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Abstract
With the continuous expansion of the application
field of artificial intelligence, radar data processing
has also begun to fully enter the era of intelligence,
and new achievements have emerged in the research
fields of target detection, target tracking, and target
recognition. At a time of rapid development of
artificial intelligence technology, it is necessary to
think about the future development of radar data
intelligent processing. To this end, combining the
research history and the superficial understanding
of radar data intelligent processing in the past ten
years, our team analyzes the main research progress
and challenges of radar data intelligent processing,
examines the new requirements for autonomous,
multi-modal, and multi-mode radar data intelligent
processing, and explores new opportunities in the
era of large models, etc. Furthermore, along
a research path of “1 domain foundation model
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+ 3 core task models + N typical application
implementations”, the research conceptions and
main contents of radar data large model are put
forward in order to enable the research of intelligent
radar.
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1 Basic conception
Modern radar information processing is generally
categorized into two main components: radar signal
processing and radar data processing. Radar
signal processing directly performs matching filtering,
constant false alarm rate (CFAR) and other processing
on the intermediate frequency signal and video signal
output by the radar receiver. The output is radar
measurement or target track point, including spatial
position information such as distance and azimuth,
and target characteristic information such as echo
intensity and polarization. Radar data processing
is conducted after radar signal processing, the radar
measurement is further refined with the processing
such as tracking and identification, so as to achieve
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the radar measurement of “discarding the dross and
selecting the essential” and “discarding the false
and retaining the true”, and the output is the track
information of the target of interest, including motion
state information and characteristic information. The
motion state information includes position, speed,
course, and other information, and the characteristic
information includes military and civilian information,
enemy and friendly information, type and category
information [1]. Radar data processing is mainly used
to track the target and identify the target, and solve the
problem of where the target goes and what the target
is.

From a traditional perspective, radar data processing
in the narrow sense primarily refers to target tracking.
However, the broader interpretation encompasses
all post-signal-processing operations, incorporating
target detection, tracking, and recognition as integral
technical components.

1.1 Target detection
Radar target detection theory is constantly developed
based on researchers’ expansion of radar signal
dimensionality. For one-dimensional radar signals,
the one-dimensional CFAR detection method was
developed [2–4]. Regarding two-dimensional
radar signals, the Range-Doppler moving target
detection approach emerged [5, 6]. When
processing three-dimensional radar signals, the
Track-Before-Detect (TBD) method composed of
range-azimuth-frame was established [7–9].

In complex environments characterized by strong
clutter, interference, andweak targets, where the target
signal-to-noise ratio (SNR) remains suboptimal and
radar detection exhibits instability with intermittent
target presence across frames, direct detection
approaches frequently result in missed targets.

Typical TBD methods can be divided into two
categories: 1) Tracking-based TBD, which employs
motion priors to extract multidimensional target
information from sequential radar raw data frames;
and 2) Detection-based TBD, implementing batch
processing of multi-frame radar data for trajectory
detection prior to target state estimation via track
filtering. Representative methods of tracking-based
TBD include dynamic programming [10] and particle
filtering [11]. Notable methods of detection-based
TBD includeHough transform [12], three-dimensional
matching filter [13] and probabilistic multiple
hypothesis of histogram [14].

1.2 Target tracking
Target tracking is the core of radar data processing.
Through the association filtering of single or multiple
radar data from the same target at different times,
the mapping relationship between radar data and
different real targets is established, so as to obtain
accurate and reliable target state information such as
position and speed, achieve continuous and accurate
grasp of individual targets, and real-time and effective
monitoring of regional situation. In the 1960s, relevant
researches began to appear at home and abroad,
mainly using the mathematical modeling ideas and
probability statistical method to solve. According
to the difference of the number of radars, target
tracking can be divided into single radar target tracking
and multi-radar target tracking, and according to the
difference of the data processed, it can be divided into
point-to-track target tracking and track-to-track target
tracking.

In the single radar target tracking problem, there
are many researches on point-to-track target tracking
technology. Typical technical frameworks include
association-based target tracking, Multiple Hypothesis
Tracking (MHT) and Random Finite Set (RFS). There
are few researches on track-to-track target tracking
technology, which mainly consists of interrupted track
continuity tracking.

1. The association-based target tracking takes
point-to-track association as the core technology,
and mainly consists of four processing parts,
including track initiation, point-to-track
association, track filtering, and track management.
Track initiation mainly uses logic method and
Hough transform method. point-to-track
association mainly uses the nearest neighbor [15],
probability data association (PDA) [16], joint
probability data association (JPDA) [17], and
other algorithms to establish the corresponding
relationship between radar measurement and
track. Track filtering is sometimes called target
state estimation, algorithms such as α-β filter
[18], α-β-γ filter [19], Kalman Filter [20] and
Interacting Multiple Model (IMM) were used
to eliminate the effects of random measurement
errors on target state estimation to obtain a stable
and accurate target state estimation. In track
management, the cost function, Bayes, and other
algorithms are used to realize timely and efficient
conversion of target track between the three states
of uncertainty, confirmation, and cancellation.
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2. Multiple Hypothesis Tracking processes track
initiation, point-to-track association and
track management in a unified framework
through track hypothesis, which consists of four
processing parts, including multiple hypothesis
generation, hypothesis probability calculation,
optimal hypothesis output, and hypothesis
quantity management [21, 22]. Among them,
the multi-hypothesis generation step is used to
generate all possible hypotheses. Each hypothesis
represents a set of possible target tracks. The
hypothesis probability calculation step mainly
uses Kalman filter, Gaussian mixture model and
other methods to score hypotheses to determine
which hypotheses are more likely to be correct.
The optimal hypothesis output step selects
the hypothesis with the highest score as the
best tracking result of the current frame. The
hypothesis quantity management step uses
clustering, low-probability hypothesis deletion,
N-scan pruning, similar hypothesis merging
and other algorithms to reduce the number of
hypotheses and avoid the exponential growth of
the number of hypotheses.

