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Abstract
The rapid advancement of Internet technology,
driven by social media and e-commerce platforms,
has facilitated the generation and sharing of
multimodal data, leading to increased interest in
efficient cross-modal retrieval systems. Cross-modal
image-text retrieval, encompassing tasks such as
image query text (IqT) retrieval and text query
image (TqI) retrieval, plays a crucial role in semantic
searches across modalities. This paper presents a
comprehensive survey of cross-modal image-text
retrieval, addressing the limitations of previous
studies that focused on single perspectives such
as subspace learning or deep learning models.
We categorize existing models into single-tower,
dual-tower, real-value representation, and binary
representation models based on their structure and
feature representation. Additionally, we explore
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the impact of multimodal Large Language Models
(MLLMs) on cross-modal retrieval. Our study also
provides a detailed overview of common datasets,
evaluation metrics, and performance comparisons of
representative methods. Finally, we identify current
challenges and propose future research directions to
advance the field of cross-modal image-text retrieval.

Keywords: multi-modal data, cross-modal retrieval,
cross-modal alignment, cross-modal fusion, large language
models.

1 Introduction
The advent of Internet technology, driven by social
media and e-commerce platforms, offers a convenient
way to generate and share multimodal data. Efficient
and accurate retrieval of relevant information fromvast
multimodal data has garnered increased interest from
researchers due to its extensive real-world applications.
Cross-modal image-text retrieval enables semantic
search of instances in one modality (e.g., image)
based on queries from another modality (e.g., text).
Cross-modal image-text retrieval typically includes
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two main tasks: image query text (IqT) retrieval and
text query image (TqI) retrieval. The formal definition
is as follows:
The multimodal training set, denoted as O = oii = 1n,
consists of n instances. Each instance oi = (vi, ti, yi)
comprises an original image sample vi, a text sample
ti, and a label annotation vector yi = [yi1, . . . , yiC],
where C is the number of classes. Each annotation
yiz equals 1 if the instance oi belongs to the z-th class,
and yiz equals 0 otherwise (1 ≤ z ≤ C). The testing
set Q = qi

m
i=1 consists of m query instances, where

qi = (vi, ti). For each query sample vi or ti, samples
of the other modality that are semantically relevant
should be returned.
Deep learning-based cross-modal image-text retrieval
has achieved great success due to deepmodels that can
effectively extract semantic information from visual
and language data of different modalities.
Furthermore, with the success of large language
models (LLMs) like ChatGPT, multimodal Large
Language Models (MLLMs) have emerged, drawing
more attention from researchers. Several previous
efforts have surveyed cross-modal image-text retrieval.
However, current surveys often classify cross-modal
retrieval models from only a single perspective (e.g.,
subspace learning model or deep learning model),
leading to insufficiently thorough results. Moreover,
there is a lack of analysis on the cross-modal retrieval
capabilities of the latest multimodal large language
models. Inspired by this, we present a more
comprehensive and up-to-date survey of cross-modal
image-text retrieval in this paper.

Image-Text Data
Model Structure 

(2) Dual-tower
(1) Single-tower

Feature Representation

(2) Binary representation
(1) Real-value representation Similarity Constrain

Figure 1. Illustration of the classification of cross-modal
retrieval model from two perspectives..

The two most critical factors influencing cross-modal
image-text retrieval systems are model structure and
feature representation. We classify existing models
based on these two key aspects to provide a more
thorough analysis of cross-modal image-text retrieval.
Figure 1 illustrates our classification of cross-modal
retrieval models.
• Single-tower models, also known as single-stream

models, utilize a unified architecture to process
both modalities simultaneously. These models
integrate the modalities early, aiming to learn
joint representations directly. They are beneficial

for capturing complex interactions but may face
scalability and fusion challenges.

• Dual-tower models, also known as two-stream
models, use separate architectures (towers) for
each modality. These models process each
modality separately, allowing for specialized
processing and scalability. However, they must
ensure compatibility between the independently
learned representations for effective retrieval.

• Real-value representation models involve
encoding data into continuous vectors in a
high-dimensional space. These vectors typically
consist of floating-point numbers. These
models are suitable for capturing detailed and
complex relationships. However, they incur high
computational and storage costs, making them
less ideal for large-scale data applications.

• Binary representation models encode data
into compact, fixed-length binary codes (e.g.,
hash vectors of bits). These models offer
efficient storage and fast retrieval, making them
well-suited for large-scale databases. However,
they may sacrifice some accuracy and require
sophisticated projection models to learn effective
binary codes.

