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Abstract

Multimodal Sentiment Analysis (MSA), a
pivotal task in affective computing, aims to
enhance sentiment understanding by integrating
heterogeneous data from modalities such as text,
images, and audio. However, existing methods
continue to face challenges in semantic alignment,
modality fusion, and interpretability. To address
these limitations, we propose VBCSNet, a hybrid
attention-based multimodal framework that
leverages the complementary strengths of Vision
Transformer (ViT), BERT, and CLIP architectures.
VBCSNet employs a Structured Self-Attention
(SSA) mechanism to optimize intra-modal feature
representation and a Cross-Attention module
to achieve fine-grained semantic alignment
across modalities.  Furthermore, we introduce
a multi-objective optimization strategy that
jointly minimizes classification loss, modality
alignment loss, and contrastive loss, thereby
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enhancing semantic consistency and feature
discriminability. We evaluated VBCSNet on
three multilingual multimodal sentiment datasets,
including MVSA, IJCAI2019, and a self-constructed
Japanese Twitter corpus(JP-Buzz). Experimental
results demonstrated that VBCSNet significantly
outperformed  state-of-the-art  baselines in
terms of Accuracy, Macro-F1, and cross-lingual
generalization.  Per-class performance analysis
further highlighted the model’s interpretability
and robustness. Overall, VBCSNet advances
sentiment classification across languages and
domains while offering a transparent reasoning
mechanism suitable for real-world applications in
affective computing, human-computer interaction,
and socially aware Al systems.

Keywords: multimodal sentiment analysis,
vision-language models, structured self-attention,
cross-attention, contrastive learning, interpretability,
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1 Introduction

With the widespread adoption of social media
platforms, users increasingly express emotions not
only through text but also through images, emojis,
and short videos [1-3]. This multimodal nature of
user-generated content has driven significant interest
in Multimodal Sentiment Analysis (MSA) [4], a core
task in affective computing that seeks to integrate
heterogeneous data, such as text, image, and audio,
to improve the accuracy and robustness of sentiment
recognition. Compared with unimodal methods,
MSA offers a more comprehensive understanding of
emotional expression, especially in cases involving
sarcasm, ambiguity, or culturally nuanced language.

While recent advances in deep learning have greatly
improved MSA performance, several persistent
challenges continue to limit the effectiveness and
applicability of current models. First, modality
imbalance is a common issue: during joint training,
powerful pre-trained language models often dominate
the learning process, causing the model to neglect
visual signals that may contradict or complement
textual sentiment [5]. Second, semantic misalignment
frequently arises due to representational gaps between
modalities, especially when metaphors, abstract visual
cues, or culturally specific references are involved [6].
Fusion strategies that fail to explicitly model such
semantic correspondence often result in brittle or
shallow interactions. Third, lack of interpretability
remains a major limitation. Many multimodal models
behave as black boxes, offering little transparency into
the reasoning process, which is a critical barrier in
domains such as healthcare, policymaking, and public
safety [7].

To address these challenges, in particular, we propose
VBCSNet, a hybrid attention-based multimodal
sentiment analysis framework that integrates the
complementary strengths of Vision Transformer
(ViT) for visual encoding, BERT [8] for textual
representation, and CLIP [9] as a cross-modal
semantic bridge. The design of VBCSNet directly
responds to the limitations outlined above. To
mitigate modality imbalance, VBCSNet employs a
three-stream encoder that treats visual, textual, and
cross-modal inputs in parallel, ensuring each modality
contributes distinct and meaningful features. To
overcome semantic misalignment, we incorporate
a hierarchical attention mechanism combining
Structured Self-Attention (SSA) [10] for refining
intra-modal features and Cross-Attention for deep
semantic fusion between image and text. Finally, to

enhance interpretability and semantic consistency,
we introduce a multi-objective optimization strategy
that jointly minimizes classification loss, modality
alignment loss, and contrastive loss [11, 12]. This
strategy encourages feature discriminability, robust
fusion, and alignment with human-interpretable cues.

We validate the effectiveness of VBCSNet on
three multilingual multimodal sentiment datasets:
the benchmark English datasets MVSA [13]
and IJCAI2019 [14], and a newly constructed
Japanese Twitter dataset spanning multiple
domains [15, 16]. Experimental results demonstrated
that VBCSNet consistently outperformed strong
baselines—including CNN+CNN, ViT+BERT, and
ViT+BERT+CLIP—Dby 4.9% to 6.1% in classification
Accuracy and Macro-F1. This study builds upon
previous architectural variants by proposing a
unified hierarchical attention mechanism, introducing
structured optimization objectives, and evaluating
cross-lingual generalization on more diverse and
challenging datasets [17, 18].

The main contributions of this work are summarized
as follows:

1. We propose VBCSNet, a three-stream encoder
framework that integrates Vil, BERT, and
CLIP to ensure balanced and semantically rich
multimodal representation learning.

2. We design a hierarchical attention mechanism
that combines  Structured  Self-Attention
and Cross-Attention to refine intra-modal
representations and enable fine-grained semantic
fusion across modalities.

3. We introduce a multi-objective loss function
that jointly optimizes sentiment classification,
modality alignment, and contrastive learning,
improving semantic consistency and feature
discriminability.

4. We conduct comprehensive cross-lingual
evaluation on English, Chinese, and Japanese
datasets, demonstrating the robustness,
interpretability, and real-world applicability
of the proposed method.

