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Abstract
Genomic information is increasingly leveraged
for the precise prediction of crop traits, with
the adoption of advanced genomic prediction
techniques resulting in substantial improvements
in both crop yield and quality. However,
traditional genomic prediction methods exhibit
notable limitations in capturing long-range
dependencies and fully utilizing prior information
from chromosome structure. In this work, two
novel Transformer models fusing chromosome
conformation and genomic information have been
proposed. One is the chromosomal self-attention
fusion model, which captures cross-chromosomal
interactions more precisely by introducing
chromosomal conformation information into
the self-attention mechanism of the Transformer.
The other is the chromatin interaction squeeze
excitation model, which extracts global features
of the chromosome from all single nucleotide
polymorphism sites on each chromosome. It
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then employs the chromatin interaction matrix
to perform a weighted fusion of these global
features, enabling the effective utilization of
inter-chromosomal information. In addition, two
novel metrics are introduced to comprehensively
assess the effectiveness of the internal self-attention
mechanism. They quantify the concentration of
attention while measuring the alignment between
the attention distribution and the chromosomal
interaction priors. Experiments show that the two
proposed models exhibit significant advantages in
predicting soybean oil content and protein.

Keywords: transformer, information fusion, chromosome
interaction, genomic prediction, soybean traits.

1 Introduction
Soybeans, ranking among the world’s three major
staple crops, serve not only as a crucial food source but
also as an important economic crop, with its cultivation
spanning numerous countries across the globe [1].
According to data from the Food and Agriculture
Organization of the United Nations, the global total
soybean output reached 422 million tons in 2024, with
approximately 80% of it being utilized to produce
plant-based proteins and vegetable oils to meet the
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ever-increasing food demands. Soybeans are rich in
high-quality proteins and fats, and are extensively used
in food processing and feed production. They aremore
easily digestible by animals compared to crops like
corn, sorghum, and oats. Additionally, the unsaturated
fatty acids found in soybeans, particularly linoleic acid
which is beneficial to human health, have also garnered
significant attention. However, soybean production is
constrained by various environmental factors such as
biotic stresses, heatwaves, droughts, and floods, which
result in inconsistent product quality. Consequently,
enhancing both the yield and quality of soybeans has
emerged as a crucial objective in the development
of modern agriculture. Currently, leveraging genetic
engineering breeding techniques to enhance the oil
and protein content of soybeans, thereby boosting
both their yield and nutritional value, has emerged
as a prominent area of focus in academic research and
agricultural production [2].

Trait prediction based on genotype data stands
as a pivotal approach in soybean breeding, with
numerous studies already having demonstrated its
immense potential [3]. As high-throughput genome
sequencing technologies become more widespread,
accessing genotype information for soybeans has
become increasingly convenient. Consequently, the
research focus in this field has shifted towards
efficiently and accurately transforming these data into
phenotypic predictions [4].

Traditional statistical-based genomic prediction
methods can be broadly classified into two main
categories: best linear unbiased prediction (BLUP) and
Bayesianmodels. The former encompasses approaches
such as genomic BLUP (GBLUP) [5] and single-step
BLUP (SSBLUP) [6]. GBLUP stands as one of the most
classical algorithms, which employs a mixed linear
model to solve a linear system incorporating genomic
information for estimating breeding values. Despite
its effectiveness, the algorithm’s assumption of a linear
relationship between genes and traits inherently limits
its capability in handling complex traits. The latter
includes methods such as BayesA [7], BayesB [7],
BayesC [8], BayesCπ [8], and BayesLASSO [9], among
others. Although these approaches are theoretically
capable of better capturing nonlinear relationships,
they generally entail higher computational complexity
and impose stricter data requirements.

In recent years, the rapid advancement of machine
learning has facilitated the application of numerous
nonlinear models in genomic prediction, yielding

promising predictive outcomes. Examples of such
models include support vector machine (SVM) [10],
random forest (RF) [12], and gradient boosting
machine (GBM) [11], etc. Recently, SVM has been
effectively employed to construct predictive models
for the developmental stages and yield of rice in China
[13]. RF has been utilized to accurately predict the
flowering time of six traits in Arabidopsis thaliana
[14]. Additionally, RF has been applied to forecast
the backfat thickness of a Brazilian beef cattle breed,
resulting in a model that is computationally efficient
during the training phase and exhibits high accuracy
[15]. Furthermore, GBM has been used to make
precise yield predictions for the ZhengDan958 maize
hybrid variety [16].

Despite their effectiveness, current machine learning
methods in genomic prediction still face major
challenges related to inadequate feature design and
poor generalization capabilities [17]. Many of
these methods rely on manually constructed features,
making it difficult to fully leverage the key information
present in large-scale genotypic data. Moreover, when
the number of training samples is significantly lower
than that of the prediction samples, their performance
improvements are not substantial [18, 19].