Based on above classification, we summarize the
representative cross-modal image-text retrieval
methods, as depicted in Table 1. The structure of our
study is outlined as follows: First, we summarize
cross-modal image-text retrieval models based
on the above taxonomy in Section 2. Section 3
introduces MLLMs and focuses on their capabilities
in cross-modal retrieval tasks. Section 4 provides
a detailed overview of common cross-modal
image-text datasets, evaluation metrics, and accuracy
comparisons among representative approaches.
Section 5 summarizes the challenges identified in the
preceding review and outlines meaningful research
directions for the future.

2 Deep Learning-Based
This section reviews recent research on cross-modal
image-text retrieval using deep-learning neural
networks. These models typically involve two main
components: feature extraction from each modality
and feature alignment or fusion through an alignment
or fusion module. The primary goal is to learn a
common semantic subspace that preserves semantic
correlations both within and across modalities. We
categorize these models based on their structure
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Image-Text Data

Unified Encoder

Cross-modal Fusion

Unified Representation

(a) Single-tower

Image-Text Data

Image Encoder Text Encoder

Cross-modal alignment

Image Representation Text Representation

(b) Dual-tower

Figure 2. Illustration of single-tower and dual-tower
structure.

and feature representation into four categories:
single-tower models, dual-tower models, real-valued
representation models, and binary representation
models.

2.1 Single-tower models
Single-tower (single-stream) architecture models
process image and text features through a shared
encoder, like a transformer, as shown in Figure 2
(a). These models usually combine the two input
modalities early in the network and jointly process
them through shared encoders. The main motivation
behind single-tower models is their ability to directly
learn joint representations of the two modalities,
capturing complex interactions between them. By
using shared layers to process bothmodalities together,
these models aim to learn rich, fused representations
that benefit cross-modal retrieval tasks.

The ViLT (Vision and Language Transformer)
model [8] presents an innovative method for
multi-modal training, drawing inspiration from the
Vision Transformer (ViT) mechanism. In contrast to
earlier methods that needed an object detector for
region-level feature extraction, ViLT directly splits
images into patches, performs linear embedding, and
uses these as transformer inputs. Text data is also
embedded and merged with image embeddings for
joint training, significantly enhancing learning and
inference efficiency. ViLT employs three pre-training
objectives: Image-Text Matching (ITM), Masked
Language Modeling (MLM), and Word Patch
Alignment (WPA). For fine-tuning in cross-modal
retrieval, ViLT initializes the similarity score head
from the pre-trained ITM head and fine-tunes it
with cross-entropy loss to maximize positive pair
scores. Experimental results indicate that ViLT
drastically reduces per-instance processing time from
900 milliseconds to 15 milliseconds, showcasing its
efficiency and innovation in multi-modal learning.

Traditional pre-trained models for computer vision
(CV) and natural language processing (NLP)
perform well independently but face challenges
with cross-modal tasks involving lengthy natural
language inputs and intricate visual elements.
Unicoder-VL [9] utilizes a multi-layer Transformer
to learn joint representations of vision and language
via cross-modal pre-training. It uses three tasks:
MLM, Masked Object Classification (MOC), and
Visual-linguistic Matching (VLM) The model
processes linguistic and visual content simultaneously,
effectively learning context-aware representations
and predicting relationships between images and
texts. Pre-training on large-scale image-caption
pairs allows it to excel in downstream tasks such
as image-text retrieval and visual commonsense
reasoning. Unicoder-VL achieves state-of-the-art
results in image-text retrieval on the MSCOCO and
Flickr30K datasets, showcasing strong generalization
abilities. However, its reliance on pre-training
datasets might limit performance on tasks that require
domain-specific knowledge.

A flexible model is needed to handle various
vision-and-language tasks, capturing detailed
semantics from both modalities without complex
architectures. VisualBERT [10] integrates BERT with
pre-trained object detection systems, processing
image features and text together using Transformer
layers. It is pre-trained on the COCO dataset using
visually-grounded language model objectives such
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as masked language modeling and sentence-image
prediction The model’s design enables it to implicitly
align language elements and image regions through
self-attention, capturing intricate associations without
explicit supervision. VisualBERT’s design emphasizes
simplicity and flexibility in handling diverse tasks.
Single-stream methods represent a powerful
approach for cross-modal retrieval, leveraging unified
Transformer architectures to effectively bridge the gap
between different modalities. While these models
perform well on general datasets, fine-tuning them
for specific domains may require additional data and
computational adjustments.