2 Related Work

This section reviews prior work in multimodal
sentiment analysis (MSA) with a focus on techniques
for modality fusion, semantic alignment, and
interpretability. These areas correspond directly to the
challenges VBCSNet is designed to address.
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Table 1. Comparison of modality fusion strategies.

Method Advantages

Limitations

Cross-Attention .
modeling

Contrastive Learning .
simple
Structured

Self-Attention redundancy

Fine-grained alignment, strong local
Strong global consistency, structurally

High feature diversity, reduces

Prone to modality dominance

Depends on sample quality, ignores local
detail
Computationally intensive, needs
fine-tuning

2.1 Progress in Multimodal Sentiment Analysis

Multimodal sentiment analysis aims to improve
sentiment prediction by integrating heterogeneous
data sources such as text, images, and audio.
Early studies typically used handcrafted features
from each modality and combined them via simple
concatenation operations [2]. While computationally
straightforward, these early fusion methods were
limited in their ability to capture deep semantic
interactions and exhibited poor generalization across
domains.

With the advent of deep learning, more advanced
fusion techniques have emerged. Models such as
LXMERT [6] and ViLBERT [19] adopt dual-stream
Transformer architectures that encode image and
text separately and use cross-modal attention to
model interactions. The CLIP model [9] introduces
large-scale contrastive pretraining on image-text pairs,
effectively constructing a shared semantic embedding
space and achieving impressive generalization across
downstream tasks [33]. However, these models
often suffer from modality imbalance, where the
strong inductive bias of pre-trained language encoders
overwhelms the contribution of visual features,
especially when the sentiment in text and image
diverges [5].

Recent lightweight architectures such as ViLT [20]
and modular models like MISA have reduced
computational complexity by simplifying the visual
encoding process or decoupling modality-specific and
shared information. While these approaches improve
efficiency, they still struggle to fully resolve semantic
misalignment in noisy or culturally nuanced content,
where implicit sentiment cues span modalities in
non-obvious ways [6].

2.2 Semantic Alignment and Modality Fusion
Techniques

To address semantic misalignment between
modalities, many recent studies adopt attention-based
mechanisms for multimodal fusion. Cross-attention,
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co-attention, and gated fusion modules have been
widely used to allow one modality to condition its
representation on another [6, 19]. These methods
enable finer-grained semantic alignment and
perform well in tasks where visual and textual
features are syntactically or semantically grounded.
However, when applied independently of intra-modal
enhancement or alignment regularization, they
often fall short in handling abstract or metaphorical
sentiment cues.

Contrastive learning has also gained popularity
as a means of aligning modalities in a shared
representation space. CLIP [9] is a prominent
example, achieving competitive performance
through large-scale pretraining with InfoNCE-based
objectives. While contrastive objectives are effective for
coarse-level alignment, they often lack the sensitivity
to subtle cross-modal sentiment patterns and require
large quantities of paired data to generalize effectively
[21, 22].

Structured Self-Attention (SSA) [10] has been
proposed to improve intra-modal representation
quality by introducing orthogonality constraints that
diversify attention heads. This helps preserve distinct
semantic components within each modality and
prevents redundancy. However, SSA is often treated
as a standalone module and is rarely integrated with
deeper cross-modal fusion architectures.

Despite these efforts, nevertheless, many existing
methods still lack a unified mechanism that
simultaneously addresses modality imbalance,
semantic misalignment, and interpretability. As
shown in Table 1, existing modality fusion strategies
focus on specific goals but struggle to tackle all these
challenges in an integrated manner.Models are often
designed to optimize performance on benchmark
datasets, but do not provide transparent reasoning
or robust generalization across languages and
domains. These limitations motivate the development
of VBCSNet, which integrates modality-specific
encoding, Structured Self-Attention, Cross-Attention,
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and a multi-objective training strategy into a
single framework aimed at robust, interpretable,
and semantically aligned multimodal sentiment
classification.

2.3 Interpretability in Multimodal Sentiment

Analysis

Interpretability has become a growing concern
in MSA, particularly as models are increasingly
applied in high-stakes decision-making contexts.
Transformer-based attention mechanisms offer
a degree of interpretability through attention
weights, which highlight influential tokens or image
regions. However, such visualizations alone are often
insufficient for explaining cross-modal reasoning

steps [6].

Several recent studies attempt to improve
interpretability by introducing modular design
or supervision signals that guide representation
learning. While promising, these enhancements
often come at the cost of increased model complexity
or reduced flexibility. Moreover, few models are
explicitly optimized for interpretability during
training, and most lack mechanisms to disentangle
modality-specific contributions to the final decision.

VBCSNet addresses these concerns by combining
Structured Self-Attention with attention-based
fusion and alignment-aware training objectives. The
model produces well-aligned and interpretable
representations  while preserving class-level
performance across languages. Its design reflects
the need for models that not only perform well, but
also offer structured, transparent reasoning about
multimodal sentiment signals [3].

2.4 Positioning w.r.t.  Recent Vision-Language

Models
Recent vision-language models (VLMs) such
as VILT [20], ALBEF [27], METER [28],
BLIP/BLIP-2 [29, 30], InstructBLIP [31], and

LLaVA [32] have advanced generic vision-language
understanding through large-scale pretraining
and instruction tuning. However, their primary
objectives—image captioning, visual question
answering, and multimodal dialogue—differ
fundamentally from fine-grained multimodal
sentiment classification, which presents unique
challenges including image-text polarity conflicts,
multilingual sarcasm detection, and neutral sentiment
ambiguity.

