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Abstract
In the era of increasingly scarce spectrum resources,
electromagnetic spectrum (EMS) prediction has
emerged as a critical means for enhancing spectrum
utilization efficiency. However, most of the existing
EMS methods primarily exploit low-dimensional
features such as temporal, frequency, or spatial
characteristics in an individual fashion, which limits
their ability to fully capture the inherent complexity of
spectrum dynamics. To improve the performance, this
paper proposes a novel EMS prediction model, which
involving three operations, namely multi-dimensional
decoupling, feature fusion and temporal prediction.
Firstly, for multi-dimensional decoupling operation,
we propose a Multi-dimensional Feature Extraction
(MFE) module, which characterizes the complex
temporal-frequency-spatial variations of EMS data
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by leveraging both single-dimensional features and
cross-dimension dependencies (i.e., temporal-frequency,
temporal-spatial, and frequency-spatial relationships).
By explicitly modeling these correlations, the MFE
module enhances the prediction performance of the
proposed model. Secondly, to reduce redundancy
between these decoupled multi-path features, we
introduce a Tensor-Feature-Fused (TF) module.
Through a bidirectional cross-attention mechanism,
the proposed TF module enables symmetric information
exchange between multi-path features and the original
spectrum data, by selectively integrating both inter-path
features and intra-feature information. Finally, by
employing a Temporal Convolutional Network (TCN),
the data obtained by the TF module are processed to
capture multi-scale dependencies so that the accuracy of
spectrum prediction is enhanced. The performance of
the proposed model, termed as MFE-TFTCN, has been
extensively evaluated by means of computer simulations.
Various experimental results obtained through the
use of a publicly European multi-location dataset
have demonstrated that, compared to state-of-the-art
EMS prediction methods, the proposed model achieves
superior prediction performance by effectively capturing
temporal-frequency-spatial interdependencies.
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1 Introduction
With the continuous growth in user frequency demand,
wireless communication technologies are developing
and evolving rapidly. Consequently, the explosive
increase in communication signals is intensifying
the problem of limited and non-renewable EMS
resources, so that spectrum scarcity is an ever growing
concern. To deal with this problem, EMS prediction
technology plays a crucial role as it forecasts future
signal trends, warns of sudden spectrum changes,
and assists in identifying spectrum holes. These
capabilities are fundamental for improving spectrum
utilization, optimizing frequency allocation strategies,
and ensuring reliable communication under congested
conditions. They also support the future development
of intelligent, fully connected communication systems
[1].

However, as spectrum collection and storage
technologies improve, spectrum data has become
increasingly high-dimensional. Research focusing
solely on low-dimensional characteristics, such as
temporal features, is no longer effective, and nowadays
multi-dimensional spectrum prediction is receiving
significant attention. To enhance prediction accuracy,
models must go beyond individual dimensions like
time, frequency, or space. In fact it is necessary
to jointly consider and analyze high-dimensional
interactions, especially in scenarios like 5G/6G IoT,
vehicle networks, and smart cities where a very large
number of devices operate in coordinated clusters.

Feature extraction from multi-dimensional data
method can be categorized into i) Statistical methods;
ii) Neural Networks(NNs)-based extraction methods;
iii) Hybrid methods combining statistics and deep
learning. Statistical methods are the earliest and
simplest, offering strong interpretability. In general
for all these methods, their main objective is to extract
statistical features or map data into a new feature
space using techniques like principal component
analysis (PCA) [2] or change vector analysis (CVA)
[3]. For instance, Chen et al. [4] have proposed a
multi-dimensional feature analysis framework using
time-domain hurst exponent, information entropy,
frequency-domain variance-to-mean ratio, and
short-time Fourier transform-based time-frequency
representations . However, these methods are not
effective in dealing with high-dimensional data and

often lack dynamic feature updating. On the other
hand, NNs can deeply mine nonlinear relationships in
high-dimensional data but usually lack interpretability
and involve rigid module designs [5]. Ji et al. [6]
have proposed a single encoder–multiple decoder
structure to address complex task-specific features,
which unfortunately lacks interpretability from a
physical perspective. To balance interpretability and
learning capacity, hybrid models combining statistical
and deep learning methods have become popular
[7]. These models aim to retain interpretability while
capturing complex, nonlinear features. However, by
converting to one-dimensional symbolic sequences,
important information might be lost. Yan et al.
[8] have addressed issues of non-stationarity and
spatiotemporal correlation by decomposing target
sequences into intrinsic mode functions (IMFs), then
reconstructing them using fuzzy entropy. Yet, many
domain-specific approaches often rely on the intrinsic
physical properties of high-dimensional data, which
limits their scalability and generalization.