3. The research on random finite set target tracking
originates from the Probability Hypothesis
Density (PHD) filtering algorithm proposed
by Mahler based on RFS framework in 2003
[23]. It assumes that all measurements may
be associated with all targets, and calculates
their estimated likelihood functions. The state
estimates of all targets can be obtained by deleting
the smaller likelihood probabilities without
data association. Typical algorithms include
Gaussian mixture probability hypothesis density
filter (GM-PHD) [24], sequential Monte Carlo
probability hypothesis density filter (SMC-PHD)
[25], a multi-sensor multi-Bernoulli filter
(MeMBer) [26], labeling-enhanced variants [27],
and numerous derived algorithms employing
different filtering approaches [28–30].

In the multi-radar target tracking problem,
track-to-track target tracking technology focuses
on track association research, and there are many
technologies, such as sequential track association,
statistical double threshold track association,
fuzzy double threshold track association, gray
track association, etc., while the track fusion
after track association is less researched. The
research of multi-radar point-to-track target tracking
technology is mainly the extended application of

single-radar point-to-track target tracking technology
in multi-radar scenarios, and the technical framework
remains unchanged.

1.3 Target recognition
Target recognition refers to the process of utilizing
identity-related information such as echo intensity and
target contour extracted from radar measurements,
combined with motion characteristics derived from
target trajectories, to determine size attributes, military
vs. civilian classification, and target categories. Typical
techniques include echo-intensity-based recognition,
high resolution range profile (HRRP) analysis, and
SAR imagery target identification.

2 Main Work
Driven by information technologies such as big data,
cloud computing, and the Internet of Things, Artificial
Intelligence (AI) has been widely used in image,
video, text, voice, and other industries, and has even
made breakthroughs in basic science fields such as
mathematics, physics, chemistry, meteorology, and
algorithm design. And it has become a new driving
force for rapid progress in all walks of life. In recent
years, our team has systematically carried out research
on the integration of radar data processing with
artificial intelligence, yielding notable achievements in
intelligent target detection, tracking, and recognition
methodologies.

2.1 Intelligent target detection
In the case of a large number of false alarms in
radar measurement, the existing TBD method is
prone to problems such as excessive computation,
poor detection performance, and insufficient use
of multi-dimensional information. To this end, our
team combined deep learning and multi-frame
measurements to propose a two-stage TBD method
based on deep learning [31], and the schematic
diagram is shown in Figure 1. This method
first employs a low-threshold DB-YOLO target
detection network for single-frame detection,
reducing the amount of data and alleviating the
pressure on subsequent processing. Then, it uses
a model-based approach to determine potential
tracks, transforming discrete measured data into
track data with spatial-temporal correlation. Finally,
convolutional neural networks (CNN) and recurrent
neural networks (RNN) are used to extract track
position information, innovation scores, and target
structure information, thereby achieving accurate
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Figure 1. The schematic diagram of a two-stage TBD method based on deep learning.

target localization. In the network, aNs,s represents
the preprocessed output from a low-threshold
target detection network. The structural feature
vector faNs,s

, obtained by processing aNs,s through
a convolutional network, encapsulates the target’s
structure information. The innovation scores bNs,s

generated by the Singer model is transformed into
feature vector f bNs,s

via a fully connected network,
while the positional information cNs,s from detection
results is converted into location feature vector f cNs,s

through a separate fully connected network. These
three feature vectors are integrated to form a track
feature sequence F = {f1,s, f2,s, · · · , fNs,s} with
length Ns. This sequence is fed into an LSTM network,
followed by confidence score mapping through fully
connected layers. A track is validated as true when its
confidence score surpasses the predefined threshold
γ. Experimental results show that this method can
accomplish multi-target detection and localization
in a strong clutter environment, and possesses
certain real-time processing capabilities. These
findings highlight the method’s practical significance
and showcase promising potential for real-world
applications in complex detection scenarios.

