of noise simulates realistic
scenarios in which label errors occur within similar
categories. Symmetric noise was introduced by
randomly replacing the original labels with labels from
other categories, with five different noise intensities
applied (1 = 50%, 60%, 70%, 80%, 90%).

To ensure a fair comparison and reproducibility, we
adopt MgNet [43], an open-source fault diagnosis
architecture released alongside the Multiple dataset
and well-suited for time-series analysis in industrial
scenarios, as the backbone for evaluating the
performance of MgEL. All models were trained using
the AdamW optimizer, with momentum coefficients
B = 0.9, B = 0.999, and weight decay 1072. The
learning rate follows a CosineAnnealing schedule,
with the initial value scaled as 3 x 1073 x bathsize,
ensuring consistency across different training scales.
Training is performed for 100 epochs, including a
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Table 3. Comparison of effectiveness between MgEL and other methods for LNL.

Datasets Methods Accuracy (%) under asymmetric noise Accuracy (%) under symmetric noise Mean
n=25% n=30% n=35% n=40% n=45% n = 50% n = 60% n="170% n=80% n=90% (%)

Baseline 87.93+5.51 83.164+4.79 75.884+1.97 69.42+3.47 59.26+0.10 68.12+4.96 58.04+6.44 45.60+5.87 29.04+9.35 537+3.79 58.18

SL (2019) 95.80+0.42 86.35+3.15 85.61+7.28 72.60+3.34 61.06+1.38 81.66+6.66 73.14+8.38 58.99+1.20 25.31+543 3.38+1.35 64.39

JoCoR (2020) 88.51+0.17 89.71+7.14 81.80+8.32 73.87+4.63 60.44+0.81 79.37+2.00 63.38+5.80 53.36+4.41 34.43+1.30 7.42+1.62 63.23

JNPL (2021) 64.66+9.98 54914324 54224437 36.95+7.29 43.46+4.35 28.80+7.35 29.21+5.07 27.98+128 21.7349.13 8.86+4.39 37.08

Single NCR (2022) 97.54+1.54 90.09+£3.63 86.09+£6.91 81.73+2.12 75.11+6.49 84.25+1.31 76.59+5.17 68.97+7.78 49.63+£2.68 5.03+0.38  71.50
ALFs (2023) 89.16+7.78 88.08+£7.80 83.60+£2.93 69.47+1.07 59.244+5.62 90.68+0.47 86.87+2.08 73.94+2.46 53.65+2.96 5.11+2.26 69.98

LSL (2024) 96.24+3.03 95.28+4.32 94.73+3.82 82.56+6.03 70.14+9.81 95.33+3.98 93.34+0.57 82.30+9.58 64.83+3.16 6.73+£3.39 78.15

ANNE (2025) 91.10+7.84 89.3248.27 83.79+1.22 75.15£5.49 69.50+7.78 98.74+1.21 97.43+1.57 95.47+0.57 73.17+8.33 4.44+1.13 77.81

MGEF (Ours) 99.494+0.38 99.1940.35 99.094+0.63 96.064+2.58 80.89+4.69 99.55+0.17 98.92+0.77 98.25+0.41 80.46+£3.19 23.02+2.53 87.49

Baseline 75.07+3.78 69.21+£3.16 64.11+£3.13 55.04+0.27 51.494+0.92 53.00+£2.29 48.36+1.99 36.36+3.22 23.03+0.44 7.39+0.69 48.31

SL (2019) 80.40+1.85 75.52+0.43 71.80+£2.82 53.57+1.73 49.67+0.84 72.56+1.22 62.514+2.54 58.29+2.29 34.38+2.62 9.34+0.53 56.80

JoCoR (2020) 88.47+1.14 88.70+0.68 87.31+1.53 72.50+4.18 64.88+1.23 74.13+3.67 66.38+0.98 49.36+2.57 31.64+1.03 9.97+1.43 63.33

JNPL (2021) 63.59+0.24 63.45+0.19 61.66+1.21 60.124+1.02 55.93+1.67 50.45+0.33 41.54+2.07 33.78+1.27 23.24+1.28 9.574+1.37 46.33

Multiple NCR (2022) 90.25+0.57 89.34+0.26 86.66+1.72 82.49+0.85 69.89+1.48 66.50+3.83 55.60+2.50 43.01+1.53 26.52+3.07 9.07£1.69 61.93
ALFs (2023) 77.04+150 73.96+1.75 68.02+0.74 64.00+3.36 54.59+1.65 65274276 52.35+0.61 32.91+0.69 22.924+0.73 8.40+1.39 51.95