2.2 Dual-tower models
Dual-stream cross-modal methods, aim to integrate
and process information from multiple modalities,
such as text, images, and audio. These methods
are characterized by their ability to handle the
heterogeneity and complexity inherent in multimodal
data, thereby facilitating a richer and more
comprehensive understanding and generation
of content. The primary challenge addressed by
dual-stream cross-modal methods is the effective
alignment and fusion of disparate data types, which
often possess different structures, noise levels, and
contextual nuances. The dual stream cross-modal
approach typically involves two parallel processing
streams, each dedicated to handling a specific
modality, as shown in Figure 2 (b).
ViLBERT [11] aims to tackle the challenge of jointly
understanding and reasoning about vision and
language, which is difficult due to the inherent
differences and complexities of each modality. It
employs a two-stream model in which one stream
processes visual information and the other processes
linguistic information. These streams interact
via a co-attentional Transformer layer that enables
each modality to attend to the other. The key
innovation is the co-attentional Transformer layer,
which facilitates the interaction between visual and
linguistic representations, allowing the model to learn
rich, joint representations of both modalities.
CLIP [12] meets the need for models that can
understand and connect images and text flexibly,
particularly for zero-shot learning tasks where the
model must generalize to new concepts without
explicit training. CLIP employs separate encoders
for images and text, training them with a contrastive
loss to align image and text embeddings in a shared

space. The model is trained on a vast dataset of
images and their corresponding captions from the
internet. The key innovation is using contrastive
learning to align visual and textual representations,
enabling the model to perform zero-shot learning
by leveraging the rich, diverse data it was trained
on. CLIP demonstrates impressive performance on
various tasks without fine-tuning, including image
classification, image-text retrieval, object detection,
and generating text descriptions for images.
In [14], the authors introduce ALIGN (A Large-scale
ImaGe and Noisy-text embedding), which utilizes
a massive dataset of over one billion image-alt
text pairs collected from the web with minimal
filtering. The core of ALIGN is a straightforward
dual-encoder architecture that employs contrastive
learning to align visual and language representations
in a shared embedding space. The ALIGN model uses
a dual-encoder architecture with separate encoders
for images and text. The encoders are trained with a
contrastive loss to align the embeddings of matching
image-text pairs. During training, the model applies
simple frequency-based filtering on the dataset. The
contrastive loss function helps in bringing together
the embeddings of matched pairs and separating
those of non-matched pairs. ALIGN achieves 76.4%
top-1 accuracy on ImageNet without using any of its
training samples and sets new state-of-the-art results
on Flickr30K and MSCOCO benchmarks.
Dual-stream methods offer a robust framework for
cross-modal retrieval by utilizing specialized pathways
for different modalities and aligning their outputs in
a shared space. By effectively aligning embeddings
and using tailored processing, these models achieve
strong performance in retrieving relevant content
across heterogeneous data types, showcasing their
value in multimodal applications.

2.3 Real-value representation models
Non-hashing methods based on real-valued
representations effectively reduce the semantic
gap between different modalities by learning dense
feature representations, thereby enhancing retrieval
precision. By employing deep learning methods to
model features of various modalities and extract deep
semantic features, these methods effectively address
the issue of feature heterogeneity in cross-modal
data. They also emphasize semantic correspondence
between modalities, narrowing the semantic gap to
improve the accuracy of cross-modal data matching,
thereby increasing retrieval precision.
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ACMR [15] tackles the challenge of aligning visual
and textual data for cross-modal retrieval tasks, where
traditional methods often fail to bridge the semantic
gap between different modalities. The proposed
solution involves employing adversarial training to
learn robust cross-modal representations. Specifically,
ACMR utilizes a dual-stream architecture where each
modality is processed separately, with an adversarial
loss to align the embeddings in a shared space. The key
innovation of ACMR is the integration of adversarial
learning, which encourages the model to produce
modality-invariant features. This approach ensures
that visual and textual representations are more
closely aligned, thereby improving retrieval accuracy.
ACMR significantly enhances the performance of
cross-modal retrieval tasks, demonstrating improved
alignment between visual and textual data and
higher retrieval accuracy compared to non-adversarial
methods. However, adversarial training can be
complex and computationally intensive, and it may
lead to potential instability during training.