Task-Specific Design Requirements: Multimodal
sentiment analysis requires specialized architectural
components that general-purpose VLMs lack: (1)
explicit mechanisms for resolving semantic conflicts
between modalities when they convey opposing
sentiments; (2) fine-grained attention patterns that
can identify subtle emotional cues in both visual
and textual content; and (3) robust handling of
multilingual expressions where sentiment markers
vary significantly across languages.

Our Complementary Approach: In contrast to
generic VLMs, our method employs a task-specialized
fusion design with three key innovations: (i) Structured
Self-Attention (SSA) enhances intra-modal diversity
and robustness by capturing fine-grained emotional
patterns; (ii) Cross-Modal Attention explicitly
models and resolves inter-modal sentiment conflicts;
and (iii) Multi-objective alignment and contrastive
learning regularizes cross-modal semantic consistency.
This design yields interpretable and compute-efficient
performance gains under moderate computational
budgets.

Positioning and Scope: Our approach is
designed to complement rather than replace large
instruction-tuned VLMs. While VLMs excel at general
vision-language tasks, our specialized architecture
addresses the specific requirements of multilingual
sentiment analysis with greater efficiency and
interpretability. Future work will explore adapting
large VLMs for this specialized task domain through
compute-matched comparative studies.

2.5 Summary and Research Motivation

Despite recent advances, major challenges remain:

1. Decoupled modeling and alignment: Existing
methods separate intra-modal modeling and
inter-modal alignment, lacking end-to-end
optimization.

2. Heuristic fusion strategies: Fusion often
depends on empirical rules, lacking semantic
constraints.

3. Low-resource language support: Most research
focuses on English, with limited adaptation to
Japanese, Chinese, etc.

4. Trade-off  between performance and
interpretability: Higher model complexity
often reduces transparency, limiting applicability
in high-stakes domains.
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Figure 1. Overview of the proposed multimodal sentiment

In our earlier work, we previously proposed a
CLIP-based attention fusion model, which was shown
to improve results on English and Japanese tweet
datasets. However, it relied on simple concatenation
and lacked end-to-end training or explicit semantic
alignment. This paper addresses these limitations
by introducing a hierarchical attention design and
contrastive training, aiming to enhance robustness and
cross-lingual generalization.

3 VBCNet Model Design

We propose VBCSNet, a hybrid attention-based deep
learning framework for multilingual multimodal
sentiment classification. = The model integrates
complementary information from visual and textual
modalities while addressing three core challenges in
multimodal sentiment analysis: modality imbalance,
semantic misalignment, and lack of interpretability.
As illustrated in Figure 1, VBCSNet consists of four
interconnected components, and its overall workflow
is summarized as pseudocode in Algorithm 1, which
outlines the step-by-step operations of the framework:

1. Modality-specific encoder that extracts features
from ViT, BERT, and CLIP;

. Hierarchical attention module that combines
Structured Self-Attention (SSA) for intra-modal
enhancement  with  Cross-Attention  for
inter-modal fusion;
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Self-Attention
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Self-Attention
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classification model. It integrates BERT, CLIP (Text/Image),
and ViT encoders, and adopercentage points structured self-attention and cross-attention mechanisms followed by a
fully-connected classifier.

Algorithm 1: Multimodal Sentiment Classification

Input: ViT features Fy;r, CLIP-image features
FcLipimg, RoBERTa features Fpert,
CLIP-text features Fopp-text

Output: Sentiment label y € {pos, neu, neg}

/* Intra-modal feature refinement using

Structured Self-Attention

Fimg < SSA(Fvir, FCLIP-img)

Fiext < SSA(FBERT, FCLIP-text)

/* Cross-modal fusion using Cross-Attention

*/

Fiused < CrossAttention(Fimg, Fiext)

/* Compute multi-objective losses

Compute Ealigna Leontrast, Lels

/* Sentiment classification

y < Classifier(Fryseq)

return y

*/

*/

*/

3. Multi-objective optimization strategy that
enforces alignment and semantic consistency
through jointly trained classification, alignment,
and contrastive objectives;

4. Final sentiment classifier based on a multilayer
perceptron (MLP).

Each component is explained in detail in the following
subsections with respect to the specific challenge it
addresses.
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3.1 Modality-Specific Feature Encoding

To address the challenge of modality imbalance,
where strong textual encoders often dominate the
optimization process and suppress contributions
from the visual modality, we design a dual-channel
feature encoding strategy. This approach preserves
modality-specific representational richness and
facilitates early-stage compatibility across modalities.

For the image modality, we adopt two complementary
encoders. Vision Transformer (ViT-B/16) captures
both local patterns and global semantic structures
from the image. In parallel, CLIP-Vision provides
representations that are semantically aligned with
textual inputs, learned from large-scale image-text
pairs. These two encoders offer distinct but synergistic
perspectives on visual data.

For the text modality, we combine RoBERTa [21] and
CLIP-Text. RoBERTa encodes contextual information
within the sentence, while CLIP-Text generates
vision-aligned textual embeddings that complement
the image stream. This combination enables the model
to integrate both domain-specific linguistic features
and semantically grounded representations.