EMS prediction is typically categorized by
dimensionality into: one-dimensional time-series
prediction, two-dimensional time-frequency
prediction and higher-dimensional predictions
[9]. As the number of dimensions increases, this
leads to higher computational demands and a
greater need for prior knowledge. Early studies
on this issue have mainly focused on temporal
variations of spectrum, neglecting other dimensional
information, which results in the extracted features
offered limited interpretability [10]. Earlier studies
have considered traditional signal analysis and
statistical models, such as deep Gaussian processes
[11] and Holt’s exponentially weighted moving
average [12]. Deep learning models, like long
short-term memory networks(LSTM) [13] and
gated recurrent unit networks (GRU) [14], have
shown improved performance in one-dimensional
time-series prediction. Other models have considered
statistical and physical features with deep learning for
two-dimensional time-frequency prediction although
they have often relied on frequency features, which
have limited their scalability [15]. For example, Ren et
al. [16] have used CNN-ResNet-based models with
nearest-neighbor interpolation to fill sensing gaps and
reduce sensing costs. Basak et al. [17] have considered
the joint operation of CNN and LSTM for automated
spectrum prediction, using spectrogram matrices and
transfer learning to predict time-frequency sequences
under unknown rates and patterns. Li et al. [18] have
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used graph convolutional networks (GCNs) to extract
hidden time-frequency knowledge. Nevertheless,
as the electromagnetic environment is becoming
more and more complex, researchers have turned
their attention to spatial and other physical-domain
features beyond time and frequency [19]. However,
LSTM-based models still tend to overlook spatial
propagation characteristics [20]. Although the
models extract higher-level spatial features, they
are limited by predefined physical structures and
fixed dimensions [21]. To address this limitation,
Li et al. [22] by using a 3rd Hankelized tensor, have
proposed to model temporal-frequency-spatial data,
framing spectrum prediction as a tensor completion
task. However, such tensor completion methods
requires high computational complexity. On the other
hand, Deng et al. [23] have considered multi-way
normalization on tensor time-series data to isolate
heterogeneous low-dimensional substructures by
using rather simple statistical models with limited
feature extraction capability.

Motivated by the above, in this paper we
present a novel highly-accurate and interpretable
multi-dimensional prediction model for EMS. The
proposed model fully exploits high-dimensional
spectrum features and thoroughly explores
cross-dimensional coupling interactions leading
to a comprehensive understanding and precise
prediction of spectrum dynamics. Furthermore, it
performs multi-dimensional feature extraction
(MFE), tensor-feature fusion (TF), and
temporal-frequency-spatial prediction with temporal
convolutional network (TCN) to support efficient
spectrum utilization and coordinated allocation, and
thus it will be termed as MFE-TFTCN. Within this
framework, the main contributions of this paper can
be summarized as follows:

· We propose a novel MFE module based on
multi-dimensional decoupling. By modeling not
only temporal, frequency, and spatial features but
also theirmutual correlations, themodule exploits
the latent regularities of EMS variations, thereby
improving prediction performance.

· We introduce a temporal convolutional NN
enhanced with a bidirectional cross-attention
mechanism to improve the accuracy and
robustness of spectrum prediction. This
mechanism enables symmetric information
exchange between features and original data, and
assigns attention weights to both salient features

and intra-feature information. It effectively
fuses parallel multi-path features and reduce
redundancy among these decoupled features
and learns multi-scale temporal dependencies of
multi-dimensional sequences.

· Extensive simulations on a real-world
multi-location dataset evaluated with multiple
metrics, demonstrate that the proposed model
outperforms state-of-the-art multi-dimensional
prediction methods. Comparative and ablation
studies further confirm its advantage in
effectively capturing temporal–frequency–spatial
interdependencies.

2 Problem Statement
As common in EMS studies, all elements of the
multi-dimensional spectrum data utilized in this
paper are power spectral density (PSD) functions
having location, time, and frequency as parameters
representing the ratio of the signal power to the
resolution bandwidth measured by a spectrum
analyzer at a specific location. Essentially these PSD
functions reflect the electromagnetic energy present
in a given environment with its value expressed in
dBm. This paper adopts PSD rather than spectrum
occupancy to describe spectrum states. The main
reason for this is that, unlike occupancy data,
which involves both signal energy and noise, PSD
avoids errors introduced during noise extraction and
occupancy calculation.

For a three-dimensional spectrum tensor X ∈ RT×F×S
with time, frequency, and space dimensions, each
element Xt,f,s, t ∈ {1, . . . , T}, f ∈ {1, . . . , F}, s ∈
{1, . . . , S} represents the PSD value measured at time
index t, frequency index f , and spatial location s. The
description of the tensor and its subarrays is shown in
Table 1.

With the advancement of spectrum collection and
storage technologies, EMS data is evolving toward
higher dimensionality. Accurate prediction of
three-dimensional or even higher-dimensional
spectrum data requires more observation perspectives
and higher-quality multi-dimensional features, a
problem which is considered in this paper.

3 Methodology
As illustrated in Figure 1, multi-dimensional EMS
prediction involves a three-dimensional tensor X ∈
RT×F×S , where T is the total number of time steps
in the time dimension, F is the total bandwidth in
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Figure 1. Illustration of the tensor-based data structure for multi-dimensional EMS prediction.

Table 1. Tensor and subarray representation.