To address these challenges, an increasing number
of studies have begun to explore the application
of neural networks, such as deep neural networks
(DNN) [20] and convolutional neural networks
(CNN) [21], in genomic prediction. Compared
with traditional machine learning models, neural
networks not only possess a stronger capacity for
nonlinear fitting but also can more directly reflect
the intricate relationships between genotypes and
phenotypes. Besides, they simplify the learning
rules through backpropagation [22]. In recent
studies, DNN has been utilized to construct the
DNNGP framework, thereby expediting the progress
in improving plant agronomic traits [23]. A DualCNN
architecture, based on a two-stream convolutional
neural network framework, has been designed
to predict the quantitative trait effects of single
nucleotide polymorphisms (SNPs) and elucidate the
contributions of genotypes to phenotypic variations
[24]. Additionally, a Bi-GRU model, built upon the
gated recurrent unit (GRU), has been proposed to
capture long-term dependencies within sequences and
better depict the intrinsic spatiotemporal dynamic
characteristics of the sequences [25].

Furthermore, a model integrating CNNwith extended
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one-hot encoding has been proposed to predict
economic traits such as growth rate and lean meat
percentage in pig populations, thereby enhancing
breeding efficiency [26]. Meanwhile, long short-term
memory network (LSTM) [27] has been employed
to accurately identify DNA-protein binding sites
from DNA sequences [28]. Subsequently, another
classic model that utilizes the Transformer encoder,
DNABERTT [32], is designed to capture the contextual
information in the human genome sequence and learn
the patterns and structures of genetic sequences [29].
Similarly, the Enformer model, also based on the
Transformer architecture, has been applied to the study
of human DNA sequences, significantly improving
the accuracy of predictions derived from genomic
sequences [30]. Recent research has further expanded
the application of Transformer in genomic prediction:
the EBMGP model is proposed with elastic net feature
selection and Transformer embeddings to enhance
predictive performance [35]; an improved Transformer
scheme incorporating batch normalization and cosine
annealing algorithms is developed specifically for
soybean breeding data [36]. Additionally, a GPformer
model combining genome-wide association studies
with deep learning has been devised for genomic
prediction [31].

Notably, multimodal learning and interpretability
research are emerging as new trends in genomic
prediction. First, a systematic review of multimodal
deep learning integration in plant breeding is
conducted [37], which lays the groundwork for the
field. Building on this foundation, a framework
for analyzing attention mechanisms in genomic
Transformer models is proposed to provide new
perspectives for biological interpretation [38].
Furthermore, a multimodal Transformer model
enabling cell-type-agnostic regulatory prediction is
developed [39]. These advances collectively signify
the field’s evolution from unimodal prediction toward
multimodal interpretable analysis.

With the continuous advancement of genomic
technologies, trait prediction based on genomic
information has emerged as a crucial tool for precision
breeding. However, current methodologies still
fall short in capturing long-range dependencies
and integrating prior knowledge of chromosomal
structures. To address these limitations, we leverage
soybean SNPdata alongwith chromosomal interaction
information for trait prediction, resulting in the design
of two innovative Transformer models. The primary
contributions of this work are outlined as follows:

• A chromosomal self-attention fusion model
(CSAFM) has been proposed to fully leverage
chromosomal interaction information. By
introducing inter-chromosomal correlation
weights into the self-attention mechanism, it more
accurately captures interactions across different
chromosomes;

• A chromosomal interaction squeeze excitation
model (CISEM) has been proposed to
effectively capture interactions across different
chromosomes. By extracting and reweighting
global features at the chromosomal level, it can
adaptively capture regulatory information across
chromosomes, thereby enhancing the accuracy of
genomic predictions;

• Two novel evaluation metrics have been
introduced to comprehensively assess the
effectiveness of the self-attention mechanism
within the model.

The rest of this article is organized as follows. Section 2
introduces two genomic prediction models designed
with Transformer. Section 3 presents two evaluation
metrics to comprehensively assess the effectiveness
of the self-attention mechanism. Section 4 provides
two examples to evaluate the performance of the
proposed methods on real-world data. Section 5 gives
the conclusion.

2 Methodology
In this section, we introduce two predictive models,
CSAFM and CISEM, which incorporate chromosomal
interaction information at distinct stages to enhance
their ability to capture long-range dependencies and
interactions across different chromosomes.

2.1 CSAFM
To fully leverage the interaction information between
chromosomes, we propose the CSAFM based on the
Transformer architecture, with its overall framework
illustrated in Figure 1. CSAFM takes into account
both the local information of chromosomes and the
global interaction information across chromosomes
when calculating the attention scores. Specifically,
we introduce a matrix B ∈ Rn×dk that contains
chromosomal interaction information, where n is the
number of SNP locus and dk is the feature dimension
of each SNP locus, to represent global correlations into
the self-attention mechanism of the Transformer. This
matrix is loaded as a trainable bias term to the key
matrixK ∈ Rn×dk . Thus, the attention mechanism is
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Figure 1. CSAFM architecture.

redesigned as follows:

Attention(Q,K,V ;B)