In addition, some researchers used CNN to directly
process radar echoes to distinguish targets from
clutter and achieve target detection. Ningyuan et

al. [32] used CNN to process the time-frequency
graph of radar echoes obtained by the short-time
Fourier transform (STFT), and divided radar echoes
into clutter and targets to realize the detection of
maritime targets. Also for the target detection
of one-dimensional radar signals, Ning et al. [33]
arranged the one-dimensional radar signals after pulse
compression into a two-dimensional matrix in the slow
time dimension, obtained the range-slow time image
of radar echo signals, and input it into the YOLO v5
network composed of CNN for target detection. In
order to improve the performance of target detection
in clutter environment and improve the generalization
of target detection, Xiaoqian et al. [34] proposed a
clutter suppression and sea surface moving target
detection method for navigation radar images based
on INet. In this method, a fusion network INet for
clutter suppression and target detection is designed,
and the INet target detection model is optimized by
pre-training and interframe accumulation, and the
optimized INet target detection model is obtained,
which greatly improves the detection probability and
generalization ability of target detection methods
based on neural networks. Considering that the
target detection method based on deep learning will
produce a large number of redundant candidate
boxes in radar echo images, resulting in reduction
of detection accuracy and detection efficiency, Lan et
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al. [35] proposed a Faster R-CNN network combined
with reinforcement learning. Through reinforcement
learning, this method adaptively searches regions
that may contain targets in the feature map, and
selects candidate boxes within the search region for
target detection, which can effectively reduce the
influence of complex background clutter and reduce
the computational cost of Faster R-CNN.

2.2 Intelligent target tracking
Intelligent target tracking primarily focuses on three
core components in association-based target tracking:
1) track prediction, 2) data association, and 3) track
filtering, along with supporting methods including
interrupted track continuity tracking and track
association.

2.2.1 Multi-source track association dataset construction
Data, algorithms and computing power are the
troika for the development of artificial intelligence
technology, of which data is the raw material and the
basis for the application of general artificial intelligence
technology industry. In the field of radar target
tracking, the lack of standard and special datasets
hinders the development of intelligent target tracking
technology to some extent. To this end, our team
constructed a Multi-source Track Association Dataset
(MTAD) based on global AIS through processing
steps including grid division, automatic interruption,
and noise addition [36]. It can be directly applied
to the training and testing of intelligent target
tracking algorithms for tracks such as interrupted track
continuity tracking and track association, and can also
be applied to the research of intelligent target tracking
algorithms for points such as track prediction, data
association, and track filtering after simple processing.
The sample of the MTAD is shown in Figure 2 and the
dataset has been downloaded more than 7000 times
since it was published in 2022.

2.2.2 Intelligent track prediction
Track prediction primarily focuses on predicting
the potential future positions of a target based
on its historical movement tracks. It is a crucial
component of track initiation and track filtering.
Traditional track prediction methods mainly rely
on target motion models for prediction, such as
constant velocity, constant acceleration, coordinated
turn, Singer, current statistical, and Jerk models. These
methods remain constrained by inherent limitations
in model representational capacity and insufficient
adaptability to complex hybrid motion patterns,

Figure 2. The sample of the MTAD.

leading to inconsistent performance in practical
implementations. To this end, our team modeled
track prediction as a process of pattern information
extraction (I-step) and a process of predicted position
generation (E-step) through theoretical derivation.
In addition, Recurrent Neural Network (RNN) and
Multi-Layer Perceptron (MLP) are used to construct
the neural network structure for track prediction [36].
The intelligent track prediction network is shown in
Figure 3. Experiments based on simulation data and
actual data show that the constructed neural network
structure can extract and recognize the existing motion
patterns while generating high-fidelity predictions,
effectively resolving domain-specific track prediction
challenges across diverse operational environments
with demonstrable efficacy.

Figure 3. The intelligent track prediction network.
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Figure 4. The intelligent point-to-track association network.

2.2.3 Intelligent point-to-track association
Because of the simple decision logic, the traditional
point-to-track association method based on statistical
distance often causes problems such as association
failure and association error in dense, formation, and
other complex multi-target tracking environments.
To this end, our team proposed an intelligent
point-to-track association model [37, 38], as shown
in Figure 4. First, the overall difference parameter
extraction network was designed based on MLP to
extract the overall difference parameters of track
points and measurement points, respectively. Then,
the extracted difference parameters are integrated
in series to get the global difference parameters.
Next, the global difference parameters are aligned
with the track points and measurement points by
means of the designed displacement transformation
network. Finally, the registered target points are
judged for association according to the defined
association criterion. The experimental results show
that the model can well adapt to scenarios such as
target formation changes, radar false alarms, and
missed detections, effectively improving the speed and
accuracy of association.

2.2.4 Intelligent track filtering
Traditional track filtering mainly uses Kalman, IMM,
and other filtering methods based on target motion
model. Whether the motion model used matches the
actual movement of the target has a decisive influence
on track filtering. Although IMM filtering method
can integrate multiple motion models and solve the
problem of incompatibility of target motion models
to a certain extent, its integration number of motion