Symbol Definition

xt,f,s PSD value at time t,
frequency f , and spatial
locations s

x:,f,s, xt,:,s, xt,f,: Tensor fiber with one
varying dimension while
holding the other two
dimensions fixed

x:,f,s, xt,:,s, xt,f,: Tensor slice with two
varying dimensions while
keeping one dimension fixed

X ∈ RT×F×S The three-dimensional
spectrum tensor

Z ∈ RT×F×S×H The potential
four-dimensional
representation of the
spectrum tensor

the frequency dimension, and S is the number of
discrete spatial locations. By decomposing along the
time axis, we obtain X =

[
X(1), . . . ,X(T )

]
, where

each slice X(t), t ∈ {1, . . . , T} is a signal power
matrix across all frequencies and locations at time.
Its evolution is not only time-dependent, but also

affected in a nonlinearmanner by the other dimensions.
This work aims to predict a future spectrum tensor
Ŷ =

[
Y (T+1), . . . ,Y (T+∆T )

]
, which represents the

spectrum values at future steps across all frequency
and spatial positions, as also illustarted in Figure 1.

3.1 SystemModel
This paper proposes the MFE-TFTCN model, which
constructs a “multi-dimensional decoupling-feature
fusion-temporal-frequency-spatial prediction”
model. The proposed model integrates statistical
methods with deep learning to enable high-precision,
interpretable, and scalable multi-dimensional EMS
prediction and its overall architecture of MFE-TFTCN
is illustrated in Figure 2.

As illustrated in this architecture, firstly the input
three-dimensional historical spectrum tensor
X ∈ RT×F×S is preprocessed using Z-Score
normalization and a fully-connected (FC) layer to
produce a four-dimensional latent representation
Z ∈ RT×F×S×H , where H denotes the number
of hidden channels. Next, the two MFE modules
perform independent and joint feature extraction,
respectively. They extract adaptive features that
capture the independent influence of each dimension
and the interactions across dimensions from Z .
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Figure 2. Block diagram of the MFE-TFTCN model.

These extracted features, together with Z , are passed
through a bidirectional cross-attention module to
enable symmetric information exchange. Then, TCN is
used to learn multiscale temporal patterns. Finally,
the output module, composed of skip connections
and FC layers, transforms the feature dimensions
to produce the predicted spectrum tensor Ŷ =[
Y (T+1), . . . ,Y (T+∆T )

]
, which consists of ∆T time

steps and F × S predicted elements.

3.2 Data Preprocessing
To reduce scale differences across the various
dimensions of the spectrum data, we first apply
Z-Score normalization to the original data, as follows:

Z-Score(xt,f,s) =
xt,f,s − µ

σ
,

t=1,...,T ;
f=1,...,F ;
s=1,...,S

(1)

where xt,f,s is an element of the spectrum tensor, µ
is the sample mean, and σ is the sample standard
deviation. To unify units and stabilize the data
distribution, the commonly used global Z-Score
normalization method is applied to the mean and
standard deviation of all elements in the tensor:

µ =
1

T · F · S

S∑
s=1

F∑
f=1

T∑
t=1

xt,f,s, xt,f,s ∈ X , (2)

σ =

√√√√ 1

T · F · S

S∑
s=1

F∑
f=1

T∑
t=1

(xt,f,s − µ)2. (3)

It is noted that the Z-Score normalization transforms
the data through a linear operation to set the mean to
0 and the standard deviation to 1, which reduces the
scale differences between multi-dimensional features.
It also preserves the relative distances between
samples, making it more aligned with statistical
assumptions [24].

To avoid smaples with insufficient statistics caused
by too few values in the considered dimension, we
employ a FC layer to map the normalized spectrum
data into a four-dimensional space, resulting in a latent
representation of the spectrum data, denoted as Z .
Compared to the original tensor, a hidden channel
dimension is added, which increases the number of
elements within each tensor fiber and tensor slice,
making the data better suited for subsequent statistical
methods.

In the next two sections (3.3 and 3.4), we describe how
the model deeply extracts and analyzes the statistical
features of the data to better identify the variation
patterns and trends across dimensions. It is noted that
the elements in the latent representation are used for
internal computation and learning within the network.

3.3 Multi-dimensional Feature Extraction
To improve the accuracy of temporal-frequency-spatial
spectrum prediction, the model not only captures
the trends of variation in temporal, frequency, and
spatial dimensions, but also extracts high-dimensional
features and the interactions between different
dimensions in the spectrum data. Therefore, the
complex multi-dimensional variations in spectrum
data are decomposed into two parts: i) Independent
changes within each dimension; and ii) Interactions
across dimensions. To capture these two types of
variations, the feature extraction module consists
of an independent feature extraction module and a
joint feature extraction module. The independent
feature extraction module separately captures the
independent variations in time, frequency, and
space. The joint feature extraction module focuses on
interactions between pairs of dimensions, including
time-frequency, frequency-space, and time-space.
Each module is composed of multiple homogeneous
and parallel components. Each component is designed
to extract either an independent variation within
a single dimension or an interaction between two
dimensions. Consequently, the multi-dimensional
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Figure 3. Time-independent feature extraction within the tensor structure of the multi-dimensional EMS.

feature extraction module can adapt to variations in
both the number and types of input dimensions.

Any element in the normalized latent representation
Z ∈ RT×F×S×H of the spectrum data can be indexed
using a four-tuple corresponding to time, frequency,
space, and hidden channel. From a probabilistic
statistical perspective, the variation of spectrum data
along a specific dimension can be described by the joint
distribution its elements. As an example, let us take
the time-independent feature extraction component
(TIFE-T) to illustrate the principle of extracting
independent features in a specific dimension. Its
operation within the context of the tensor structure
of the multi-dimensional EMS is shown in Figure 3.