Let Fvir, FcLip-img, FBERT, and Fcriptext denote the
outputs of these four encoders. Each output is
projected into a shared 256-dimensional semantic
space using a two-layer MLP with ReLU activation
and a dropout rate of 0.4. These projection layers
are optimized jointly with the rest of the model.
This encoding scheme ensures that both visual and
textual features retain their distinct strengths while
contributing equally to the multimodal representation.
The resulting embeddings serve as the input to the
attention-based fusion mechanism in the next stage.

3.2 Hierarchical Attention Mechanism

To address the challenge of semantic misalignment,
which arises from representational gaps between

modalities, we design a hierarchical attention
mechanism  that  strengthens  intra-modal
representations before performing inter-modal

semantic fusion. This two-stage approach ensures that
each modality’s information is internally coherent and
semantically enriched prior to interaction.

The first stage applies Structured Self-Attention (SSA)
to refine visual and textual embeddings within their
respective modalities. Given feature pairs from ViT
and CLIP-Vision for the image stream, and from
RoBERTa and CLIP-Text for the text stream, SSA
dynamically allocates attention to align and combine

these feature types. Specifically, the SSA module
computes a shared representation by adjusting the
weight distribution across the sequence. To improve
attention diversity and reduce redundancy, we impose
an orthogonality constraint on the attention matrix,
defined as

Lssa=|AAT —I||%, (1)

where A denotes the attention matrix, I is the identity
matrix, and | - || represents the Frobenius norm. This
constraint encourages each attention head to focus on
different semantic aspects, which improves feature
discriminability within each modality.

After SSA optimization, the second stage applies
Cross-Attention to model semantic alignment between
modalities. Visual features serve as queries, and
textual features as keys and values. The attention is
computed as

T

. QK
Attention(Q, K, V) = softmax <
( ) vy,

where ), K, and V are the query, key, and
value matrices, respectively, and d; is the key
dimensionality. This mechanism allows the image
tfeatures to selectively attend to text segments that
provide complementary or explanatory sentiment cues.
It is particularly effective when textual and visual
sentiment signals are subtle, contrasting, or embedded
in metaphorical content.

)o@

The hierarchical design improves semantic alignment
in three ways. First, SSA enhances internal consistency
within each modality, making the cross-modal
mapping more stable. Second, Cross-Attention
explicitly captures directional semantic interactions,
allowing the model to learn context-dependent
fusion patterns.  Third, the attention weights
naturally support interpretability, as they highlight the
contribution of specific image regions and text tokens.
Together, these components form a semantically
coherent and transparent representation for the final
sentiment classification.

3.3 Multi-Objective Optimization Strategy

To jointly enhance semantic consistency and
interpretability, ~we adopt a multi-objective
optimization strategy that combines classification,
alignment, and contrastive learning objectives into
a unified training scheme. This approach explicitly
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guides the model to balance semantic clarity across
modalities and to learn feature representations that
are both discriminative and transparent.

The total objective is defined as

£total = £cls + )\img : Eimg + )\te:pt : Ete:pt +a- Econtrasta

(3)
where L is the cross-entropy loss for sentiment
classification, Limg and Liext are intra-modal alignment
losses between ViT and CLIP-Vision, and between
RoBERTa and CLIP-Text respectively, and Lcontrast i a
cross-modal contrastive loss based on InfoNCE [9, 21].
Following the uncertainty-based multi-task learning
framework [5, 25, 26], we employ automatic weight
learning rather than manual hyperparameter tuning.
The trade-off parameters A4, Aert, and a are learned
dynamically during training based on the relative
uncertainty (homoscedastic noise) of each task. This
approach provides a stronger theoretical foundation
than manual tuning, as the weights automatically
adapt to the intrinsic difficulty and scale differences of
the classification and alignment objectives.

Specifically, each weight is parameterized by a
learnable o; and optimized jointly with the model:

i = ﬁ, and add a regularization term o; to the loss.  (4)
This automatic balancing mechanism ensures optimal
weight allocation throughout training without
requiring extensive hyperparameter search. The
learned weights typically converge to Aimg ~ 0.31,
Mext &~ 0.28, and a ~ 0.52, demonstrating stable and

consistent optimization across different random seeds.

The classification loss L5 encourages the model to
assign correct sentiment labels to fused multimodal
features. The alignment losses L,y and Lieq
minimize the distance between features produced
by structurally different encoders within the same
modality, allowing ViT to align with CLIP-Vision and
RoBERTa to align with CLIP-Text. This helps preserve
modality-specific signals while guiding them into
a shared semantic space, which mitigates semantic
misalignment during fusion.

The contrastive loss L ontrast €nhances the model’s
ability to distinguish semantically related and
unrelated image-text pairs. It is formulated as

r B exp(sim(x;,y;)/T)
contrast = — 108 N . )
=1 exp(sim(z;, y;)/7)

(5)
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where sim(-) denotes cosine similarity and 7 = 0.07is a
temperature parameter. This objective encourages the
model to map paired features closer together while
pushing apart mismatched ones. As a result, the
fused representation becomes semantically sharper
and more robust across multilingual inputs.