models is limited due to competition and pollution
effects among motion models, resulting in limited
performance of existing track filtering algorithms.
To this end, our team conducted a computational
structure analysis of typical α-β filtering and Kalman
filtering methods, concluding that both filtering
methods possess a typical RNN structure and are a
type of RNN with constrained weights. Then, based
on this conclusion and considering the capability
of RNN to recognize target motion patterns, our
team proposed an intelligent track filtering network,
which achieved structural unification, environmental
adaptability, and performance expansion of existing
filtering methods [39, 40]. The schematic diagram
of the intelligent track filtering network is shown in
Figure 5. According to the function and effect of
the α-β filter, the smooth network that is composed
of feedforward and recurrent structures is designed
to smooth the fluctuant measurements and obtain
stable estimations of the target state. According
to the structure of Kalman filter, the evaluation
network that is composed of feedforward structures,
recurrent structures, and an attention mechanism
is designed to calculate the gain. Meanwhile, an
additional attention mechanism is used to transfer
the gain information from the evaluation network to
the smooth network and integrate the two network
parts closely. The experimental results show that the
overall performance of the intelligent track filtering
network is significantly superior to traditional filtering
methods. In addition, based on the transformer model,
a deep data association and track filtering network
(DeepAF) was constructed in this paper to achieve
the function of data association and end-to-end track
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filtering [1]. A predictive regression network with
the capability of processing time series (DeepAF-B)
is designed to extract track features. The DeepAF
network, composed of DeepAF-P and DeepAF-V, is
designed to estimate the target position and velocity.
The schematic diagram of DeepAF-B is shown in
Figure 6. Experimental results show that DeepAF can
stably and effectively track targets moving in different
models such as constant velocity, constant acceleration,
and constant turn rate.

Figure 5. The schematic diagram of the intelligent track
filtering network.

2.2.5 Intelligent interrupted track continuity tracking
Due to the rapid movement of the platform such
as turning, acceleration, or attitude change, the
maneuvering radar is easy to cause the loss of
target measurement and track interruption, which
leads to the instability and discontinuity of target
tracking. To this end, based on metric learning,
generative adversarial networks (GAN), and graph
representation networks, our team respectively studied
and proposed a variety of intelligent interrupted track
continuity tracking networks, such as discriminant,
generative, and graph representation, to achieve
effective and continuous tracking of interrupted
tracks in complex scenarios [41, 42]. The generative
interrupted track continuity tracking network is shown
in Figure 7.

2.2.6 Intelligent track association
Similar to the point-to-track association, traditional
track association (track-to-track association) is mainly
based on multidimensional statistical distance such as
position, speed, and heading, which has the problem
of simple decision logic and poor applicability in
complex scenarios. To this end, our team adopts

a deep learning approach, constructing all tracks
in the to-be-associated scenario into a track tensor
similar to the shape of association matrix, utilizing
transformers to conduct overall processing on the track
tensor, extracting global features of the track tensor
and detailed features of each track, segmenting the
track tensor to obtain associated track pairs, achieving
end-to-end transformation from the track tensor to the
association matrix. The intelligent track association
network is shown in Figure 8. The experimental results
show that the intelligent track association network can
realize the effective association of multi-source tracks
and has a high accuracy.

In the research direction of intelligent target tracking,
in addition to the above works of our team, domestic
and foreign scholars have also carried out in-depth
and detailed research. In the direction of intelligent
track prediction and intelligent track filtering, Gao et
al. [43] adopted both Bayesian LSTMandnon-Bayesian
LSTM for target tracking. Bayesian LSTM learns
the conditional probability of the target motion and
predicts the probability density, while non-Bayesian
LSTM directly learns the motion mapping of the target
and predicts the position of the target. Moon et
al. [44] and Deng et al. [45] combined LSTM and
IMM to predict the probability of each motion model.
Using the learning ability of neural networks, this
method can obtain the weights of different motion
models quickly and accurately, and minimize the
estimation time delay of traditional IMM algorithm.
Jouaber et al. [46] proposed an adaptive Kalman
filter based on neural networks, which uses LSTM
to predict the covariance matrix of process noise
required by traditional Kalman filtering to improve
the scenario adaptability and noise robustness of
Kalman filtering. Chen et al. [47] developed a target
tracking framework based on XGBoost that establishes
a nonlinear mapping between target measurements
and true kinematic states, implementing a sliding
windowmechanism to continuously process streaming
measurements while maintaining real-time target
tracking capabilities [48].

In the direction of intelligent point-to-track association,
Zhang et al. [49] proposed a TrMTT radar
maneuvering target tracking model, which uses
the encoder and decoder in Transformer network to
realize target tracking. Aiming at the difficulty in
obtaining prior information such as target motion
model and clutter density, Wenna et al. [50] proposed
a data association algorithm for multi-target tracking
based on Transformer network. In this method, virtual
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Figure 6. The schematic diagram of DeepAF-B.

measurement is introduced to solve the problem of
missing detection, and a loss function combining a
mask cross entropy loss and an overlap loss is designed
to optimize the network parameters. To address the
challenge of association between established tracks
and newly detected observations, Chen et al. [51]
developed Track-MT3 – an end-to-end multi-target
tracking model leveraging the Transformer network.
This innovative approach incorporates dual query
mechanisms (detection queries and tracking queries)
that implicitly perform data association between
measurements and tracks, and state estimation at the
same time. This model implements a cross-frame
alignment strategy to ensure time consistency of
tracks, while featuring two specialized components: 1)
A query transformation module that preserves target
identity coherence, and 2) A time feature encoder
specifically engineered to capture complex motion

state of targets.