More specifically, the latent representation Z ∈
RT×F×S×H is split along the time dimension into T
three-dimensional sub-tensors Z(t1), t1 ∈ {1, . . . , T},
each containing F × S ×H elements. Together, these
sub-tensors represent the potential variation patterns
of all frequencies, locations, and hidden channels
at time step t1. The collection {zt1,f,s,h | f =
1, . . . , F ; s = 1, . . . , S; h = 1, . . . ,H} is treated as a
statistical sample for feature estimation:

µt1 = E
[
Z(t1)

]
≈ 1

F · S ·H

F∑
f=1

S∑
s=1

H∑
h=1

zt1,f,s,h, (4)

σt1 =

√
E
[(
Z(t1) − µt1

)2]
≈

√√√√ 1

F · S ·H

F∑
f=1

S∑
s=1

H∑
h=1

(zt1,f,s,h − µt1)2,

(5)

where µt1 and σt1 represent the mean and standard
deviation of Z(t1) respectively. The variations along
the frequency and spatial dimensions are treated as
samples for statistical estimation, and all elements
involved in the computation belong to the same time
step. In Eqs. 4 and 5, the mean and standard deviation
reflect the average signal strength and fluctuation
range at each time step, representing the independent
distribution of the data over time.

In this way, the TIFE-T component isolates and ignores
the frequency and spatial variations, ensuring that
the extracted features are independent along the time
dimension. Given the higher level abstraction of
the data processed by TIFE-T, and the nonlinear and
dynamic nature of these features, each sub-tensorZ(t1)

is further processed by a learnable normalization layer
to obtain the time-independent feature tensor:

ZTIFE-T =
[
Ẑ(1), . . . , Ẑ(T )

]
, (6)

Ẑ(t) =
{
ẑt,f,s,h | f = 1, . . . , F ;

s = 1, . . . , S; h = 1, . . . ,H
}, (7)
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Figure 4. Time-frequency joint feature extraction within the tensor structure of the multi-dimensional EMS.

ẑt,f,s,h =
zt,f,s,h − µt
σt + ε

+ βt · zt,f,s,h, zt,f,s,h ∈ Z(t). (8)

In the above equation ε is a small constant added
to avoid division by zero, γt and βt are learnable
parameters, where γt represents data-dependent
dynamic weights and βt is a static bias term
independent of the data. Clearly, the TIFE-T
component outputs the time-independent feature
tensor ZTIFE-T. This statistical approach approximates
the marginal distribution P (Zt,f,s,h | t ∈ {1, . . . , T}),
capturing and quantifying the independent impact
of temporal variations. Similarly, the frequency-and
spatial-independent feature extraction components
follow the same procedure as TIFE-T and output
the corresponding feature tensors ZTIFE-F and ZTIFE-S
respectively.

In real scenarios, due to dynamic spectrum access and
other multi-dimensional collaborative communication
technologies, spectrum data no longer varies
independently along a single dimension. Instead,
it exhibits complex, nonlinear couplings across
dimensions. To model such cross-dimensional
variations, it is necessary to introduce pairwise joint
feature representations. Taking the time-frequency
joint feature extraction (TFJFE-TF) component as
an example, the principle of time-frequency joint
feature extraction within the tensor structure of the
multi-dimensional EMS is illustrated in Figure 4.

The four-dimensional tensor at the input is
decomposed simultaneously along the time

and frequency dimensions to generate a set of
two-dimensional sub-matrices extending across both
dimensions:

Z =

Z
(1,1) . . . Z(1,T )

... . . . ...
Z(F,1) . . . Z(T,F )

 . (9)

Each sub-matrix is then subjected to statistical
processing to generate a joint feature tensor that Z
varies along these two dimensions, i.e.:

ZTFJFE-TF = TFJFE-TF(Z)

=


Ẑ

(1,1)
. . . Ẑ

(1,T )

... . . . ...
Ẑ

(F,1)
. . . Ẑ

(T,F )

 , (10)

where ZTFJFE-TF denotes the joint time-frequency
feature tensor, and TFJFE-TF(·) represents
the operation of the time-frequency joint
feature extraction component. Furthermore,
Ẑ

(t,f) ∈ RS×H , t ∈ {1, . . . , T}, f ∈ {1, . . . , F} refers to
the two-dimensional feature sub-matrix extracted at
time step t and frequency point f , with the set of all
Ẑ

(t,f), {ẑt,f,s,h | s = {1, . . . , S};h = {1, . . . ,H}} used
as samples for statistical feature estimation:

µt,f1 = E
[
Z(t1,f1)

]
≈ 1

S ·H

S∑
s=1

H∑
h=1

ẑt1,f1,s,h, (11)
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σt,f1 =

√
E
[(

Z(t1,f1) − µt1,f1
)2
]