= softmax

(
Q(K ⊕B)T√

dk

)
V , (1)

where Q = [QT
1 , . . . ,Q

T
n ]T ∈ Rn×dk and V ∈

Rn×dk are the query matrix and the value matrix
in the self-attention mechanism, respectively. And
softmax(·) is an activation function that normalizes
the weights. Additionally, ⊕ represents the operation
of loading chromosomal interaction information into
the corresponding SNP site keys. Specifically, for the
queryQi at the i-th position, we haveQi(K ⊕B)T =
Qi(K +Bi)

T withBi = [bTi1, . . . , b
T
in]T ∈ Rn×dk , here,

the bias term bij (j = 1, . . . , n) is derived from the
chromosomal interaction matrixH ∈ RG×G, and the
specific expression given by

bij =
[
Hc(i)c(j),Hc(i)c(j), . . . ,Hc(i)c(j)

]
∈ R1×dk , (2)

where c(i), c(j) denote the chromosome numbers of
tokens i and j, respectively.
In fact, the key K in the self-attention mechanism
typically represents the static content of input
tokens, whereas global prior information, such
as chromosomal interactions, is more suitable for
integration into the key as memory-like information.
Loading this global prior onto the query Q could
potentially disrupt the representation of the queries
themselves, thereby degrading the matching
effectiveness. By applying the bias to the key K
instead, we can fully leverage the global prior while
preserving the stability of the query matrix Q,
ultimately enabling better regulation of the attention
scores.
In the task of soybean trait prediction, each token
can be regarded as representing a single SNP locus.

The following lemma and theorem demonstrate how
CSAFM adaptively enhances the attention weights of
important tokens.
Lemma 1. Let a = [a1,a2, . . . ,an] ∈ Rn be a vector,
and wi = exp(ai)/

∑n
j=1 exp(aj) (i = 1, . . . , n) be its

softmax weights. Define b = [b1, b2, . . . , bn] ∈ Rn such
that bi ≥ bj if and only if ai ≥ aj (i.e., b preserves the
order of a). Let ã = a + b, with softmax weights w̃i =
exp(ãi)/

∑n
j=1 exp(ãj). Then, the maximum component

of w̃i strictly exceeds the maximum component of wi, i.e.,

max
i
w̃i > max

i
wi. (3)

Proof. See Appendix A.

Theorem1. Introducing a bias term into the keys within the
Transformer architecture enables the amplification of the ratio
of attention weights among distinct SNP sites, provided that
the bias term fulfills specific conditions. Furthermore, this
incorporation concurrently reinforces the attention weight
allocated to the most pivotal tokens.

Proof. See Appendix B.

From Theorem 1, we observe that CSAFM enhances
each token’s latent representation by directly
superimposing a bias on the key K, thereby
incorporating global contextual information from the
chromosome interaction matrix (CIM)H . Therefore,
this model has the following three advantages:
• When a token’s chromosome exhibits strong

interactions with other chromosomes, its
corresponding bias value increases, directly
elevating the attention score between this token
and the query Q. This means the model pays
more attention to the features of SNPs located
on chromosomes with stronger interactions,
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Figure 2. CISEM architecture.

facilitating the learning of cross-chromosomal
regulatory information;

• When two tokens are similar in content but their
respective chromosomes do not interact strongly,
their attention scores decrease relatively. This
design effectively mitigates the issue of weight
misallocation that can arise from relying solely on
local semantic similarity, preventing the model
from overemphasizing irrelevant tokens due to
superficial feature similarities. Consequently,
it reduces erroneous attention assignments and
enhances the robustness;

• By integrating the CIM into the key K, the
attention distribution after softmax normalization
becomes more concentrated. Intuitively, this
is akin to the model placing greater emphasis
on significant inter-chromosomal interactions
rather than giving equal attention to all SNPs.
This approach minimizes noise interference and
improves the quality of modeling gene regulatory
information.

2.2 CISEM
In this subsection, we will introduce another approach,
CISEM, whose architecture is illustrated in Figure 2.
CISEM incorporates a squeeze excitation (SE) module
combined with a CIM after the self-attention module
in the Transformer. This approach aims to enhance
the ability to adaptively capture cross-chromosome
regulatory information through global feature
extraction and re-weighting at the chromosome level,
thereby improving prediction accuracy.
For the input SNP feature matrix X ∈ Rn×dk , after
passing through the multi-head self-attention module,
a residual connection is applied to obtain:

X̃ = Self-Attention(X) +X, (4)

Then, after layer normalization, the result is obtained
as follows:

Y = LayerNorm(X̃), (5)

where LayerNorm(·) refers to the layer normalization
operation.
In Equation (5), Y has captured the global
dependency information within the input
sequence, but the prior information regarding
the inter-chromosomal structure has not yet been
introduced.
Assume that the soybean genome consists ofG pairs of
chromosomes, with each pair containing L SNP sites.
LetM ∈ RG×G be the trainable CIM, where its initial
values are derived fromH . During training, thematrix
M is optimized, with the constraint that each element
inM cannot deviate from its initial value bymore than
γ, i.e., for any p, q ∈ [1, G], we have