LSL (2024) 64.06+1.57 62.43+491 66.19+£1.33 59.884+1.83 55.324+0.07 47.67+0.83 42.58+2.20 34.91+1.08 24.05+1.66 8.724+0.99  46.58

ANNE (2025) 65.554+2.49 67.69+£2.57 63.46+1.44 63.60+£1.34 57.80+1.04 52.88+2.58 51.15+4.12 39.90+4.36 23.58+1.72 11.10+£0.51 49.67

MGEF (Ours) 89.33+0.52 89.16+0.87 87.70+1.15 86.20+0.51 75.65+1.50 86.20+1.28 83.49+1.16 81.45+0.52 75.46+1.80 43.18+£5.46 79.78

Baseline 91.18+0.17 86.31+1.18 82.38+1.10 67.28+3.45 54.57+2.16 88.78+£0.48 84.66+1.02 76.72+0.30 55.24+1.62 20.18+3.84 70.73

SL (2019) 93.83+£0.42 90.53+2.13 88.04+1.00 75.70+4.60 57.45+0.45 94.55+0.17 92.51+0.19 87.88+1.48 76.11+1.50 20.86+1.74 77.74

JoCoR (2020) 93.84+0.19 89.22+1.72 85.284+0.81 70.00+£3.85 56.66+1.52 91.78+0.64 88.94+1.25 83.64+1.32 62.57+1.67 22.41+2.13 7443

JNPL (2021) 90.18+0.05 86.10+0.51 81.114+0.99 69.62+0.76 57.32+1.66 87.56+0.93 84.95+0.34 76.17+2.60 52.13+4.56 24.30+2.23 70.94

Damage NCR (2022) 94.72+0.64 92.00+0.30 86.24+1.44 75.71+£2.07 61.99+£1.99 91.75+0.77 89.444+2.55 83.49+0.74 61.45+0.75 18.20+1.09 75.50
€ ALFs (2023) 96.93+0.62 94.96+1.41 90.11+£2.67 78.454+2.18 59.094+0.83 96.03+0.62 94.01+1.71 87.324+2.06 62.74+0.85 19.77+£1.66 77.94

LSL (2024) 90.09+0.84 86.56+0.44 81.674+0.99 70.83+£0.72 57.55+1.07 86.76+1.06 83.61+1.56 75.46+1.08 54.414+4.17 20.28+1.20 70.72

ANNE (2025) 96.63+0.18 96.50+0.23 92.75+0.31 87.08+0.45 64.41+6.91 97.36+0.65 96.99+0.26 90.41+0.41 83.424+3.21 33.66+8.18 83.92

MGEF (Ours) 97.48+0.42 97.194+0.45 96.70+0.87 93.25+0.65 75.03+1.01 97.31+0.22 96.47+0.34 95.81+0.27 94.31+£0.35 75.07+2.35 91.86

5-epoch warm-up stage, during which only standard
supervised learning is applied, without any additional
label correction operations.

All experiments were conducted on an NVIDIA A100
GPU using PyTorch version 2.1.1+cull8. To eliminate
the influence of random initialization and stochastic
variation, each experiment was repeated at least
ten times, with the detailed evaluation results and
corresponding analyses presented in the following
subsections.

4.2 Case I: Effectiveness of MgEL

To evaluate the effectiveness of the proposed
MgEL framework, we conducted comprehensive
comparisons with seven state-of-the-art LNL
approaches: SL (2019) [30], JoCoR (2020) [33], JNPL
(2021) [45], NCR (2022) [46], ALFs (2023) [27], LSL
(2024) [16], and ANNE (2025) [47], across three
datasets with varying types and intensities of label
noise. We visualize the performance comparison
in Figure 5 and provide the detailed results in
Table 3, where bold values represent the best accuracy
achieved by other methods under each noise setting,
facilitating an intuitive comparison with MgEL.

Overall, MgEL consistently outperforms all competing
approaches across different datasets and noise
scenarios, demonstrating superior robustness and
generalization even in the presence of severe label
corruption. On the Single dataset, MgEL achieves a

mean accuracy of 87.49%, surpassing the strongest
baseline (LSL, 78.15%) by 9.34%. This advantage is
amplified further under high symmetric noise (n =
90%), where MgEL maintains a robust 23.02% accuracy
compared to 7.42% for JoCoR. A similar pattern is
observed on the Multiple dataset, where MgEL yields
an average accuracy of 79.78%, outperforming the
second-best baseline (JoCoR) by 16.45%. On the more
challenging Damage dataset, MgEL delivers the highest
performance (91.86%), surpassing ANNE (83.92%) by
7.94%.