≈

√√√√ 1

S ·H

S∑
s=1

H∑
h=1

(ẑt1,f1,s,h − µt1,f1)2,

(12)

where each element ẑt1,f1,s,h in the latent
representation is a scalar. µt1,f1 and σt1,f1 represent
the mean and variance of Z(t1,f1) at time step t1 and
frequency point f1, respectively. In this case, it is clear
that computed µt1,f1 and σt1,f1 vary only with the
combination of time and frequency. The mean and
standard deviation characterize the joint variation
pattern of the spectral data across the time-frequency
dimensions, thereby decoupling the influence of
the spatial dimension. We further apply learnable
parameter-based normalization to the corresponding
two-dimensional sub-matrixZ(t1,f1) to obtain the joint
time-frequency feature tensor:

ZTFJFE-TF =


Ẑ

(1,1)
. . . Ẑ

(1,T )

... . . . ...
Ẑ

(F,1)
. . . Ẑ

(T,F )

 , (13)

Ẑ
(t1,f1)

=
{
ẑt1,f1,s,h | s = {1, . . . , S};

h = {1, . . . ,H}
} , (14)

ẑt1,f1,s,h = γt1,f1
ẑt1,f1,s,h − µt1,f1

σt1,f1 + ε
+ βt1,f1 , (15)

where γt1,f1 and βt1,f1 are the learnable parameters
at time step t1 and frequency point f1, ε is a small
constant added to avoid division by zero. Thus,
ZTFJFE-TF is output as the joint time-frequency feature
tensor. Through this approach, the derived statistics
approximate the joint distribution P (Zt,f,s,h | t ∈
{1, . . . , T}; f ∈ {1, . . . , F}) of the two dimensions,
extracting and quantifying the interaction between
time and frequency. Similarly, the frequency-space and
time-space joint feature extraction modules undergo
analogous processing, providing the feature tensors
ZTFJFE-FS and ZTFJFE-TS.

The next step is to combine adaptive learnable
parameters with underlying statistical features to
complete the feature extraction for three-dimensional
sub-tensors at each time step. This hybrid method,
integrating statistical and deep learning-based feature
extraction, leverages the strengths of both approaches.
On one hand, the time-varying mean and variance
derived from statistical methods fully utilize the
physical significance of measured data, enhancing
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Figure 5. Tensor feature fusion module based on a
multi-dimensional bidirectional cross-attention

mechanism.

model interpretability. On the other hand, the
end-to-end loss minimization dynamically adjusts the
learnable parameters, capturing complex patterns in
the data and improving nonlinear feature extraction
capability of the model, thereby compensating for
the computational limitations of purely statistical
methods.

3.4 Feature Fusion and Prediction
When describing an object, two key questions arise.
The first one is "what" the object contains and the
second one is "where" the object is located. By focusing
on the "what," the position of the object can be quickly
identified, while "what" defines its internal structure,
enabling rapid localization.

Extending this concept to NNs, the feature
pathway describing "where" and the historical
data pathway describing "what" exhibit a symmetric
and interdependent relationship, leading to nearly
symmetrical attention patterns. Motivated by this
analogy, we introduce a bidirectional cross-attention
mechanism for cross-dimensional feature fusion
[25]. This mechanism interactively learns the mutual
dependencies between historical data and features,
enhancing cross-dimensional representations while
reducing redundant information and shrinking the
scale of input features for the prediction model. The
operation of the tensor feature fusion module, based
on a multi-dimensional bidirectional cross-attention,
is illustrated in Figure 5.

First, normalization is applied to refine the two data
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pathways. Reference values are generated using
learnable linear projections of the input data: the
feature pathway creates reference valuesRtok ∈ RN×D
and Vtok ∈ RN×D, while the historical data pathway
creates reference values Rlat ∈ RN×D and Vlat ∈
RN×D:

Rtok = Ztok ·WRtok ,WRtok ∈ RDtok×D, (16)

Rlat = Zin ·WRlat ,WRlat ∈ RDlat×D, (17)

Vtok = Ztok ·W Vtok ,W Vtok ∈ RDtok×D, (18)

Vlat = Zin ·W Vlat ,W Vlat ∈ RDlat×D, (19)

where, a set of N = 6 learnable independent and
joint feature tensors serve as the input for the feature
pathway, processed in parallel as:

Ztok = Concat
(
ZTIFE-T,ZTIFE-F,ZTIFE-S,

ZTFJFE-TF,ZTFJFE-TS,ZTFJFE-FS

)
.

(20)

Meanwhile, the latent representation of the original
spectral data, containing raw information, is used as
the input Zlat = Z ∈ RT×F×S×H for the historical
data pathway. Thus, the feature pathway continuously
extracts contextual information from the historical data
pathway through iterative updates of(Rlat,Vlat), while,
the historical data pathway progressively captures
abstract information from the feature pathway via
iterative updates of (Rtok,Vtok). Following the
multi-head attention mechanism, the correlation
between each feature in Zin and Ztok is computed,
producing a cross-correlation matrixA:

Alat,tok =

(
RlatR>tok√

D

)
= A

>
tok,lat, (21)

where Alat,tok and A
>
tok,lat represent the correlation

matrices from the feature pathway to the historical data
pathway and vice versa. Through cross-learning, the
two pathways capture each other’s inherent symmetric
tendencies. Using thesematrices and value tensors, the
module computes attentionweights for both pathways:

∆attn
lat = softmax

(
Alat,tok

)
· Vtok, (22)

∆attn
tok = softmax

(
Atok,lat

)
· Vlat, (23)

where ∆attn
lat and ∆attn

tok denote the attention-weighted
outputs. The historical data pathway’s attention
weights ∆attn

lat incorporate information from the feature
pathway’s value tensor Vtok, iteratively infusing
feature-derived knowledge into the historical data

pathway. Similarly, historical data insights are
progressively integrated into the feature pathway.