DSCMR [16] addresses the challenge of learning
effective representations for cross-modal retrieval
tasks, where existing methods often struggle to
capture the complex relationships between different
modalities. The proposed solution employs a deep
supervised approach that utilizes labeled data to learn
discriminative features for each modality. DSCMR
uses a dual-stream networkwith deep neural networks
for both visual and textual data, supervised by
a cross-modal ranking loss. The innovation in
DSCMR lies in its application of deep supervision
and a cross-modal ranking loss, ensuring that
the learned representations are both discriminative
and aligned across modalities. DSCMR achieves
state-of-the-art performance in cross-modal retrieval
tasks, showcasing the effectiveness of deep supervision
and ranking-based training objectives in improving
retrieval accuracy. However, DSCMR requires large
amounts of labeled data and is potentially prone to
overfitting to specific datasets.

IEFT [17] tackles the challenge of enhancing
feature interactions for cross-modal retrieval, where
traditional models often fail to fully capture the
intricate relationships between visual and textual
data. The proposed solution, Interacting-Enhancing
Feature Transformer (IEFT), uses a Transformer-based
architecture to enhance feature interactions between
modalities. IEFT processes visual and textual
features in separate streams and employs attention
mechanisms to integrate them. The key innovation

of IEFT is its use of Transformer-based attention
mechanisms to enhance interactions between visual
and textual features, allowing the model to learn
richer and more nuanced representations. IEFT
demonstrates superior performance on cross-modal
retrieval benchmarks, benefiting from enhanced
feature interactions and the powerful representation
capabilities of Transformers.
COTS [18] addresses the difficulty of effectively
combining visual and textual information for
cross-modal retrieval, where existing methods may
not fully leverage the potential of collaborative
learning between modalities. The solution involves
a Collaborative Two-Stream (COTS) architecture,
where two streams process visual and textual data
independently but collaborate through shared
intermediate representations and alignment losses.
The innovation in COTS lies in its collaborative
learning mechanism, which ensures that the
two streams not only process their respective
modalities effectively but also learn from each other
through shared representations. While collaborative
learning enhances feature alignment and robust
performance across various tasks, it increases
complexity due to collaboration mechanisms and
potential synchronization issues between streams.
TEAM [19] addresses the issue of aligning token
embeddings from different modalities for cross-modal
retrieval, where conventional methods may not
fully capture the semantic relationships between
visual and textual data. The proposed solution,
Token Embeddings AlignMent (TEAM), employs
alignment strategies to ensure that token embeddings
from different modalities are closely related in a
shared space. TEAM utilizes dual-stream networks
with alignment losses to achieve this goal. TEAM’s
key innovation is its specific focus on token-level
alignment, ensuring that individual tokens from text
and corresponding visual elements are accurately
aligned in the embedding space. TEAM significantly
improves cross-modal retrieval performance by
ensuring precise alignment of token embeddings,
leading to better semantic understanding and
retrieval accuracy. However, it incurs potentially high
computational costs for fine-grained alignment and
complexity in managing token-level interactions.

2.4 Binary representation models
Real-valued cross-modal image-text retrieval methods
based on deep learning use feature vectors directly
obtained from feature extraction for modeling and
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retrieval. However, with the explosive growth of
multimedia data, such as short videos on TikTok or
image-text information on Weibo, multimodal data
often reaches hundreds of thousands, millions, or
even billions of instances. This requires that the
retrieval process for multimodal data ensures both
precision and efficiency. Among various retrieval
methods, hashing methods have gained widespread
attention due to their low storage cost, efficiency, and
fast retrieval speed, making them more suitable for
large-scale datasets.

Hashing methods map feature vectors from the
original feature space to binary codes (Hamming
space) to save storage space and increase retrieval
speed while maintaining the similarity between data
points during the mapping process. Subsequently,
the Hamming distance between the hash codes of the
query data and those in the database is calculated for
similarity ranking, ultimately yielding the retrieval
results. Calculating the Hamming distance is faster
than other distance metrics such as Euclidean and
cosine distances. Additionally, storing data as binary
codes rather than real-valued ones reduces the storage
requirements for retrieval tasks.

Learning hash functions mainly involves
dimensionality reduction and quantization.
Dimensionality reduction maps the information
from the original space to a lower-dimensional space,
such as mapping an image’s original pixel space
information to a lower-dimensional (e.g., tens of
dimensions) representation. Quantization involves
linear or nonlinear transformations of the original
features and binary segmentation of the feature space
to produce hash codes. As mentioned in the problem
definition section of cross-modal retrieval, there is a
semantic gap between different forms (modalities) of
data representation. Minimizing this semantic gap
remains a primary challenge for cross-modal retrieval
hashing methods. Generally, there are two approaches
to address this: one is learning a unified hash code,
and the other is using supervised information, such as
labels, to collaboratively represent and minimize the
distance between hash codes of semantically relevant
instances.