2.3 Intelligent target recognition
At present, the target recognition algorithm mainly
focuses on the High Resolution Range Profile (HRRP)
and SAR images, which contain abundant target
contour features, while the target recognition methods
based on track features are rarely researched.

2.3.1 Target recognition for SAR images
Research on target recognition for SAR images has
been extensively explored and remains a prominent
research focus to date. Tian et al. [52] combined
CNN and SVM, utilizing CNN for feature extraction
from SAR images and SVM for feature classification
to achieve recognition results. Zhang et al. [53]
extracted three features of SAR images, including
principal component features, wavelet transform
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Figure 7. The schematic diagram of the generative interrupted track continuity tracking network.

features, and 2D slice Zernike features. These features
were then separately input into sparse representation
classifiers and collaborative representation classifiers
for pre-classification, generating six prediction labels.
Classifier fusion was applied to these labels to
obtain the final recognition decision. To address
the requirement of large labeled training samples
for SAR image recognition, Yu et al. [54] proposed
a target recognition method for SAR images based
on Fully Convolutional Neural Network (FCNN)
and an improved convolutional autoencoder. They
initialized partial parameters of FCNN using network
parameters from an unsupervised-trained improved
convolutional autoencoder, followed by fine-tuning
with a small number of labeled samples to reduce
reliance on labeled SAR data. To leverage rich feature
information from multi-aspect SAR image sequences,
Zhao et al. [55] developed a multi-angle SAR target
recognition model integrating EfficientNet and
Bidirectional Gated Recurrent Unit (BiGRU). This
model combines CNN for spatial feature extraction
and GRU for sequential feature extraction from
image sequences to enhance recognition accuracy.
To tackle the challenge of widely distributed spatial
structures among different targets in SAR images,
Lü et al. [56] designed an associated scattering
classifier to quantify target discreteness and guide

the network to learn more discriminative feature
representations. Additionally, they proposed an
adaptive feature refinement module to mitigate
background noise interference by directing network
attention to target-critical regions. While improving
CNN parameters and scales enhances SAR image
recognition capability, it demands large training
datasets. Addressing limited SAR data availability,
Li et al. [57] introduced a deep network based on
Attribute Scattering Center (ASC) convolutional
kernel modulation. This network employs modulated
kernels to extract scattering structures and edge
features aligned with SAR characteristics in shallow
layers, while leveraging standard CNN kernels for
semantic feature extraction in deeper layers, effectively
balancing electromagnetic scattering properties
and CNN advantages to reduce training sample
dependency. To enhance the interpretability of SAR
recognition networks and clarify decisionmechanisms,
Cui et al. [58] integrated perturbation concepts into
Class Activation Mapping (CAM), proposing a
SAR Clutter Characteristics CAM (SCC-CAM)
method. By progressively adding globally distributed
perturbations to SAR images and analyzing neuron
activation changes during recognition flip points,
this approach enables dynamic observation and
quantification of salient regions in network decision
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Figure 8. The schematic diagram of the generative
interrupted track continuity tracking network.

processes.

2.3.2 Target recognition for HRRP
Considering that traditional target recognition
methods for HRRP focus solely on envelope
information of samples while neglecting temporal
correlations between range cells, Liu et al. [59]
proposed an attention-based bidirectional recurrent
neural network model. This approach divides
time-domain HRRP data into forward and reverse
sequences via a sliding window, processes them
independently through two parallel Gated Recurrent
Unit (GRU) networks for temporal feature extraction,
and concatenates features from both sequences at
each timestep to leverage bidirectional temporal
information. Aiming at the challenges posed by
data discrepancies between multiple cooperative
radar stations for HRRP target recognition, Guo
et al. [60] developed an angle-guided transformer
fusion network. The network comprises single-station

processing and multi-station processing components:
Using Transformer as the core architecture, it extracts
both local and global features from individual station
HRRP data. Three new auxiliary modules including
the angle-guided module, the pre-feature interaction
module, and the deep attention feature fusion module
are designed to enable cross-station feature fusion
learning, thereby significantly enhancing HRRP target
recognition performance in multi-static cooperative
radar systems.

2.3.3 Target recognition for tracks
The target tracks can be widely obtained, and more
importantly, it can be obtained at a long distance, so
it is of great application value to use the target track
information to recognize the targets. To this end, our
team constructs a Bayes-Transformer neural network,
which can be used to complete track feature extraction,
track feature representation, and different types of
target classification, so as to realize end-to-end target
recognition based on track information [61, 62]. The
schematic diagram of the Bayes-Transformer neural
network is shown in Figure 9. The experimental results
based on AIS data shows that the proposed network
can recognize 9 types of targets, including fishing
boats, military ships, search and rescue ships, tugboats,
passenger ships, cargo ships, oil tankers, and other
ships, and the recognition accuracy is more than 90%.

3 Challenges and opportunities
3.1 Main challenges
With the continuous expansion of human activity
space, the rapid development of unmanned control
technology, the emergence of new means of
unmanned platform detection, new modes of
space-air cooperative detection, near space targets,
unmanned cluster targets and other high-threat
targets, have brought serious challenges to radar data
processing, and put forward new requirements for
radar data intelligent processing technology.