Finally, on the feature pathway, the symmetrically
attended weights ∆attn

lat , which are now enriched with
historical data information, are combined with the
historical pathway’s reference values Vlat to refine the
feature data:

Ẑlat = MLP
(
Norm

(
∆attn

lat + Zin
))

+∆attn
lat +Zin, (24)

where a linear layer normalizes the attention-weighted
input: ZNorm = Norm(Zin) = γ � ∆attn

tok +Zin−µ
σ+ε +

β, where � denotes element-wise multiplication,
γ denotes scaling parameter and β denotes offset
parameter. Finally, a multilayer perceptron MLP(·)
further adjusts the normalized features locally to
enhance representation.

3.5 Temporal Convolutional Network and Output
Module

For the above mentioned fused features Ẑlat, a TCN is
employed to extract temporal causality and long-term
dependencies in the data, enabling predictions of
future wideband spectrum measurements across
multiple locations.

The TCN consists of residual blocks with varying
spans, each comprising dilated causal convolution,
weight normalization, activation functions, and 1 ×
1 convolution. Through parameter confguration,
the dilated causal convolution learns temporal
dependencies at different receptive felds. Weight
normalization stabilizes training by reparameterizing
convolutional filters to improve gradient flow, while
activation functions introduce nonlinearity to enable
the extraction of complex temporal dependencies. The
1×1 convolution adjusts feature dimensions to capture
evolving temporal patterns.

The output module incorporates skip connections
[26] to preserve rich structural features, feeding
multiple TCN layers into FC layers for multi-step
predictions. Specifically, the output block contains
two FC layers with ReLU activation, transforming
hidden representations into the target output space.
Mathematically, this can be expressed as:

Ŷ = φ
(
φ
(
Ẑ
)
∗Wo1 + bo1

)
∗Wo2 + bo2, (25)

where Wo1 ∈ RH×H , bo1 ∈ RH , Wo2 ∈ RH×∆T ,
bo2 ∈ R∆T represent the filter weights and biases.
∗ denotes matrix multiplication. φ(·) denotes the
element-wise ReLU activation function. Ŷ ∈ R∆T×F×S

9
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represents the predicted results for F positions
and S locations at time step size ∆T . The FC
layers integrate the sequential features learned by
previous layers and map them to the target output,
thus completing the transformation from sequential
features to final predictions. For the loss function
design, an end-to-end Mean Squared Error (MSE)
criterion is adopted to train the model, using it as the
evaluation metric, i.e.:

MSE =
1

∆T · F · S

S∑
k=1

F∑
j=1

∆T∑
i=1

(yi,j,k − ŷi,j,k)2 , (26)

where yi,j,k, ŷi,j,k denote ground truth and predictions
respectively. The MSE loss aligns with our MFE
principle by assuming normal distribution of errors.
Compared to alternatives, e.g. Mean Absolute Error
(MAE) Loss Function, its adaptive gradientmagnitude
enables stable convergence even with fixed learning
rates. The model continuously updates hidden layers
through backpropagation to minimize MSE between
predictions and ground truth, ultimately achieving
optimal multi-dimensional forecasting performance.

4 Experiments and Performance
4.1 Experimental Setup
4.1.1 Dataset Description
The experiments used the publicly available European
dataset, and its key characteristics are summarized
in Table 2. The original dataset has a temporal
resolution of 10 seconds and a frequency resolution
of 20kHz [27]. Downsampling is applied along the
time and frequency dimensions using averaging [28],
resulting in a tensor of shape (1440, 30, 3), where the
number 1440 represents the time dimension (6-minute
resolution, aggregating 6 days of data); the number 30
denotes the frequency dimension (10 MHz resolution,
covering 300 MHz) and the number 3 corresponds to
the spatial dimension i.e. threemeasurement locations.

Table 2. European dataset overview.

Dataset ElectroSense

Site Switzerland, Netherlands,
United Kingdom

Collection Time 2021.5.2 7:00-2021.5.8 7:00
Frequency Band 2400-2700MHz

Temporal Resolution 10s
Frequency Resolution 20kHz

All experiments have been implemented using Python

3.6 and Matlab R2022b, with CUDA 11.1 for GPU
acceleration. The hardware platform employs an AMD
Ryzen 7 5800H with Radeon Graphics and an NVIDIA
GeForce RTX 3060 Laptop GPU.

4.1.2 Evaluation Metrics
To quantitatively assess the performance of structural
missing data reconstruction, two widely used metrics
in data imputation and regression have been adopted.
The first one is the Root Mean Squared Error (RMSE),
which measures the square root of the average squared
deviations between predicted and true values, i.e.:

RMSE =

√√√√ 1

T · F · S

S∑
s=1

F∑
f=1

T∑
t=1

(yt,f,s − ŷt,f,s)2.