Mpq = min (Hpq + γ,max (Hpq − γ,Mpq)) , (6)

whereMpq represents the correlation between the p-th
and q-th pairs of chromosomes.
By usingM to fuse the global features at the soybean
chromosome level, we consider the g-th pair of
chromosomes on the chromosome:

z̃g =

[∑G
q=1 Y(i, : )

(∑
j∈Lq Y(j, : )

)T
·M (g, q)

]
i∈Lg

,

(7)

where Lg denotes the index set of SNPs on the g-th
pair of chromosomes. Y(i, : ) refers to the features
corresponding to the i-th SNP locus. Therefore, z̃g
integrates information from other chromosomes. At
the same time,M can continuously optimize during
training, enabling it to better learn the conformational
information between chromosomes.
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Then, we employ an SE module with two fully
connected layers (with reduction ratio r) to
generate channel-wise recalibration vectors for each
chromosome pair. The weight vector computation
follows:

ω(g) = σ (W2δ (W1z̃g)) ∈ R1×L, (8)

where, W1 ∈ R
L
r
×L and W2 ∈ RL×L

r are learnable
parameters, δ(·) denotes ReLU activation, and σ(·)
represents sigmoid function for range normalization
[0, 1]

The chromosome-specific weights are aggregated into
a diagonal calibration matrix:

W = diag (ω1, ω2, . . . , ωL) , (9)
E = WY , (10)

where ωi corresponds to the i-th element of the
concatenated weight vector [

ω(1),ω(2), . . . ,ω(G)
].

The recalibrated matrix E serves as enhanced
input for subsequent network layers, enabling
chromosome-level global context modulation of SNP
features.
Given the original feature covariance ΣY = Y Y T,
with the introduction of chromosomal conformation
information, the covariance matrix is updated to:

ΣE = EET = WY Y TWT. (11)

Under the Frobenius norm constraint ‖W ‖F ≤ 1, we
derive:

‖ΣE‖F ≤ ‖ΣY ‖F . (12)

This norm reduction indicates effective suppression
of spurious feature correlations. The model thereby
retains critical SNP interactions while mitigating:
• False positive correlations from feature

redundancy;
• Overemphasis on weakly associated SNPs;
• Potential overfitting to noisy covariations.

This recalibration mechanism enhances discriminative
capability by focusing on biologically meaningful SNP
interactions.

3 Attention-based model evaluation metrics
In genetic regulation, different loci exhibit varying
degrees of importance with only key regulatory factors
playing dominant roles in specific contexts. To evaluate

the ability to capture critical loci, we propose a
normalized attention entropy (NAE) metric based on
attention weights:

NAE = − 1

n lnn

n∑
i=1

n∑
j=1

αij lnαij , (13)

where αij represents the attention weights from the
final attention layer.
In fact, the design of NAE is based on entropy.
Specifically, the attention entropy for the i-th locus
is given by:

S(i) = −
n∑

j=1

αij lnαij , (14)

which quantifies the concentration of attention
distribution at locus i. The theoretical maximum
entropy lnn occurs when attention is uniformly
distributed. To eliminate sequence length bias, we
normalize the entropy values and average across all
SNP loci to obtain NAE.
A lower NAE indicates highly concentrated attention
distributions, analogous to biological systems where
few regulatory factors dominate expression control.
This reflects the enhanced selectivity of the model in
identifying critical information. Conversely, higher
NAE suggests diffuse attention patterns, implying the
model may fail to focus on important loci, similar to
dispersed regulatory mechanisms.
For the second evaluation metric, we first construct
a CIM H̃ ∈ RG×G to incorporate prior interaction
information between SNPs:

H̃ij = Hg(i),g(j), (15)
where g(i) maps SNP i to its chromosome index.
After row-wise normalization to form valid probability
distributions, we measure the alignment between
attention weights αi = [αi1,αi2, . . . ,αin] and the
normalized interaction vector H̃(i,:) using cosine
similarity:

cos(αi, H̃(i,:)) =
αi · H̃(i,:)

‖αi‖2‖H̃(i,:)‖2
, (16)

where H̃(i,:) represents the i-th rowvector of thematrix
H̃ , and ‖ · ‖2 is the Euclidean norm of the vector.
Averaging across all SNPs yields our second metric,
the attention alignment score (AAS):

AAS =
1

n

n∑
i=1

cos(αi, H̃(i,:)). (17)

36



Chinese Journal of Information Fusion

Higher AAS values indicate better alignment between
the learned attention patterns and the chromosomal
3D structure, and suggest that the model’s biological
plausibility is enhanced by better adherence to
chromosomal interaction patterns observed in vivo.

4 Experiments
In this section, we will predict soybean traits using
real data to evaluate the effectiveness of the proposed
models. All experiments are implemented in Python
3.8 on a computer equippedwith anNVIDIARTX 3090
GPU with 24GB of memory.

4.1 Experiment setup
To validate the effectiveness of the proposed method,
several classic and advanced approaches were
compared, including CNN [21], LSTM [27], GRU [25]
and Transformer [32].