Furthermore, this optimization strategy contributes
to interpretability. By aligning modality-specific
and cross-modal representations through explicit
constraints, the model produces attention maps
that are more focused and coherent. This allows
the contributions of both image regions and text
segments to be visualized and understood in terms
of their influence on the final prediction. Overall,
the multi-objective loss ensures that VBCSNet
not only improves classification accuracy but also
produces structured and interpretable reasoning
across modalities.

3.4 Sentiment Classification Head

The fused multimodal representation produced by
the Cross-Attention module is passed to a multilayer
perceptron (MLP) for sentiment classification. The
MLP consists of two fully connected layers with ReLU
activation and dropout, followed by a Softmax output
layer that generates the final sentiment probability
distribution.  This classification head transforms
the integrated features into label predictions and
maintains compatibility with multilingual and
multimodal inputs.

3.5 Design rationale vs. generic VLMs

Instead of relying on monolithic instruction-tuned
backbones, we retain lightweight encoders (ViT, BERT,
CLIP features) and focus model capacity on fusion and
objective design tailored for sentiment analysis.

Our architecture incorporates three sentiment-focused
components: (i) Structured Self-Attention (SSA)
discourages head redundancy and enhances
class-relevant token/region focus; (ii) Cross-Modal
Attention  enables  bidirectional  text-image
interaction to resolve sentiment conflicts; and
(iii) Multi-objective training with classification,
alignment, and contrastive losses provides
complementary regularization.

This specialized design maintains competitive
latency and VRAM usage while delivering superior
interpretability through structured attention patterns.
The multi-objective optimization ensures VBCSNet
improves both classification accuracy and cross-modal
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reasoning interpretability.

4 Experiments and Results

We perform a series of experiments to evaluate
the effectiveness of VBCSNet in multilingual and
multimodal sentiment classification. The evaluation
spans three representative datasets and assesses the
model’s ability to overcome modality imbalance,
semantic misalignment, and lack of interpretability
through quantitative comparison and ablation studies.

4.1 Experimental Setup
4.1.1 Datasets

MVSA-Multiple  [13, 24] is a widely used
benchmark English dataset for multimodal sentiment
analysis. It consists of 18,148 image-comment pairs
collected from social media platforms. Each sample
is labeled with one of three sentiment categories:
positive, neutral, or negative. The dataset provides
reliable annotations and a balanced distribution across
classes, making it suitable for evaluating fine-grained
multimodal fusion strategies.

IJCAI2019-Twitter [22] is released as part of the
IJCAI 2019 Multimodal Sentiment Analysis Challenge.
It contains approximately 5,000 English tweets, each
accompanied by a corresponding image. The
textual content in this dataset reflects informal and
compact language typical of social media discourse,
which introduces challenges for robust sentiment
classification, especially when sentiment cues are weak
or ambiguous.

JP-Buzz [15, 16] is a Japanese multimodal dataset
that we construct from public Twitter data. It
consists of 39,345 image-text pairs, labeled as either
Buzz (widely propagated) or Non-Buzz (ordinary
content) based on the number of likes, where posts
with more than 1,000 likes are labeled as Buzz and
those with fewer than 1,000 likes are labeled as
Non-Buzz. The dataset was collected between July
and October 2022 and consists of 19,875 Non-Buzz
and 19,241 Buzz samples. While the majority of the
content is in Japanese, the dataset also includes a
small proportion of posts in Korean, Chinese, and
English, as well as emoticons commonly used on
social media. This dataset allows us to evaluate the
model’s generalization capability in low-resource and
linguistically diverse scenarios.

4.1.2 Training and Implementation Details

Table 2 summarizes the network architecture,
hyperparameter settings, and training configurations

Table 2. Network training parameters.

Parameters Value
Batch size 16
Maximum text length 77
Image size 224 x 224
Training epochs 100
Optimizer AdamW
Learning rate(MVSA) 5e-5
Learning rate(IJCAI2019, JP-Buzz) 5e-4
Weight decay 1x1074
EMA momentum 0.999
Loss weighting Mimg = Mext % 03, @ ~ 0.5

used across all experiments. Specifically, to ensure
comparability and reproducibility, we apply the
same data preprocessing pipeline and training
procedure for all datasets. All models are trained on
a single NVIDIA A100 GPU with sufficient memory
to support large-batch multimodal optimization.
The implementation is based on PyTorch 2.1, with
additional support from CUDA 11.7 and Python
3.10. Dataset splits follow a 7:2:1 ratio for training,
validation, and testing.

4.1.3 Evaluation Metrics

We evaluate model performance using three metrics:
Accuracy, Macro-F1, and Confusion Matrix.

Accuracy measures the proportion of correctly
predicted sentiment labels over all test samples.
It reflects overall classification correctness and is
computed as:

A B TP +TN .
Cuney = TN FP T FNT )
where TP, TN, FP, and F'N denote the number of
true positives, true negatives, false positives, and false
negatives, respectively. While Accuracy offers a global
view of prediction performance, it may not fully reflect
model behavior in imbalanced sentiment settings.

Macro-F1 complements Accuracy by treating each
sentiment class equally, averaging the F1 scores across
all classes. It is calculated as:

2-P.- R,

c
1
Macro-F1 = — _ 7
D G
where C is the number of sentiment classes, and P, and
R, denote the precision and recall for class c. Macro-F1
is particularly informative in the context of sentiment

classification, as it penalizes poor performance on
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Table 3. Baseline models for comparison.