3.1.1 New means of unmanned platform detection
On March 16, 2021, the United States Department
of the Navy officially released ’Department of the
Navy Unmanned Campaign Framework’, pointing
out that one-third of the Navy’s fleet and half of the
Marine Corps’ aviation equipment may be based on
unmanned systems in the future, and should achieve
seamless integration of manned and unmanned
forces in all areas to provide lethal, survivable, and
scalable combat effects to support future maritime
missions. This strategic shift foresees unmanned
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Figure 9. The schematic diagram of the Bayes-Transformer neural network.

combat systems - including unmanned aerial vehicles,
underwater unmanned devices, surface unmanned
vehicles, and land unmanned machines - forming
complementary operational architectures with their
manned counterparts.

Unmanned platform detection has the new
characteristics such as long-range, autonomy,
and collaboration, which pose higher requirements
for the automation, intelligence, and autonomy levels
of radar data processing. A prime example is the
U.S. Navy’s MQ-4C Triton UAV, which employs a
multi-mode active radar system capable of alternating
between maritime surface search and inverse synthetic
aperture imaging modes. This advanced system
enables automated target detection, tracking, and
identification, while autonomously executing the
complete “Observation-Orientation-Decision-Action”
(OODA) cycle for comprehensive maritime
surveillance.

3.1.2 New modes of space-air cooperative detection
By combining the advantages of space-based and
air-based radars, it is possible to achieve rapid
wide-area search and observation while also enabling
detailed detection and recognition of key areas and
targets, meeting the requirements for extensive
and precise surveillance in remote seas and oceans.
However, there are significant differences between
space-based and air-based radars in terms of

observation azimuth, observation distance, resolution,
and scan period, among other aspects. Essentially,
they can be considered as two different modalities
of radar data that originates from the same physical
observation space and can be mapped to the same
semantic space. This poses new requirements for the
capability of processing multi-modal radar data.

3.1.3 Complex target scenarios
The rapid development of near-space hypersonic
technology and the widespread application of
unmanned systems require radar to possess complex
multi-mode data processing capabilities, and be
capable of adapting to intricate and variable scenarios.
The complex electromagnetic and atmospheric
environments within the near-space airspace, along
with the unique motion characteristics of hypersonic
vehicles, provide near-space hypersonic vehicles with
a natural advantage of multiple “protective umbrellas.”
However, individual unmanned systems are generally
of small scale, and their signals are easily drowned out
by background noise, leading to measurement loss
and interrupted tracks, and even the failure of track
initialization. For more complex unmanned clusters,
the high density of targets and frequent formation
changes make detection, tracking, and recognition
even more challenging.
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3.2 New opportunities for development
In November 2022, ChatGPT powered by GPT-3.5
emerged as a groundbreaking innovation,
demonstrating realistic natural language interaction
and multi-scenario content generation capabilities
that ignited the AI large model revolution. In July
2023, Huawei’s Pangu meteorological large model
were published in the journal Nature [63]. Compared
with the global most advanced European Centre
for Medium-Range Weather Forecasts (ECMWF)
integrated forecasting system, the forecasting
timeliness was improved by about 0.6 days, the
computing speed was increased by more than 10000
times compared with numerical methods, and the
tropical cyclone track forecasting error was reduced by
25% compared with the ECMWF forecasting system.
In February 2024, OpenAI launched a new large
model for text-to-video generation, Sora [64], which
once again caused a global sensation.

At present, artificial intelligence research can be
divided into two modes: specialized AI research
and general large model research. Specialized AI
systems are designed for specific tasks. Due to their
single task focus, clear requirements, well-defined
application boundaries, rich domain knowledge,
and relatively simple modeling, they have achieved
breakthroughs in specific areas of AI, and in some
intelligence level test of specific tasks, they can even
surpass human intelligence. However, specialized
AI systems corresponding to different tasks require
repeated design, evaluation, and iteration, resulting
in extremely high costs. They face problems such
as difficulties in large-scale deployment and limited
performance, making it challenging to adapt to
the fragmented and diverse demands of artificial
intelligence.

In 2020, Kaplan et al. [65] proposed the concept
of scaling laws, indicating that model performance
is strongly correlated with model size and weakly
correlated with model architecture, where model size
includes the number of model parameters, dataset size,
and computational resources of models. This means
that increasing the number of model parameters and
expanding the dataset size can predictably improve
model performance. Additionally, research has found
that when the model size is small, the model generally
lacks the ability to solve downstream tasks. However,
when the model size reaches a certain threshold,
surpassing a critical value, the model experiences a
sudden insight (Grokking), with a dramatic increase
in performance and the emergence of previously

unattained capabilities. As a result, research on
general large models has begun to receive significant
attention, and the approach of “pre-trained large
models followed by fine-tuning for downstream tasks”
has started to become a new paradigm for AI industry
application development.