4.1.1 Data preprocessing
The experiment utilized the WM82.A1 dataset from
the publicly accessible SoyBase database for soybeans.
This dataset can be accessed at the website http
s://www.soybase.org/tools/snp50k. The SoySNP50K
iSelect BeadChip was employed to genotype 20087
soybean accessions. After excluding samples with a
heterozygosity rate of alleles exceeding 10%, SNP data
for 19648 soybean accessions were obtained. These
accessions comprise 1168 wild soybeans and 18480
cultivated soybeans.

Subsequently, we implement the following three steps
for uniform quality control of the original dataset: 1)
use Plink V1.9 [34] to remove samples with an allele
missing rate greater than 10%; 2) filter out SNP loci
with a minor allele frequency lower than 5%; 3) use
Beagle [33] to infer and impute missing genotype data.
After these steps, the WM82.A1 dataset retains 11779
samples, each containing 42453 SNP loci and 84906
bases.

In addition, the phenotypic trait data of soybeans
are sourced from the US National Plant Germplasm
System (NPGS), accessible at the website https://np
gsweb.ars-grin.gov/gringlobal/search. By referencing the
soybean PI (Plant Introduction) numbers, one can
locate corresponding phenotypic information, such
as flowering time, 100-seed weight, oil content, protein
content, and more. For this experiment, oil content
and protein content were selected as the target traits
for prediction.

4.1.2 Chromosome interaction matrix
In this subsection, we employ the Hi-C contact matrix
to compute the CIM. The Hi-C data used in the
experiment are sourced from the PRJCA009364 project
at the National Genomics Data Center (NGDC),
accessible at https://ngdc.cncb.ac.cn/gsa/search?searchTerm=
%22PRJCA009364%22. This dataset comprises a total
of 27 samples, and Hi-C data for each sample are
generated using the Illumina paired-end sequencing
technology.
We conduct three-dimensional structural analysis
of chromosomes using the HiC-Pro tool, normalize
the valid interaction pairs, and thereby construct a
Hi-C contact matrix. This matrix records the contact
frequencies between different genomic fragments.
We then assign the genomic fragments in the Hi-C
contactmatrix to their respective chromosomal regions.
Subsequently, within each chromosomal region and
between different chromosomal regions, we calculate
the sum of interaction frequencies for all fragments,
thus generating the CIM. Each element in this matrix
represents the overall interaction intensity between
two chromosomal regions. Figure 3 displays a heatmap
of the CIM for 20 pairs of chromosomes, where the
shade of color reflects the interaction intensity between
different regions.
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Figure 3. Chromosome interaction matrix.

4.1.3 Evaluation metrics
In genomic prediction tasks, selecting appropriate
evaluation metrics is crucial for assessing model
performance. In addition to the attention-based
evaluation metric proposed in Section 3, we also
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employed two commonly used evaluationmetrics from
regression models: mean absolute error (MAE) and
Pearson correlation coefficient (PCC), along with the
consistency index (CI). The definitions of MAE and
PCC are as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (18)

PCC =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2 ·
√∑n

i=1(ŷi − ¯̂y)2
, (19)

where yi represents the true value, ŷi denotes the
predicted value, n is the number of samples in the
test set, and ȳ and ¯̂y are the mean values of the true
and predicted traits in the test set, respectively. A
smaller MAE indicates lower prediction error and
better model performance. A PCC value closer to 1
suggests a stronger positive linear correlation between
the predictions and the true values.
For different models, MAE and PCC may not always
show consistent performance (both being good or
both being poor), making it difficult for a single
metric to comprehensively reflect the performance in
terms of numerical accuracy and trend prediction. To
address this, the CI combines MAE and PCC, with the
following expression:

CI =
PCC

MAE
mean|y| + 1

, (20)

where mean|y| is the mean absolute value of the true
values of the sample characteristics in the test set. It is
used to normalize MAE, ensuring that the CI values
fall within a reasonable range. ACI closer to 1 indicates
that themodel not only aligns well with the true trends
but also has low prediction errors.

4.1.4 Parameter Settings
In the experiments, the self-attention mechanism
of the Transformer employs multi-head attention
with 8 heads, and the encoder consists of 6 layers.
Furthermore, we utilize Bayesian optimization to
fine-tune the hyperparameters of the model, aiming
to enhance predictive performance. The parameter
search space for Bayesian optimization is defined as
follows: the learning rate ranges from 10−6 to 10−4, the
batch size varies between 16 and 64, and the dropout
rate is set within the range of 0.1 to 0.3. The proposed
methods, CSAFM and CISEM, adhere to the same
parameter search space. Notably, the latter method
incorporates an additional parameter, γ = 10−3, which
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Figure 4. Training loss for oil content prediction.

imposes constraints on the update magnitude of the
CIM.
For CNN, the input data’s feature dimension is set to 1.
It employs 64 convolutional kernels, each with a size
of 3, for feature extraction, and the output dimension
is 1. The network comprises 2 convolutional layers,
with the ReLU activation function applied after each
convolution operation to introduce non-linearity.
Regarding LSTM, the number of input features per
time step is set to 1, and the hidden layer dimension
is configured as 64, with the output dimension being
1. Dropout is applied between each layer of the LSTM,
with a dropout rate of 0.2.
For GRU, the SNP data is segmented into chunks
of length 1024 for training, addressing the issue of
insufficient video memory caused by excessively long
input sequences. The entire network architecture
consists of 2 stacked GRU layers followed by a fully
connected layer.
Additionally, the dataset is partitioned into training,
validation, and test sets in a 7:2:1 ratio, ensuring no
data overlap between these sets. In the prediction
task, the number of sampling iterations is fixed at 10.
The mean squared error (MSE) is selected as the loss
function.