Model Name Description

CNN + TextCNN
ResNet + LSTM
ViT + BERT
CLIP
ViT + BERT + CLIP
ViT + BERT + CLIP + Att
Ours (Full Model)

Classic CNN models for independent feature extraction

Combines CNN for image and LSTM for text

Dual Transformer encoders without fusion

Contrastive learning pretrained multimodal model

Simple concatenation without alignment

Attention-based fusion model without multi-objective optimization
SSA + Cross-Attention + Multi-objective Optimization

underrepresented sentiment classes and highlights the
model’s ability to generalize across categories.

Confusion Matrix provides a visualization of
prediction patterns and inter-class misclassifications.
This matrix reveals which sentiment categories
are frequently confused and whether the model
exhibits bias toward dominant modalities or sentiment
polarities.

Together, these metrics provide a comprehensive
evaluation of both classification accuracy and semantic
balance in multimodal sentiment understanding.

4.2 Baseline and Comparative Models

To evaluate the effectiveness of VBCSNet, we compare
it with seven representative baseline models that
reflect a range of strategies in multimodal sentiment
classification. These include early fusion models,
modality-specific architectures, and attention-based
frameworks.

The CNN + TextCNN and ResNet + LSTM models
represent conventional pipelines in which visual and
textual features are extracted independently and fused
without semantic alignment.

The ViT + BERT serves as a dual-encoder baseline
that leverages Transformer-based encoders for each
modality but does not include explicit fusion or
alignment.

The CLIP model evaluates the generalization of
contrastively pre-trained vision-language embeddings.

The ViT + BERT + CLIP baseline combines three
encoders via simple concatenation without further
integration or tuning.

An additional variant, ViT + BERT + CLIP +
Attention [23], includes attention-based fusion but
does not incorporate multi-objective optimization or
intra-modal enhancement.

These baselines allow us to isolate and quantify the
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impact of Structured Self-Attention, Cross-Attention,
and the multi-objective loss strategy used in VBCSNet.

All models are trained under the same experimental
settings for consistent comparison. Their
configurations are summarized in Table 3.

4.3 Overall Performance Comparison

We compare the performance of VBCSNet with
baseline models on three multilingual multimodal
sentiment datasets: IJCAI2019, JP-Buzz, and
MVSA-Multiple.  Table 4 reports Accuracy and
Macro-F1 scores across all methods.

On IJCAI2019, VBCSNet achieves 0.713 Accuracy
and 0.681 Macro-F1, surpassing all baseline models.
Compared to ViT+BERT, which attains 0.652 Accuracy
and 0.643 Macro-F1, VBCSNet demonstrates improved
semantic alignment between modalities. The margin
over the CLIP-only baseline further confirms that
contrastive pretraining alone is insufficient without
dedicated attention mechanisms and optimization
strategies.In terms of Macro-Recall (balanced
accuracy), VBCSNet attains 0.688, improving over
ViT+BERT (0.668) and CLIP(0.609). This indicates
higher sensitivity to all classes, not only overall
accuracy gains.

On MVSA-Multiple, VBCSNet also achieves the best
overall performance, reaching 0.788 Accuracy and
0.763 Macro-F1. VBCSNet achieves a Macro-Recall
of 0.753, surpassing ViT+BERT(0.698) and slightly
exceeding the attention baseline(0.751). The improved
recall suggests fewer false negatives, especially on
harder cases (e.g., neutral vs. polarized posts). These
results validate the model’s ability to generalize across
balanced English-language datasets and highlight its
effectiveness in capturing fine-grained multimodal
sentiment patterns.

On JP-Buzz, VBCSNet obtains 0.795 Accuracy and
0.795 Macro-F1. Although one of the baselines
exhibits a marginally higher Accuracy of 0.810,
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Table 4. Performance comparison of different models on three multilingual multimodal sentiment datasets.(Precision,
Recall, and F1 are macro-averaged over classes.)

Model IJCAI2019 JP-Buzz MVSA-Multiple
Precision Acc  Recall F1 Precision Acc Recall F1 Precision Acc  Recall F1

CNN + TextCNN 0.532 0565 0.434 0461 0.767 0.756 0.757 0.754 0.720 0.727 0.697 0.717
ResNet + CNN 0.447 0.441 0407 0399 0.767 0.768 0.768 0.768 0.736 0.728 0.702 0.699
ViT + BERT 0.679 0.652 0.668 0.643 0.779 0.780 0.774 0.780 0.734 0.739 0.698 0.724
CLIP 0.660 0.636 0.609 0.607 0.762 0.763 0.742 0.761 0.748 0.757 0.744 0.758
ViT + BERT + CLIP 0.629 0.605 0595 0.570 0.755 0.748 0.800 0.746 0.729 0.734 0735 0.725
ViT + BERT + CLIP + attention 0.727 0.676 0.620 0.638 0.795 0.810 0.795 0.782 0.756 0.776 0.751 0.760
ViT + BERT + CLIP + SSA (Ours) 0.744 0.713 0.688 0.681 0.803 0.795 0.795 0.795 0.751 0.788 0.753 0.763

Table 5. Ablation on MVSA-Multiple. Results show differential impacts across components, with Cross-Attention removal
causing the largest drop, particularly affecting neutral sentiment disambiguation.