DCMH [20] addresses the challenge of efficiently
retrieving relevant data across different modalities
(e.g., text and images) by using hashing techniques
to map high-dimensional data into compact binary
codes. The proposed solution utilizes a deep learning
framework to generate hash codes for each modality

through learning shared representations. These
representations are optimized to maintain semantic
similarity across different modalities, ensuring
related items have similar hash codes. This is the
first use of deep hashing neural networks to learn
these representations, allowing the model to capture
complex relationships between modalities and
generate more accurate hash codes.
UDCMH [21] addresses the challenge of cross-modal
retrieval without labeled data, which is significant
since traditional supervised methods rely heavily on
labeled training examples. The key innovation is the
unsupervised learning approach, which eliminates
the need for labeled data and still achieves effective
cross-modal retrieval by learning from the data’s
inherent structure. This approach demonstrates strong
performance in cross-modal retrieval tasks, especially
in scenarios where labeled data is scarce or unavailable.
However, its performance may not match supervised
methods on well-labeled datasets andmay be sensitive
to the quality of the data structure.
SSAH [22] tackles the challenge of generating
robust hash codes for cross-modal retrieval by
leveraging the advantages of both self-supervised
learning and adversarial training. Self-supervised
learning generates initial hash codes, while adversarial
training refines these codes to ensure they are
modality-invariant and semantically meaningful. This
combination enables the model to learn effective
representations without the need for extensive labeled
data. SSAH achieves enhanced retrieval performance
and robustness, demonstrating the effectiveness of its
novel training strategy.
Bi-CMR [23] is the first to recognize that the
assumption “label annotations reliably reflect instance
relevance" conflicts with human perception. It
proposes a new evaluation method to guide the
learning of instance hash codes consistent with human
perception. Bi-CMR introduces a novel bidirectional
reinforcement-guided hashing method that reinforces
hash code learning through mutual promotion. The
key innovation is using reinforcement learning to
dynamically adjust and improve the hashing process,
ensuring the generated hash codes are effective for
cross-modal retrieval. Bi-CMR demonstrates superior
performance in cross-modal retrieval tasks, with hash
codes that are well-aligned and optimized for retrieval
accuracy.
DCHMT [24] tackles the challenge of effectively
integrating and hashing data frommultiple modalities
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Figure 3. Example of BLIP-2’s pipeline for text-to-image
retrieval.

using a unified framework. It constructs amulti-modal
transformer to capture detailed cross-modal semantic
information and introduces amicro-hashingmodule to
map modal representations into hash codes. UCMFH
tackles the need for effective cross-modal retrieval
without labeled data, focusing on learning robust hash
codes through unsupervised methods. The proposed
solution uses unsupervised contrastive learning to
generate hash codes. By leveraging contrastive
learning, the model maximizes the similarity between
related items across modalities while minimizing
the similarity between unrelated items. UCMFH
demonstrates strong performance in unsupervised
cross-modal retrieval tasks, achieving high accuracy
and robustness by effectively learning from the
inherent structure of data.
Overall, real-valued representations are suitable for
tasks that require high precision, while hashing
representations are ideal for applications that need
rapid, large-scale retrieval.

3 Multimodal Large Language Models
In the past two years, large language models (LLMs)
have made significant strides, demonstrating the
ability to perform many NLP downstream tasks

in a zero-shot setting. However, their inference
capabilities with data from other modalities have
been limited. To address this gap, MLLMs have
been proposed. These models are capable of not
only generating and understanding complex text but
also processing image information, allowing a single
MLLM to handle multiple multimodal downstream
tasks simultaneously. Utilizing MLLMs for image-text
retrieval has emerged as a powerful and widely
applied technique. By integrating natural language
processing and computer vision technologies, MLLMs
can efficiently extract information from vast datasets,
achieving precise image-text matching and search.

Before introducing this section, we first differentiate
between VLPmodels andMLLMs. We define VLP as a
multimodal pre-training model tailored for specific
tasks involving vision and language. In contrast,
MLLMs are pre-trained models capable of addressing
multiple complex reasoning tasks across different
modalities. The key distinction lies in their ability to
handle multiple downstream tasks. Therefore, VLP
models are not classified within this section. Our
categorization is based on the core components and
capabilities of the models.