4.2 Experimental results and analyses
4.2.1 Soybean trait prediction
Figures 4 and 5 illustrate the loss reduction trends
during the training process of different models for
the tasks of predicting oil content and protein content,
respectively. Observing the overall trends, it is evident
that the loss for all models gradually decreases as the
number of training epochs increases, and they tend to
converge around the 12-th epoch. This indicates that
the models have sufficiently learned the information
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Figure 5. Training loss for protein content prediction.

embedded in the training data.

Tables 1 and 2 present the performance of various
models in predicting oil content and protein content
(hereinafter, the value closest to the ideal in each row
will be highlighted in bold.), respectively. It is evident
that Transformer outperforms LSTM, GRU, and CNN
in terms of prediction accuracy and consistency,
demonstrating that the self-attention mechanism
enhances the predictive capability for soybean
traits. However, Transformer does not fully leverage
chromosome conformation information, resulting
in limitations in modeling complex chromosomal
associations.

In summary, the exceptional performance of CSAFM
and CISEM models in soybean trait prediction
stems from their effective integration of chromosome
conformation and interaction information. This
advantage can be attributed to three key factors:

1) By incorporating chromosome conformation
information into the attention mechanism, both
models demonstrate significant improvements in
predictive performance, particularly in accurately
modeling cross-chromosome SNP associations.
This demonstrates that chromosome interaction
priors play a critical role in complex trait
prediction by effectively enhancing attention
concentration on key SNP loci;

2) The attention mechanism proves effective as
it allocates differentiated weights to SNP loci
based on their relevance. Through chromosome
conformation integration, our models can
prioritize structurally proximal genomic regions
even when they are distant in linear sequence.
This capability enables the capture of long range
dependencies that conventional methods struggle
to represent, leading to improved prediction

accuracy;
3) The performance difference between oil and

protein content predictions results from their
distinct genetic architectures. Oil content is
mainly influenced by a limited set of large
effect loci with strong structural interactions,
making the CISEM model more suitable as
it aggregates chromosome level features and
employs SE based recalibration to achieve lower
prediction error. Conversely, protein content
shows high polygenicity and is regulated by
numerous dispersed loci, where the CSAFM
model demonstrates superior correlation and
consistency through its fine grained key vector
attention adjustment.

Based on this analysis, we propose the following
practical guidance for model selection: the CISEM
model is better suited for traits governed by a limited
number of strong genomic signals (e.g., oil content),
whereas the CSAFM model demonstrates superior
performance for complex polygenic traits (e.g., protein
content).

4.2.2 Comparison of computational cost
To comprehensively evaluate model computational
efficiency, we compare the parameter count, relative
computational complexity measured in floating point
operations (FLOPs) with the baseline Transformer
as reference, and per-sample inference time under
batch size setting of 1. As summarized in Table 3,
which presents a comparison of these metrics across
different models, both CSAFM and CISEM modules
maintain competitive prediction performance while
introducing only modest computational overhead,
manifested in two aspects: i) In terms of parameter
count and computational complexity, CSAFM and
CISEM increase the parameters and FLOPs by only
approximately 20%–30% compared to the baseline
Transformer; ii) Regarding inference efficiency, the
per-sample inference time of all models remainswithin
the practical range of 6.0–6.5ms on modern GPU
hardware.
The experimental results demonstrate that the two
proposed enhancement modules achieve significant
improvements in prediction performance while
introducing only limited computational complexity,
indicating promising application potential.

4.2.3 Effectiveness analysis of internal mechanisms
In this subsection, we conduct ablation studies to
evaluate the effectiveness of key mechanisms in the
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Table 1. Comparison of oil content prediction performance.

Method CNN GRU LSTM Transformer CSAFM CISEM
MAE 4.2514 2.6972 1.8794 1.3525 0.8902 0.4198
PCC 0.1455 0.3314 0.3212 0.3239 0.3268 0.3653
CI 0.1178 0.2884 0.2910 0.3014 0.3122 0.3600
NAE - - - 0.7457 0.6963 0.6811
AAS - - - 0.1486 0.4593 0.3133

Table 2. Comparison of protein content prediction performance.

Method CNN GRU LSTM Transformer CSAFM CISEM
MAE 2.1391 4.3712 2.4345 1.9474 1.7078 1.4473
PCC 0.1801 0.1655 0.1544 0.1855 0.2704 0.2083
CI 0.1739 0.1543 0.1484 0.1797 0.2429 0.2158
NAE - - - 0.8057 0.7818 0.7882
AAS - - - 0.0739 0.2421 0.2870

Table 3. Comparison of computational cost.