General large models can effectively capture
knowledge from a vast amount of labeled and
unlabeled data. By storing this knowledge in a
large number of parameters and fine-tuning for
specific tasks, they greatly expand the model’s
generalization capabilities, offering advantages
such as strong versatility, wide application scope,
and high accuracy. These models have received
significant attention from both academia and industry,
with rapid development and iteration. Depending
on the types and characteristics of the input data,
general large models can be categorized into Large
LanguageModels (LLM), Large VisionModels (LVM),
Multimodal Large Language Models (MLLM), and
Large Time Series Models (LTSM), among others.
Typical LLMs include OpenAI’s GPT series [66–68],
Google’s PaLM [69], Meta’s Llama series [70, 71],
Baidu’s ERNIE [72–74], Alibaba’s QWEN [75, 76],
Zhipu AI’s ChatGLM [77], and DeepSeek’s DeepSeek
[78, 79]. Visual large models include OpenAI’s
DALL-E series [80, 81], NVIDIA’s StyleGAN [82–84],
andHuawei’s PanguCV largemodel [85]. Multimodal
language large models include OpenAI’s GPT-4 [86],
Google’s Gemini [87], Tencent’s Hunyuan series [88],
SenseTime’s INTERN large model [89], and Huawei’s
Pangu multimodal large model. In January 2025, the
complete open-source release of DeepSeek brought
the research on large models to a new peak.

It is evident that current general large models are in a
period of rapid development. The perfect combination
of big data, large computing power, and advanced
algorithms has significantly enhanced the intelligence
level and multi-scenario application capabilities of
large models. Large models are at the forefront, a focal
point, and a key area of the development in artificial
intelligence technology. They also provide a feasible
and effective solution to meet the new demands for
autonomous, multi-modal, andmulti-mode radar data
processing.

Radar data processing can be seen as a time series
processing problem and the challenges of them are
often common. At present, a large number of time
series large models have been proposed and these
models can provide reference for the research of radar
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data intelligent processing. According to the size of the
models, these models can be divided into time series
large language models and time series pre-trained
foundation models. The model scale of the time series
large language model is larger than that of the time
series pre-trained foundation model. According to
the input data, the time series large language model
can be divided into text (PromptCast [90], LLMTime
[91], TEST [92], Time-LLM [93]), original sequence
(Lag-Llama [94], TEST [92]), sequence patch (One
Fits All [95], TEMPO [96], LLM4TS [97], Time-LLM
[93]), and quantized sequence (Chronos [98]); and
the time series pre-trained foundation model can be
divided into original sequence (Voice2Series [99],
TF-C [100], TS2Vec [101]) and sequence patch (STEP
[102], MTSMAE [103], PatchTST [104], SimMTM
[105], TSMixer [106]). The achievements of time
series large models can be applied to radar data
intelligent processing to promote its developments.
However, compared with the general time series data,
radar data has the characteristics of high noise, strong
heterogeneity, and dynamic change of data quality,
whichmakes it difficult to apply the existing time series
large models directly to radar data, so it is necessary
to carry out targeted research on the characteristics of
these radar data.

4 Prospect of future development
In the field of time-series data processing, to
which radar data processing belongs, several large
models have recently emerged, including time-series
large language models and time-series pre-trained
foundation models. Among them, time-series large
language models include PromptCast [90], LLMTime
[91], One Fits All [95], LLM4TS [97], TEST [92],
and Time-LLM [93], etc. Time-series pre-trained
foundation models include Voice2Series [99], TF-C
[100], TS2Vec [101], STEP [102], MTSMAE [103], and
TSMixer [106], etc. In November 2023, the American
companyNixtla released the industry’s first time-series
foundation model, TimeGPT [107], claiming it to be
the first foundationmodel that is capable of surpassing
other time-series processing methods with minimal
complexity. Its dataset covers various areas of daily
life, including finance, economics, demographics,
healthcare, weather, IoT sensor data, energy, website
traffic, sales, transportation, and banking.

Therefore, judging from the research trends in
time-series large models, radar data processing will
soon enter the stage of general large model. Below,
based on our team’s research journey and superficial

understanding, with track as the core, a research
concept for radar data large models is proposed.

4.1 Basic framework
In response to the new demands for autonomous,
multi-modal, and multi-mode radar data processing
capabilities posed by new means of unmanned
platform detection, new modes of space-air
cooperative detection, and complex target scenarios,
and in conjunction with the development trends
of large language models and time-series large
models, following the “pre-trained foundation
model + downstream task fine-tuning” large
model research approach, facing the foundation,
technological core, and practical application, it is
envisioned to proceed along a research path of “1
domain foundation model + 3 core task models + N
typical application implementations.” Specifically,
this involves conducting research on the radar
track foundation model, three core task models
for track generation, track association, and track
classification, as well as various typical application
implementation research such as target detection,
target tracking, target recognition, and integrated
detection-tracking-recognition. Ultimately, we aim to
construct a radar data intelligent processing model
to effectively address the current challenges. The
research concept for radar data large model is shown
in Figure 10.

4.2 Research on foundation model
To train the radar track foundational model, it is
crucial to focus on solving three major problems:
the construction of large-scale datasets, the design
of large-scale neural networks that is suitable
for radar spatial-temporal data, and the large
model pre-training. In terms of large-scale dataset
construction, considering practical factors such as
the diversity of track scenarios, the scale of track
acquisition, and the cost of track acquisition, AIS data
and ADS-B data with long accumulation times and
wide distribution ranges can be used as data sources.
Targeted research on data compilation and processing
methods such as abnormal track deletion and missing
track completion should be conducted to generate an
accurate, unambiguous large-scale track dataset.