The process of using MLLMs for image-text retrieval
generally includes the following steps:

• Using an MLLM trained on large-scale data and
fine-tuning it with an image-text retrieval dataset.

• Employing specific prompts to complete the
image-text retrieval task.

• Involving smaller image-text retrieval models to
assist the MLLM in the task.

BLIP-2 [1] employs a bidirectional retrieval approach
by leveraging pre-trained image models and large
language models. The text-to-image retrieval pipeline
used by BLIP-2 is illustrated in Figure 3. This pipeline
is enhanced with Q-Former to bridge the gap between
modalities, using a two-stage training process: initially
training the image model, followed by the text model.
The retrieval process begins with a common retrieval
model selecting 128 candidate images based on
image-text similarity. These candidate images, along
with the query text, are then input into the model,
which selects the most relevant image as the retrieval
result. Essentially, this approach utilizes generative
models to perform the retrieval task, ensuring accurate
and efficient matching of images based on textual
input.
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InternLM [2] focuses solely on image retrieval. It
involves fine-tuning both the Perceive Sampler and
the MLLM, followed by fine-tuning Perceive Sampler
with LoRA. Initially, CLIP is used to select the top-k
candidate images, from which the MLLM selects one
image as the final retrieved result. This approach, like
the previous one, is fundamentally generative.

EIIRwQR [3] also focuses on image retrieval, utilizing
a VLM to generate a set of candidate images. Each
candidate image is described with a caption generated
by an image description model. The MLLM takes
the original query and these generated captions as
input, modifying each query. The VLM then uses
the modified queries for image retrieval. This process
is iterated multiple times to refine the final retrieval
result. The MLLM is employed only during the
inference stage without any fine-tuning, categorizing
this approach as using MLLMs for data augmentation.

CIREVL [6] focuses on image retrieval without any
training process, addressing the high labor costs
associated with annotated data. It employs an MLLM
to transform the text into a fixed descriptive sentence
format, which is then used by a traditional model for
image retrieval. he MLLM is utilized only during
the inference stage and is not fine-tuned, effectively
categorizing this approach as using MLLMs for data
augmentation.

In CbIR [5], dialogues are used as input. The
accumulated dialogue information, processed with
a contrastive loss function, fine-tunes the large model
to obtain 256-dimensional retrieval vectors. These
vectors are then compared with 256-dimensional
image vectors using cosine similarity to retrieve the
images.

GRACE [4] involves assigning each image a unique
image token and training the instruction to predict the
identifier for the <image token>. During inference,
the model predicts the image identifier corresponding
to the given query.

In fact, aside from themethodsmentioned above, most
MLLMs can potentially be employed for image-text
retrieval tasks, although many of these models
have not been specifically tested for this purpose.
Additionally, existing MLLM methods tested for
image-text retrieval typically involve LLMs trained
solely on text data. However, there are models like
Google’s Gemini [7], which are inherently multimodal.
Instead of a two-stage process where the model is first
trained on text and then on images, these models are

pre-trained on multimodal data from the beginning.
Such inherently multimodal models exhibit greater
adaptability and robustness with multimodal data.
Future exploration of these native multimodal LLMs
may further enhance the performance of image-text
retrieval.

In summary, the existing works highlight various
approaches to utilizingMLLMs for image-text retrieval.
The methods range from leveraging pre-trained
models and fine-tuning specific components to
employing generative techniques and using MLLMs
for data augmentation without additional training.
These diverse strategies underscore the flexibility and
potential of MLLMs in enhancing image-text retrieval
tasks, paving the way for more accurate and efficient
retrieval systems in the future.

4 Datasets and Evaluation
4.1 Datasets
The researchers have proposed various datasets
for cross-modal image-text retrieval, including
Wikipedia [25], NUS-WIDE [26], TC-12 [27],
Flickr [28], Pascal Sentence [29], etc. The most
frequently used datasets are summarized as
MSCOCO [30] and Flickr30K [28]. MS COCO
dataset contains 123, 287 images from the Microsoft
Common Objects in Context (COCO) dataset, each
paired with five human-generated textual captions.
After removing rare words, the average caption length
is 8.7 words. The dataset is divided into 82, 783
training image-text pairs, 5, 000 validation pairs, and
5, 000 test pairs. Model evaluations are conducted
on five folds of 1, 000 test pairs and the entire set of
5, 000 test pairs. Flickr30K0 comprising 31, 000 images
sourced from the Flickr website, each image in this
dataset is annotated with five textual descriptions. The
dataset is split into three sections: 1, 000 image-text
pairs for validation, 1, 000 pairs for testing, and the
remaining for training.