(27)

The second one was the Mean Absolute Percentage
Error (MAPE)which computes the relative percentage
error between predictions and ground truth,
providing a clear indication of reconstruction accuracy.
Mathematically, this can be expressed as:

MAPE =
1

T · F · S

S∑
s=1

F∑
f=1

T∑
t=1

∣∣∣∣yt,f,s − ŷt,f,syt,f,s

∣∣∣∣× 100%,

(28)
where ŷt,f,s and yt,f,s are the true and predicted values,
respectively, and t ∈ {1, . . . , T}, f ∈ {1, . . . , F}
index the time, frequency, and spatial dimensions.
Additionally, the required running time was used to
evaluate computational complexity.

4.1.3 Parameter Configuration
The input data have been partitioned into training,
validation, and test sets at an 8:1:1 ratio. The model
took 15 previous time steps as input to predict the
subsequent 1-3 steps. During training and testing, the
batch size was fixed at 8 with a learning rate of 0.0001.
The fully-connected layers have been configured with
16 and 20 hidden channels for the European dataset.

The feature extraction module employed three
parallel independent extractors and three joint
extractors to process the three-dimensional
input data, whose six output feature tensors are
weight-fused and normalized via Sigmoid function.
The dimension-aware TCN architecture incorporated
16 attention heads, where each causal dilated
convolution uses a kernel size of 2 with dilation
factor 2. The entire model is trained end-to-end using
accumulated mean squared error loss.
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Table 3. Performance comparisons for different models in multi-steps prediction on the European dataset.

location steps BHT-
ARIMA

ROSP CNN LSTM DeepGLO-
TCN

TTS-
Norm

MFE-
TFTCN

1 1.2758 1.1422 0.8456 0.736443 0.8001 0.7086 0.4686
Switzerland 2 1.3144 1.3886 0.8864 0.7593 0.8256 0.7472 0.4715

3 1.3454 1.5183 0.8562 0.7954 0.8612 0.7810 0.4744
R 1 1.0636 0.9927 0.6846 0.5696 0.6286 0.5819 0.4399
M United Kingdom 2 1.0763 1.1200 0.7445 0.5745 0.6992 0.6235 0.4390
S 3 1.1095 1.3192 0.7559 0.5893 0.7163 0.6456 0.4451
E 1 1.1861 1.0846 0.8268 0.5921 0.6409 0.6219 0.4427

Netherlands 2 1.2015 1.2976 0.8700 0.6052 0.8228 0.6406 0.4457
3 1.2391 1.4342 0.8467 0.6249 0.8408 0.6518 0.4456

1 1.2104 1.1696 0.8324 0.5236 0.8291 0.5087 0.3204
Switzerland 2 1.2610 1.2731 0.9442 0.5345 0.9373 0.5643 0.3228

M 3 1.3065 1.4944 0.9441 0.5549 0.9850 0.5985 0.3276
A 1 1.0098 0.9263 0.6265 0.3222 0.6455 0.4334 0.2565
P United Kingdom 2 1.0302 1.0998 0.8405 0.3454 0.8111 0.4504 0.2559
E 3 1.0807 1.2108 0.8346 0.3580 0.8613 0.4621 0.2565

(%) 1 1.1200 1.0289 0.7047 0.3773 0.7168 0.4568 0.2784
Netherlands 2 1.2083 1.2600 0.8354 0.4007 0.7819 0.4726 0.2817

3 1.2300 1.3214 0.8276 0.4199 0.7977 0.4760 0.2805

4.2 Comparative Performance Experiments
To quantitatively evaluate the predictive performance
of the proposed model, six previously used
multi-dimensional forecasting methods were
selected as benchmarks, namely BHT-ARIMA [29],
ROSP [30], CNN [31], LSTM [32], DeepGLO-TCN
[33] and TTSNorm [23]. To ensure fair comparisons,
all models underwent hyperparameter optimization
to ensure peak performance. To mitigate randomness,
non-deep learning models were evaluated using
10-trial averages, while deep learning models used the
average test errors from 10 post-training runs.

The obtained performance results have been
summarized in Table 3, where it can be seen
that the MFE-TFTCN model achieves the lowest
prediction errors in the prediction task of
temporal-frequency-spatial EMS. Compared to
the second-best model, MFE-TFTCN reduces the
average RMSE by 23.57% and MAPE by 25.03%. The
superior performance stems from its ability to capture
multi-dimensional interactions through bidirectional
cross-attention mechanisms, enabling selective feature
learning across frequencies and locations.

Among all the considered baseline models,
BHT-ARIMA shows the worst single-step prediction
accuracy due to its statistical nature being vulnerable
to spectrum data randomness; ROSP performs poorly

in multi-step forecasting as its tensor completion
framework lacks computational capacity for handling
missing data bursts; DeepGLO-TCN and similar deep
learning models exhibit 24.30% higher RMSE variance
across locations compared to MFE-TFTCN, as they
primarily focus on temporal-scale interactions while
neglecting frequency-space dimension couplings.

4.3 Ablation Experiments
To validate core modules, we conducted the following
ablation studies by modifying MFE-TFTCN:

a)w/o TFTCN: Removes the bidirectional
cross-attention fusion module

b)w/o MFE & TFTCN: Retains only the TCN and
output layers, with both feature extraction and fusion
modules removed

All model variants are trained with identical
parameters and under the same conditions. Results
averaged over 10 test runs and 3 locations are
visualized in Figure 6, demonstrating the contribution
of each module to prediction accuracy.