These consistent improvements across datasets and
noise conditions are attributed to several technical
innovations in MgEL. One key reason is that, instead
of relying on heuristic sample selection or loss-based
reweighting, MgEL constructs a quantum-inspired
superposition state ¢; for each sample by aggregating
local observations from entangled feature clusters.
This formulation captures class attribution uncertainty
with greater fidelity. Additionally, MgEL fuses
the pseudo-label and original annotation via an
evidence-aware belief mass &;, derived from the
distribution of cluster-level statistics. This enables
adaptive weighting of conflicting information sources
based on their consistency. Moreover, the Coherence
mechanism safeguards against early confirmation
bias by retaining the superposition state whenever
the pseudo, annotation, and collapsed labels fail
to reach consensus, postponing hard commitments
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Figure 5. Comparison of MgEL and other methods under various label noise environments. Where the shaded area
indicates the accuracy fluctuation range of each method, and the dashed baseline represents the performance of MgNet
trained with standard supervised learning, without any LNL strategy.

Table 4. The results of the ablation on MgEL.

Average accuracy (%)

Methods Entanglement Evidence Coherence
Single Multiple Damage

Baseline 58.18 4831 70.43
Al Vv Vv 85.64  76.89 90.22
A2 Vv Vv 84.61  75.58 89.12
A3 Vv Vv 82.09 7295 87.74
A4 Vv 7941  70.16 86.09
A5 Vv 81.62  72.33 87.67
A6 Vv 83.88  74.34 88.78
MgEL Vv Vv Vv 8749  79.78 91.86

until sufficient evidence accumulates in later training
iterations.

The performance advantage of MgEL becomes
especially prominent under high-noise symmetric
settings, indicating its tolerance against purely
stochastic label perturbations that often mislead
traditional LNL strategies. Moreover, its stability
across diverse datasets highlights its generalizability
and scalability for real-world fault diagnosis tasks.

4.3 Case II: Ablation for MgEL

To further investigate the source of MgEL’s
effectiveness, we conduct an ablation study by
selectively removing each of its three core components:
Entanglement, Evidence, and Coherence. The results are
summarized in Table 4 and visualized in Figure 6.

Taken together, Table 4 and Figure 6 show that the
full MgEL framework, which integrates all three
components, achieves the highest accuracy across
all datasets. Removing any component consistently
leads to a decline in performance, indicating that the
effectiveness of MgEL stems from the complementary
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roles of entanglement-based pseudo-source modeling,
evidence-aware label fusion, and coherence-guided
filtering.

The effect of removing Entanglement is evident
when comparing configurations Al and A4 to the
full model. = Al, which disables Entanglement
while retaining Evidence and Coherence, shows a
performance decline (e.g., 76.89% vs. 79.78% on
Multiple). The degradation becomes more pronounced
in A4, where only Entanglement is active, leading
to further reductions in accuracy (e.g., 70.16%).
These trends suggest that Entanglement is critical for
constructing reliable pseudo-source representations.
Its role in partitioning the feature space introduces
stochastic diversity in cluster formation, capturing the
distributional uncertainty of class attribution through
superposition states, which is essential for robust label
inference.

The role of Evidence is assessed by examining A2
and A5, both of which remove this component. A2
maintains Entanglement and Coherence but excludes
Evidence, resulting in performance drops across
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Figure 7. t-SNE visualization of latent feature distributions for test and training samples across the three datasets. The
first column shows test samples from the baseline model trained without noise handling. The second and third columns
show test and training samples learned under the MgEL framework. Compared to the baseline, MgEL induces more
compact and well-separated class clusters, even under high noise.

all datasets (e.g., 75.58% wvs. 79.78% on Multiple).

A5, retaining only Entanglement, performs even
worse.  These observations indicate that while
structural diversity is necessary, accurate fusion of
annotations and pseudo-labels requires confidence
calibration. The belief mass &;, computed from local
similarity-weighted label distributions and adjusted
for noise intensity, serves this purpose. Its removal
forces reliance on raw class probabilities, weakening
the model’s ability to distinguish reliable label
sources. Thus, Evidence enhances label consistency
by integrating supervision signals based on their
reliability within the cluster context.