4.2 Evaluation
We summarize the following evaluationmetricswidely
used to assess cross-modal retrieval tasks: Mean
Average Precision@K (MAP@K): MAP calculates the
average precision for each query and then averages
these values over all queries. In the experimental
validation of MLLMs, the R@n metric is commonly
used, indicating the proportion of queries for which
at least one correct result is retrieved within the top-n
results.
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Table 2. The MAP@ALL results of real-value cross-modal image-text retrieval methods.
The experiment results are from [38]and [37].

Task Methods Source Wikipedia Pascal-Sentence NUS-WIDE Xmedia
ACMR [15] ACMMM17 0.468 0.538 0.519 0.536

IqT
CM-GANS [32] TMM18 0.521 0.603 0.536 0.567
DSCMR [16] CVPR19 0.521 0.674 0.611 0.697
AGCN [33] IEEE CSVT22 0.620 0.683 - -

CLIP4CMR [34] ARXIV22 0.592 0.698 0.609 0.746
ACMR [15] ACMMM17 0.412 0.544 0.542 0.519

IqT
CM-GANS [32] TMM18 0.466 0.604 0.551 0.551
DSCMR [16] CVPR19 0.478 0.682 0.615 0.693
AGCN [33] IEEE CSVT22 0.532 0.683 - -

CLIP4CMR [34] ARXIV22 0.574 0.692 0.621 0.758

Table 3. The MAP@ALL results of binary cross-modal image-text retrieval methods.
The experiment results are from [38]and [37].

Task Methods Source MirFlickr NUS-WIDE MS COCO
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

DCMH [20] CVPR17 0.724 0.731 0.731 0.568 0.561 0.596 0.505 0.536 0.557

IqT
SSAH [22] CVPR18 0.903 0.922 0.925 0.691 0.727 0.728 0.632 0.669 0.668

DCHUC [35] TKDE20 0.895 0.916 0.926 0.707 0.672 0.738 0.513 0.550 0.558
HMAH [31] TMM23 0.960 0.965 0.969 0.813 0.825 0.840 0.691 0.732 0.763
DSPH [36] TCSVT23 0.925 0.940 0.945 0.852 0.905 0.929 0.793 0.815 0.833
DCMH [20] CVPR17 0.764 0.749 0.780 0.558 0.591 0.616 0.549 0.572 0.605

TqI
SSAH [22] CVPR18 0.896 0.906 0.915 0.658 0.673 0.666 0.583 0.556 0.664

DCHUC [35] TKDE20 0.764 0.749 0.780 0.558 0.591 0.616 0.549 0.572 0.605
HMAH [31] TMM23 0.915 0.925 0.938 0.783 0.796 0.814 0.800 0.869 0.904
DSPH [36] TCSVT23 0.897 0.904 0.911 0.859 0.920 0.935 0.792 0.800 0.819

4.3 Result Analysis
In this section, we present the accuracy of several
representative methods in cross-modal retrieval tasks.
As shown in Tables 2- 4, we compare the accuracy
of cross-modal retrieval methods using common
measures for each task. Based on the presented
performance, we can summarize the following
observations:

• As shown in Table 2, in cross-modal
real-valued retrieval, methods based on VLP
(Vision-Language Pre-training) or transformer
structures often achieve better accuracy. This
improvement is due to the enhanced ability of
encoders to extract semantic information, as
demonstrated by the performance of CLIP4CMR.

• As shown in Table 3, cross-modal hashing
retrieval methods exhibit progressive accuracy
with different hash code lengths. Most methods
show an increase in accuracy as the code
length increases, indicating that longer codes can
represent more semantic information, thereby

improving retrieval accuracy. However, the
accuracy improvement from 32-bit to 64-bit codes
is often not as significant as the improvement from
16-bit to 32-bit codes. This may be because once
an optimal hash code length is achieved, longer
vector lengths do not provide additional valuable
semantic information for retrieval.