Method CNN GRU LSTM Transformer CSAFM CISEM
Parameters (M) 2.0 5.0 5.0 15.0 18.0 19.0
Relative FLOPs 2.0 5.0 5.0 1.0 1.2 1.3
Time (ms/sample) 1.5 3.0 3.0 5.0 6.0 6.5

Table 4. Effectiveness evaluation of internal mechanisms in the CSAFM.

Trait prediction CIM GAU MAE PCC CI NAE AAS

Oil content
× × 1.3525 0.3239 0.3014 0.7457 0.1486
X × 1.0501 0.3255 0.3072 0.7200 0.3100
X X 0.8902 0.3268 0.3122 0.6963 0.4593

Protein content
× × 1.9474 0.1855 0.1797 0.8057 0.0739
X × 1.8202 0.2357 0.2150 0.7953 0.1551
X X 1.7078 0.2704 0.2429 0.7818 0.2421

Table 5. Effectiveness evaluation of internal mechanisms in the CISEM.

Trait prediction CIM SE MAE PCC CI NAE AAS

Oil content
× × 1.3525 0.3239 0.3014 0.7457 0.1486
X × 0.6511 0.3542 0.3452 0.7053 0.2657
X X 0.4198 0.3653 0.3600 0.6811 0.3133

Protein content
× × 1.9474 0.1855 0.1797 0.8057 0.0739
X × 1.5607 0.2051 0.2074 0.7923 0.2105
X X 1.4473 0.2083 0.2158 0.7882 0.2870

CSAFM and CISEM models. Specifically, for CSAFM,
we investigate the contributions of both the CIM and
the Gated Attention Unit (GAU). The CIM introduces
a bias integration mechanism by incorporating the
Hi-C interaction matrix as an additive term to the
Key vectors in the self-attention module. Biologically,

this reflects that SNP loci in spatial proximity within
the 3D genome architecture are more likely to
engage in cooperative regulation—even when linearly
distant. By integrating this bias, CSAFM leverages
chromosomal conformation information to guide
attention toward structurally meaningful interactions.
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Table 6. Effectiveness evaluation of the internal mechanisms in CISEM with different γ values.

Trait prediction CIM No integration (γ = 0) Optimal (γ = 0.0002) Overweighting (γ = 0.001)

Oil content MAE 0.7042 0.4198 0.5102
PCC 0.3351 0.3653 0.3581

Protein content MAE 1.7201 1.4473 1.5604
PCC 0.1954 0.2083 0.2029

The GAU, on the other hand, consists of two core
components: multi-head attention and a feed-forward
neural network. As for CISEM, we focus on assessing
the importance of both the CIM and the SE module.
All ablation experiments are carried out in the context
of predicting soybean oil and protein content.
As demonstrated in the evaluation results of Tables 4
and 5, each internal mechanism contributes positively
to the predictive performance for soybean soybean
traits. In the CSAFM model (see Table 4), the
sole introduction of the CIM already leads to
comprehensive improvements across all evaluation
metrics for both oil and protein content prediction
tasks, outperforming the baseline model that lacks
any mechanisms. Furthermore, when the GAU is
combined with CIM, the model achieves even better
performance, indicating a synergistic enhancement
effect between the two components. This trend is
similarly validated in the CISEM model (see Table
5): the integration of CIM and the SE module
yields the most accurate and robust prediction
outcomes. These experimental results confirm
that both the chromosome interaction matrix and
their corresponding architecture-specific modules are
essential and effective components for capturing the
complex genetic determinants of soybean trait.
Moreover, in the CISEM model, the parameter γ
governs the balance between the original self-attention
outputs and the chromosome interaction-based
recalibration. From a biological perspective, γ
can be interpreted as a factor modulating the
intensity of structural prior integration. An
excessively small γ may lead to underutilization
of inter-chromosomal information, while an overly
large γ could overemphasize global characteristics at
the expense of local dependencies. To address this, we
conducted experiments to validate this hypothesis.
Table 6 systematically evaluates how different γ
parameter settings affect prediction performance
for soybean oil and protein content in the CISEM
model, comparing three representative scenarios:
no chromosomal interaction integration (γ = 0),

optimal integration strength (γ = 0.0002), and
excessive interaction weighting (γ = 0.001). The
results demonstrate that γ = 0.0002 yields the
best performance for both traits, reducing MAE
by 40.4% and improving PCC by 9.0% for oil
content while achieving 15.9% lower MAE and
6.6% higher PCC for protein content compared to
the baseline (γ = 0). Notably, when using an
excessively large γ value, prediction accuracy for
both traits declines significantly, confirming our
hypothesis that over-reliance on global interaction
information compromises the model’s ability to
capture local dependencies. These findings collectively
indicate that an appropriate chromosomal interaction
integration strength effectively leverages structural
priors while preserving local feature sensitivity,
thereby substantially enhancing the accuracy and
robustness of soybean trait prediction.