Compared to the removal of TFTCN variant, the
MFE-TFTCN model achieves 28.03% and 31.28%
reduction in RMSE and MAPE, respectively.
This improvement stems from the bidirectional
cross-attention mechanism the ability to dynamically
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Figure 7. Average prediction error performance of the
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across three measurement locations, as presented in
Figure 7.

When trained under identical conditions (10-run
average across 3 locations), the complete MFE
model achieves the lowest errors, proving its
multi-dimensional feature extraction capability. The
w/o MFE variant performs worst due to its failure to
capture cross-dimensional dependencies, processing
each temporal sequence in isolation.

Both w/o TFJFE and w/o TIFE show intermediate
performance, confirming that spectrum data exhibits
both dimension-specific patterns (e.g., tidal effects
in time, antenna configurations in space) and
cross-dimensional interactions (e.g., time-frequency
characteristics for dynamic spectrum sharing,
frequency-space transmission loss patterns). The
w/o TFJFE model retains dimension-isolated features
like signal bandwidth determinants and spatial
distribution patterns, while w/o TIFE preserves
critical cross-dimensional relationships essential for
modern spectrum sharing systems.

4.4 Different Normalization Experiments
To investigate the effect of different normaliza-tion
approaches prior to feature extraction, we evaluated
three variants of the MFE-TFTCN model with
alternative standardization methods:

a) Global normalization: Applies Z-score
standardization using the mean and standard
deviation computed across all elements in the spectral
tensor and is used in performance comparisons and
ablation studies.

b) Spatial normalization: Performs Z-score
standardization separately for each geographical
location using location-specific statistics.
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and MAPE by 3.72%compared to the second-best approach. 
This method applies uniform standardization across all 
elements of the multidimensional spectrum data, offering low 
computational complexity while achieving optimal results on 
the homogeneous European dataset, indicating strong 
generalization capability. 

Spatial normalization exhibited the smallest performance 
variance across locations, decreasing RMSE disparity by 26.7% 
and MAPE by 8.89% relative to global normalization. This 
improvement stems from its location-specific normalization 
process that accentuates inter-site data variations, making it 
particularly suitable for scenarios requiring precise location-
focused predictions.  

 

  
(a)9 The variation of RMSE with the prediction size at the 

European dataset. 
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ultimately selected global normalization for our predictive 
model. 

(2) Historical Time Window Analysis 
To investigate the impact of the historical data time step, 

this chapter sets the historical data time step from 3 to 21. 
Under the same environment and model settings, the model is 
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During visualization, the average error of all locations and all 
time steps is calculated, resulting in Fig.10.  
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prediction error of the model gradually decreases. The RMSE 
decreases by an average of 5.6% each time and MAPE by 
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3.36% each time and MAPE by 3.26%. Simultaneously, the 
average training time per cycle of the prediction model 
exhibits an exponential-like growth, increasing from 3.0 
seconds at a historical step of 3 to 63.46 seconds at a historical 
step of 18.  

As the historical data time step increases, the information 
available to the network gradually grows, leading to a 
reduction in prediction error. However, the average training 
time increases significantly. Therefore, to balance complexity 
and prediction performance, a historical data time step of 15 
is selected as the optimal model setting. This choice 
adequately captures the nonlinear correlations in the data 
while avoiding excessive computational costs caused by 
overly large data representations. 

(3) Hidden Dimension Size Analysis 
To investigate the impact of hidden channel dimensions on 

model performance, we evaluated hidden sizes ranging from 
10 to 24 while keeping other parameters constant. All models 
were trained under identical conditions, with results averaged 
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which is shown in Fig.11.  
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while avoiding excessive computational costs caused by 
overly large data representations. 
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Figure 9. MAPE performance vs. prediction step for each location.

c) Frequency normalization: Conducts Z-score
standardization independently for each frequency
point along the frequency dimension.

All normalization variantswere trained under identical
hyperparameters and environmental conditions. The
results represent averagemetrics from 10 test iterations,
with location-wise mean errors visualized in Figure 8
and Figure 9.

The global normalization method demonstrated
marginally superior performance, reducing RMSE
by 1.70% and MAPE by 3.72%, compared to
the second-best approach. This method applies
uniform standardization across all elements of
the multi-dimensional spectrum data, offering low
computational complexity while achieving optimal

results on the homogeneous European dataset,
indicating strong generalization capability.

5 Conclusion
This paper has proposed a novel multi-dimensional
feature extraction and fusion method (MFE-TFTCN)
that addressed the challenges of high-dimensional
and cross-dimensional feature learning in spectrum
prediction through a dimension-decoupling approach.
The MFE-TFTCN architecture employed parallel
homogeneous modules combining statistical and
deep learning approaches, making it inherently
adaptable to higher-dimensional prediction tasks
beyond EMS applications. Experimental results on the
real-world multi-location dataset have demonstrated
superior performance compared to the state-of-the-art
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multi-dimensional forecasting models, achieving
the average reductions of 23.57% in RMSE and
25.03% in MAPE. The proposed model maintains
stable prediction accuracy across varying forecasting
horizons and geographical locations.
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