• As shown in Table 4, the experimental results
of MLLMs demonstrate that most methods
can retrieve the correct result within the top-5
results. Some models even achieve a 100%
recall rate on the validation set. These results
highlight that training or fine-tuning MLLMs on
large-scale language and image datasets enables
the models to capture subtle details and semantic
variations in both text and images. This approach
not only enhances the models’ generalization
capabilities but also reduces the dependency on
large amounts of annotated data, a significant
advantage over traditional models. However, this
benefit comes at the cost of requiring substantially
more computational resources for training and
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Table 4. The R@n results of MLLMmethods. The experiment results are from their papers.

Task Methods Source Flickr30K MS-COCO(5K)
R@1 R@5 R@10 R@1 R@5 R@10

IqT
AGREE (FT only) [39] WSDM23 0.916 0.987 0.992 - - -

AGREE [39] 0.921 0.987 0.992 - - -
BLIP-2 ViT-L [1] ICML23 0.969 1.000 1.000 0.835 0.960 0.980
BLIP-2 ViT-g [1] 0.976 1.000 1.000 0.854 0.970 0.985

TqI

GRACE [4] ARXIV24 0.684 0.889 0.937 0.415 0.691 0.791
AGREE (FT only) [39] WSDM23 0.781 0.951 0.978 - - -

AGREE [39] 0.828 0.959 0.978 - - -
BLIP-2 ViT-L [1] ICML23 0.886 0.976 0.989 0.663 0.865 0.918
BLIP-2 ViT-g [1] 0.897 0.981 0.989 0.683 0.877 0.926

inference due to the large number of parameters
in these models.

5 Conclusion and Future Works
This survey has comprehensively reviewed the field
of cross-modal image-text retrieval, categorizing
existing methods and highlighting their strengths and
limitations. Current cross-modal retrieval methods
can be broadly classified into single-tower, dual-tower,
real-value representation, and binary representation
models.
1) Summary of Existing Methods. Single-tower
models integrate modalities early, learning joint
representations that capture complex interactions.
Their unified architecture, however, may struggle
with scalability and efficient fusion of different
data types. Dual-tower models process each
modality separately through specialized architectures,
enhancing scalability and tailored processing. Yet,
they face challenges in ensuring compatibility between
separately learned representations. Real-value
representation models encode data into continuous,
high-dimensional vectors, effectively capturing
detailed and complex relationships. Despite their
accuracy, they are computationally intensive and
costly in terms of storage, making them less suitable
for large-scale applications. Binary representation
models use compact, fixed-length binary codes for
data encoding, offering efficient storage and fast
retrieval. These models are ideal for large-scale
databases but often trade-off some accuracy and
require sophisticated techniques to learn effective
binary codes.
2) Advantages and Problems. Advantages: Single-tower
models. Effective in capturing intricate interactions
between modalities. Dual-tower models. Highly
scalable and adaptable to specialized processing needs.

Real-value representation models. High accuracy
in representing complex relationships. Binary
representation models. Efficient in storage and fast
in retrieval, suitable for large datasets.

Problems: Single-tower models. Scalability issues
and challenges in modality fusion. Dual-tower
models. Difficulty in ensuring compatibility of
learned representations. Real-value representation
models. High computational and storage costs. Binary
representation models. Potential loss of accuracy and
complexity in learning effective binary codes.

3) Future Directions. To advance the field of
cross-modal retrieval, future research should focus on
several key areas: 1. Improving Model Compatibility
and Fusion: Developing hybrid models that leverage
the strengths of both single-tower and dual-tower
architectures to enhance compatibility and fusion
efficiency. 2. Enhancing Computational Efficiency:
Designing novel methods that reduce computational
and storage demands of real-value representation
models without compromising accuracy. 3. Advanced
Binary Coding Techniques: Innovating more
sophisticated binary coding methods that balance
accuracy and efficiency, making them viable for
large-scale applications. 4. Leveraging Multimodal
Large Language Models (MLLMs): Further
exploring the potential of MLLMs in enhancing
cross-modal retrieval tasks, particularly in improving
semantic understanding and retrieval accuracy. 5.
Comprehensive Benchmarking: Establishing more
robust benchmarking frameworks that include diverse
datasets and comprehensive evaluation metrics to
better assess model performance. 6. Addressing
Scalability and Real-world Applications: Developing
scalable solutions that can handle real-world data
complexities and large-scale multimodal databases,
ensuring the practical applicability of cross-modal
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retrieval systems.
By addressing these challenges and focusing on these
future directions, the field of cross-modal image-text
retrieval can achieve more robust, efficient, and
accurate systems, enhancing the practical utility of
these technologies in various real-world applications.
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