5 Conclusion
In this work, we have proposed two innovative
methods for soybean genome prediction based on the
Transformer framework, namely CSAFM and CISEM.
These methods fuse chromosome conformation
information into the model, achieving better fusion
with genomic data and more accurately capturing the
interactions between SNP sites, thereby enhancing
the prediction performance for soybean traits.
Experiments on real-world data demonstrated the
clear advantages of the proposed model in capturing
long-range dependencies and gene regulation.
Additionally, we introduced two new metrics, NAE
and AAS, to quantify the attention dispersion and its
alignment with biological priors, providing intuitive
and quantitative tools for model evaluation. Future
work will focus on integrating multi-omics data, such
as transcriptomics, epigenomics, and proteomics,
into the Transformer framework to further improve
genome prediction accuracy.
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Appendix
A Proof of Lemma 1
Proof. Let amax = maxi ai, achieved at index k (k ∈
{1, . . . , n}). By construction, ãmax = amax + bk. For
any j 6= k,

ãmax − ãj = (ak + bk)− (aj + bj)

= (ak − aj) + (bk − bj)
≥ ak − aj , (A1)

since bk ≥ bj . Thus, ãmax ≥ ãj , with strict inequality
if aj < amax or bj < bk.

The softmax function is monotonic, so wk = maxiwi.
To compare w̃k and wk, observe:

w̃k =
exp(ãk)∑n
j=1 exp(ãj)

=
exp(ak + bk)∑n
j=1 exp(aj + bj)

, (A2)
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and

wk =
exp(ak)∑n
j=1 exp(aj)

. (A3)

From (A2) and (A3), we have

w̃k

wk
=

exp(bk)
∑n

j=1 exp(aj)∑n
j=1 exp(aj + bj)

=
exp(bk)∑n

j=1 exp(bj) · exp(aj)∑n
i=1 exp(ai)

. (A4)

Let Ew(exp(bj)) =
∑n

j=1wj exp(bj), where Ew(·)
represents the operation of taking the expectation of
w with respect to it being treated as a random variable.
The denominator in (A4) becomes∑n

j=1 exp(bj)wj =
Ew[exp(bj)]. Since bk ≥ bj for all j, and bk > bj for
j 6= k (as ak > aj for j 6= k and b preserves order), we
obtain

Ew[exp(bj)] <
n∑

j=1

wj exp(bk) = exp(bk). (A5)

Thus,
w̃k

wk
=

exp(bk)

Ew[exp(bj)]
> 1 =⇒ w̃k > wk. (A6)

Since w̃k = maxi w̃i and wk = maxiwi, Lemma 1
holds.

B Proof of Theorem 1
Proof. For the i-th location query Qi, the attention
scores of the j-th and l-th tokens are respectively given
by

Sij =
QiK

T
j√

dk
, Sil =

QiK
T
l√

dk
, (A7)

whereKj andKl are the key vectors at the j-th and
l-th positions, respectively.
The attention weights obtained after applying the
softmax(·) for the j-th and l-th tokens are respectively

αij =
exp (Sij)∑
m exp (Sim)

, αil =
exp (Sil)∑
m exp (Sim)

. (A8)

Loading the bias terms bij and bil onto the keys, we
get

K̃j = Kj + bij , K̃l = Kl + bil, (A9)

where

bil =
[
Hc(i)c(l),Hc(i)c(l), . . . ,Hc(i)c(l)

]
∈ R1×dk .

(A10)

From (A7), (A8) and (A9), the new attention scores
are given by

S̃ij =
QiK̃

T
j√

dk
=
QiK

T
j√

dk
+
Qib

T
ij√
dk

, (A11)

S̃il =
QiK̃

T
l√

dk
=
QiK

T
l√

dk
+
Qib

T
il√
dk

. (A12)

According to (A8), the corresponding new attention
weights are

α̃ij =

exp

(
Sij +

Qib
T
ij√

dk

)
∑

m exp
(
Sim +

QibTim√
dk

) , (A13)

α̃il =
exp

(
Sil +

Qib
T
il√

dk

)
∑

m exp
(
Sim +

QibTim√
dk

) . (A14)

Let ∆Sij,l = Sij − Sil represent the difference in
self-attention scores. Then, the score difference after
introducing the bias can be expressed as

∆S̃ij,l =

(
Sij +

Qib
T
ij√
dk

)
−
(
Sil +

Qib
T
il√
dk

)

= ∆Sij,l +
Qi (bij − bil)T√

dk
. (A15)

If for any l ∈ {1, . . . , n} and l 6= j,

Qi (bij − bil)T√
dk

> 0, (A16)

then we have ∆S̃ij,l > ∆Sij,l.
From (A13), (A14) and (A15), it immediately follows
that

α̃ij

α̃il
= exp

(
∆S̃ij,l

)
=
αij

αil
· exp

(
Qi (bij − bil)T√

dk

)
>
αij

αil
. (A17)

Additionally, if the token at the j-th position is themost
important token, i.e., αij > αil for any l ∈ {1, . . . , n}
and l 6= j. Then, according to Lemma 1, after adding
the bias term, the corresponding attention weight will
be further amplified, that is, α̃ij > αij holds.
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