Model variant Acc  Macro-F1
Full (ViT+BERT+CLIP+SSA, Cross-Attn: Image—Text only) 0.788 0.763
w/o Cross-Attention 0.765 0.732
Cross-Attn: Text—Image only 0.773 0.757
w/o SSA 0.771 0.748
w/o Image Align Loss 0.780 0.758
w/o Text Align Loss 0.774 0.753
w /o Contrastive Loss 0.770 0.753

VBCSNet achieves superior Macro-F1, indicating more
consistent performance across the Buzz and Non-Buzz
classes. This suggests that the attention modules and
loss functions introduced in VBCSNet are more robust
in handling culturally specific sentiment cues and
modality interactions in non-English data.VBCSNet
reaches a Macro-Recall of 0.795, which is within 0.5
percentage points of the best baseline (0.800) while
delivering the top Macro-F1. This implies more
balanced sensitivity across Buzz/Non-Buzz, despite
minor accuracy differences. While simpler models
achieve higher accuracy on JP-Buzz, this is often
due to overfitting on dataset-specific artifacts such
as lexical or stylistic biases. In contrast, VBCSNet
focuses on semantic alignment and cross-modal fusion,
which improves generalization but slightly lowers
accuracy. The consistent Macro-F1 gains demonstrate
that VBCSNet better captures meaningful cross-modal
sentiment patterns beyond surface-level cues, making
its performance both robust and interpretable.

Consequently, these results collectively demonstrate
that VBCSNet addresses modality imbalance by
preserving and integrating visual and textual
signals more effectively than standard fusion or
alignment-agnostic models. Furthermore, the
consistent gains in Macro-F1 across datasets indicate
that the model maintains semantic consistency across
all sentiment categories, supporting its cross-lingual
applicability and interpretability.

4.4 Ablation Study

To assess the contribution of each component in
VBCSNet, we conduct comprehensive ablations on
MVSA-Multiple. By default, VBCSNet uses a
single-direction Cross-Attention from Image—Text
(Q=Image, K/V=Text). We then ablate (i) removing
Cross-Attention and (ii) swapping the direction to
Text—Image only (Q=Text, K/V=Image). Table 5
reports Accuracy and Macro-F1, with statistical
significance confirmed via McNemar’s test (p < 0.01
for all comparisons).

Structured Self-Attention (SSA). Removing SSA
reduces Macro-F1 from 0.763 to 0.748 , indicating
that intra-modal refinement preserves semantic
distinctiveness before fusion and mitigates modality
imbalance.

Cross-Attention (directionality). Disabling
Cross-Attention yields 0.732 Macro-F1, confirming
that inter-modal interaction is necessary to resolve
semantic misalignment. =~ The substantial drop
disproportionately affects Neutral classification
(F1: 0.689—0.645), demonstrating that cross-modal
reasoning is essential for disambiguating borderline
cases. Swapping the direction to Text—Image only
attains 0.757 Macro-F1, indicating that directionality
matters significantly. On MVSA-Multiple—where
textual polarity is often dominant—the Image—Text
flow better aligns modalities by allowing visual
features to provide contextual grounding for textual
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Table 6. Efficiency comparison on MVSA-Multiple.

#Method Params (M) Train/epoch Latency (ms) Peak VRAM (GB)  Acc
CNN+TextCNN 74 3m58s 27 341 0.727
ResNet+CNN 103 4m08s 2.8 3.55 0.728
ViT+BERT 231 8m?24s 13.4 1192 0.739
CLIP 149 7m44s 10.5 8.40 0.757
ViT+BERT+CLIP 397 10m30s 14.1 14.38 0.734
ViT+BERT+CLIP+Attention 405 11m12s 17.0 14.65 0.776
ViT+BERT+CLIP+SSA (Ours) 416 11m48s 18.3 15.02 0.788

sentiment expressions.

Alignment objectives. Excluding the image/text
alignment losses leads to modest drops (0.758/0.753
Macro-F1), illustrating their role in stabilizing fusion
and enforcing semantic consistency across differently
pre-trained encoders.Without alignment/contrastive
terms, predictions skew toward Neutral on borderline
samples, indicating weaker separation of ambiguous
cases despite similar accuracy.

Contrastive objective. Removing the contrastive
loss reduces Macro-F1 to 0.753. Although Accuracy
remains relatively stable, class-level performance
becomes less balanced, suggesting weaker separation
between sentiment categories.

Per-Category Impact Analysis. To understand how
different components affect sentiment classification
across categories, we analyze the confusion
patterns when components are removed. Removing
Cross-Attention creates disproportionate confusion
between Neutral and polarized sentiment classes, with
the model tending to over-predict Neutral sentiment
when visual and textual cues are inconsistent. This
indicates that cross-modal interaction is particularly
crucial for disambiguating borderline cases.

Component-Specific Effects. = The SSA removal
particularly affects samples requiring fine-grained
attention to subtle emotional indicators, as evidenced
by the concentrated performance drop . The
differential impact of alignment losses—with text
alignment showing a larger impact than image
alignment—suggests that semantic consistency in
the textual modality is more critical for multilingual
sentiment understanding.

Directional Attention Analysis. = The superior
performance of Image—Text attention (0.763 vs
0.757) indicates that visual features provide more
robust contextual anchoring for textual sentiment
interpretation, particularly valuable in multilingual
settings where textual sentiment expressions exhibit
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greater variability across languages.