The effect of Coherence is reflected in A3 and
A6. A3 excludes Coherence while preserving
Entanglement and Evidence, leading to a modest
performance reduction (e.g., 72.95% vs. 79.78% on
Multiple), while A6—disabling both Coherence and
Entanglement—shows the lowest performance among
all variants. These results confirm that Coherence
plays a significant role in label stability, especially
under ambiguous or conflicting supervision. The
mechanism selectively defers label commitments
by reverting to the superposition state when the

pseudo, annotation, and collapsed labels do not agree.

Therefore, Coherence mitigates confirmation bias
and stabilizes predictions by withholding unreliable
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updates in the presence of low label consensus.

Collectively, the ablation results demonstrate that
MgEL's tolerance to noisy labels comes from the
interplay of three complementary mechanisms:
entanglement introduces structured diversity
for uncertainty modeling, evidence enables
reliability-aware label fusion via belief-based
weighting, and coherence mitigates confirmation bias
by deferring low-consensus decisions. Their unified
integration equips MgEL with robust generalization
capabilities across diverse and corrupted learning
environments.

4.4 Case III: Visualization analysis

To empirically support Assumption 1, we visualize
the t-SNE embeddings of both training and test
samples from the three datasets under 90% symmetric
noise, as shown in Figure 7. The resulting projections
reveal significant differences in the topological
organization of feature manifolds, providing intuitive
evidence of noise-induced structural perturbations
and highlighting MgEL's ability to counteract
these distortions through more coherent -class
representations.

Compared to the baseline, the latent features learned
by MgEL show significantly improved intra-class
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compactness and inter-class separability. On the Single
dataset, clear and well-separated clusters emerge even
for complex fault types, while the baseline features
remain entangled with indistinct boundaries. The
Multiple dataset, which introduces greater domain
and fault variability, further demonstrates MgEL's
robustness: despite the increased difficulty, MgEL
preserves coherent topological structures for most
classes, while the baseline embeddings collapse into
ambiguous, overlapping manifolds.

Notably, the effect is most pronounced on the
Damage dataset, which consists of 49 fine-grained
fault categories and extreme label corruption (n =
90%). In this challenging setting, the baseline
model fails to preserve class-discriminative geometry,
leading to severe semantic drift. In contrast,
MgEL successfully induces structured manifolds with
meaningful class-wise alignment, consistent with the
suppression of structural perturbations predicted by
the theoretical model.

Furthermore, training embeddings offer additional
insight into MgEL's manifold-regularizing behavior.
Although residual intra-cluster variance persists due to
corrupted supervision, the global alignment between
training and test distributions is significantly improved
under MgEL. This suggests that the framework filters
noise at the label level and stabilizes representation
learning by regularizing optimization trajectories.

The observed improvements are attributed to MgEL's
evidence-aware label construction process, which
incorporates uncertainty through probabilistic
superposition and belief-based fusion mechanisms.
These mechanisms effectively mitigate the propagation
of biased gradients and restore the semantic coherence
of the latent space.

Taken together, the t-SNE results corroborate the
theoretical analysis in Assumption 1, showing that
extreme label noise induces a representation-level
structural shift. MgEL mitigates this phenomenon
by preserving class-consistent manifolds in the latent
space, improving both robustness and generalization.

5 Conclusion

Motivated by the challenge of confirmation bias in
LNL, this work proposes MgEL, a quantum-inspired
framework that introduces a novel multi-granularity
evidence labeling mechanism by simulating the
observation—collapse behavior of entangled systems.
Through pseudo-source construction, evidence-aware
fusion, and coherence-guided filtering, MgEL

effectively integrates annotations, pseudo-labels, and
collapsed labels to create robust supervision signals.
Extensive experiments across three fault diagnosis
benchmarks confirm that MgEL outperforms existing
methods in most scenarios, particularly under severe
symmetric noise, while consistently improving the
quality of latent representations. MgEL provides
a theoretically grounded and practically scalable
solution for trustworthy fault diagnosis in data-driven
industrial systems. Beyond its empirical success, MgEL
introduces a principled information fusion strategy
that integrates multiple uncertain label sources,
offering new insights into uncertainty modeling and
decision-level fusion in noisy environments.

Despite its promising performance, MgEL has several
limitations. =~ The stochastic nature of random
partitioning may cause instability in small or highly
imbalanced datasets, and reliance on similarity-based
neighborhood construction can be sensitive to feature
distortions during early training. Future research
could explore more robust entanglement schemes,
incorporate adaptive clustering, or integrate causal
and temporal priors into the label-fusion process.
Moreover, extending the proposed framework to
semi-supervised, active, or federated learning settings
holds promise for advancing both the theory and
practice of information fusion under uncertainty.
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