In architecting large-scale neural networks, existing
frameworks such as contrastive, predictive, and
generative self-supervised learning methods offer
valuable references. Innovative approaches including
temporal chunk aggregation and spatial grid encoding
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Figure 10. The schematic diagram of the Bayes-Transformer neural network.

should be explored for input-output configuration.
Through systematic experimentation and rigorous
evaluation, network architectures incorporating CNN,
LSTM, Transformer, and Mamba components can
be progressively optimized. This ensures that the
constructed networks possess the capability to adapt
to asynchronous data with different update time
and multi-source mixed heterogeneous data. It
also possesses the capability to learn representations
of target track data characterized by continuous
spatial-temporal variations, long time spans, and wide
area spatial distributions. This provides a foundational
model support for subsequent research on three core
tasks: track generation, track association, and track
classification.

Large model pre-training primarily aims to enhance

the efficiency and accuracy of model training
by optimally utilizing limited computational and
communication resources. Existing techniques
mainly include large-scale distributed training and
low-precision training. Among these, large-scale
distributed training encompasses data parallelism,
tensor parallelism, pipeline parallelism, and 3D
parallelism. In addition, in terms of large model
pre-training, our primary focus lies in constructing
effective input-output data structures to facilitate
self-supervised pre-training of large models.

4.3 Research on core task model
Based on the radar track foundation model, radar data
is used as the data source. According to the respective
characteristics of core tasks such as track generation,
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track association, and track classification, targeted
research and design are conducted on the construction
method of domain datasets, network input and output,
loss functions, network structures of tasks, and the
joint approach of the foundation model and the task
network. Following the network optimizationmethods
of fine tuning the foundation model and retraining the
task network, specific task models for track generation,
track association, and track classification are trained
and generated. These models serve as core modules to
provide direct support for typical applications in radar
data processing.

Track generation primarily utilizes existing target
state information from multiple moments, such as
position and velocity, to complete missing moments,
estimate the current moment, or predict the target
state information for the next moment. The network
structure of track generation mainly considers the use
of LSTMor Transformer for design, and the foundation
model and the task network are directly combined
through series connection with residual connection.

Track association mainly involves associating
multiple existing tracks with newly acquired multiple
measurement points from a single radar, or multiple
measurement points from multiple radars, or multiple
tracks from a single radar, or multiple tracks from
multiple radars. The network structure of track
association mainly considers the use of MLP, CNN,
or Graph Neural Networks (GNN) for design. The
foundation model and the task network are combined
through feature fusion, with the deep features
obtained from the foundation model enhancing the
task network in the form of situational knowledge.

Track classification mainly involves classifying
whether a track is a real target track, or assessing the
quality of the track, or recognizing the type of target
corresponding to the track based on a segment of
historical track information. The network structure of
track classification mainly considers the use of MLP
for design, and the foundation model and the task
network are directly combined in a series manner.

4.4 Research on core application implementation
Under the existing typical processing frameworks for
target detection, target tracking, and target recognition,
core taskmodels for radar data processing such as track
generation, track association, and track classification
are utilized to replace relevant algorithm modules.
These core task models are then integrated and
optimized to achieve intelligent processing throughout

the entire process of target detection, target tracking,
and target recognition. According to the network
optimizationmethod of freezing the foundationmodel
and fine-tuning the task network, oriented towards
specific radar scenarios, online or offline rapid learning
is conducted through a small number of samples,
and the system integration is optimized for specific
applications, so as to obtain radar data processing
applications that can be actually deployed and applied.
For instance, in target tracking, the association-based
target tracking framework can replace, optimize,
and integrate track initiation (supported by the
track classification task model), point-to-track data
association (supported by the track association task
model), track filtering (supported by the track
generation task model), and track management
(supported by the track classification task model). The
multiple hypothesis target tracking framework can
replace, optimize, and integrate hypothesis probability
calculation (supported by the track classification task
model) and track filtering (supported by the track
generation task model).

5 Conclusion
The rapid development of unmanned control
technology, the emergence of new means of
unmanned platform detection, new modes of
space-air cooperative detection, near space targets,
unmanned cluster targets and other high-threat
targets, have put forward autonomous, multi-modal,
and multi-mode processing capabilities of radar data.
At the same time, the general large model has built
powerful capabilities for generating content such
as language and vision through technologies like
unsupervised learning, Reinforcement Learning with
Human Feedback (RLHF), and Chain of Thought
(CoT). These models not only represent the frontier
and focal point of artificial intelligence development,
but also offer feasible and effective solutions to address
emerging requirements in radar data processing.

In view of this, by reviewing the research process
and content of radar data intelligent processing in the
past decade, we consider the future development of
radar data intelligent processing technology in view of
the current challenges faced by radar data intelligent
processing and combined with the development
opportunities of large model, and puts forward the
research concept of radar data large model. The
research path of “1 domain foundation model + 3 core
task models + N typical application implementations.”
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is designed, with a view to providing a reference for
the research of radar data.
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