Overall, these results verify that SSA, directional
Cross-Attention, and the alignment/contrastive

objectives jointly address modality imbalance
and semantic misalignment while improving
interpretability.

4.5 Effect of MLP Depth

We analyze the impact of the fully connected layer
depth in the final classification stage by varying the
number of MLP layers from one to four. Table 7 reports
Accuracy and Macro-F1 scores on MVSA-Multiple.

Table 7. Effect of Fully-Connected Layer Depth on model
performance (MVSA-Multiple).

#Layers Accuracy (ACC) F1 Score
1 0.776 0.755
2 0.788 0.763
3 0.784 0.761
4 0.779 0.757

On MVSA-Multiple, the best performance is achieved
when the number of MLP layers is two, with 0.788
Accuracy and 0.763 Macro-F1. Increasing the depth
to three or four results in a gradual decline in both
metrics. This suggests that overly deep classification
heads may introduce redundancy or lead to overfitting
on relatively small or balanced datasets.

These observations support the adoption of a two-layer
MLP as the default configuration in VBCSNet.
Taken together, this design offers a good trade-off
between expressiveness and stability, and maintains
competitive performance across both high-resource
and linguistically diverse sentiment datasets.

4.6 Efficiency and Resource Usage

This section evaluates the training and inference costs
of the proposed model and the baselines. We use
automatic mixed precision (AMP), an image size
of 224x224, a maximum text length of 77 tokens,
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and a batch size of 16 during training. For latency
measurement, we use a batch size of 1, perform 20
warm-up runs, and then average over 200 forward
passes. All experiments are conducted with PyTorch
2.x on the specified GPU model and CUDA version.

The results are summarized in Table 6 on
the MVSA-Multiple dataset and highlight the
accuracy—efficiency trade-off of VBCSNet versus the
baselines. VBCSNet achieves a substantial accuracy
gain over ViT+BERT, improving from 0.739 to 0.788.
This gain comes with increased cost: +36.6% higher
latency (13.4 ms — 18.3 ms), +40.5% longer train time
per epoch (8m24s — 11m48s), and +26.0% higher peak
VRAM (11.92 GB — 15.02 GB). However, compared
with the ViT+BERT+CLIP baseline, adding our new
attention stack and SSA increases the parameter count
by only +4.8% (397 M — 416 M) with a modest impact
on latency.

4.7 Limitations

While VBCSNet demonstrates superior performance
compared to baselines in multilingual multimodal
sentiment classification, several broader limitations
of current multimodal learning techniques present
challenges for further advancement.

First, current approaches rely heavily on pre-trained
encoders that may not generalize well across domains
or languages with limited annotated data. This
constrains the ability to extend sentiment analysis
to underrepresented languages or emerging online
communities.

Second, existing alignment mechanisms often
assume a coarse semantic correspondence between
modalities. This limits the capacity to reason over
fine-grained or abstract cross-modal relationships,
such as irony or metaphor, especially when these cues
are context-dependent or culturally specific. Moreover,
interpretability remains tied to attention visualization,
which, while useful, does not yet provide full causal
or logical explanations behind predictions.

Third, our study focuses on compute-efficient,
task-specialized fusion under moderate computational
budgets. Comprehensive benchmarks against large
instruction-tuned VLMs (e.g., LLaVA, InstructBLIP)
require substantial resources and specialized
adaptation protocols beyond our current scope.
Extending VBCSNet to larger backbones and
conducting compute-matched VLM comparisons
represents an important direction for future work.

Additionally, the JP-Buzz dataset used in this study
cannot be publicly released due to privacy and
platform policy restrictions. This limits the direct
reproducibility of experiments on this dataset. To
mitigate this issue, we provide detailed descriptions
of the dataset construction process, annotation
criteria, and data distribution analysis in this paper,
enabling other researchers to indirectly validate our
methodology and build similar datasets for future
research.

In summary, these limitations highlight the need
for more flexible, generalizable, and explainable
architectures that can handle more complex forms of
multimodal interaction and reasoning beyond static
alignment and classification.

5 Conclusion

In this paper, we have proposed VBCSNet, a
hybrid attention-based framework for multilingual
multimodal sentiment classification. The model
integrates ViT, BERT, and CLIP with Structured
Self-Attention and Cross-Attention, supported by
a multi-objective optimization strategy. Through
comprehensive experiments on English and Japanese
datasets, we have demonstrated that VBCSNet
effectively addresses the key challenges of modality
imbalance, semantic misalignment, and lack of
interpretability. Quantitative evaluations have
confirmed consistent gains in Accuracy and Macro-F1
across languages and sentiment categories, while
comprehensive ablation studies have validated the
individual contributions of each component and
revealed their differential impacts on sentiment
understanding. Our analysis shows that cross-modal
interaction is particularly crucial for disambiguating
neutral sentiment cases, while structured self-attention
enhances fine-grained emotional pattern recognition
across modalities.

In future work, we aim to extend VBCSNet to
low-resource languages and to sentiment scenarios
involving abstract, ambiguous, or implicit emotional
cues. Furthermore, to address limitations in current
alignment and interpretability techniques, future
work will explore more flexible architectures and
structured reasoning mechanisms that enable more
robust and transparent multimodal understanding
across culturally diverse contexts [34, 35].
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