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Abstract
Background: Practical implementation of radiomics
research faces significant data accessibility

challenges due to privacy and ethical restrictions
on multicenter data aggregation. Federated
Learning (FL) provides a secure distributed
framework that preserves data privacy through
cryptographic techniques. Its adoption in radiomics
is an emerging trend, enabling -collaborative
training without sharing sensitive imaging

data. However, the inherently Non-IID data
distribution across clients in FL often leads
to class imbalance, which can substantially

degrade global model performance.
To develop a privacy-preserving, multicenter
collaborative CT-radiomics model for evaluating
neoadjuvant chemotherapy efficacy in non-small
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Purpose:

cell lung cancer (NSCLC). Methods: To mitigate
FL performance degradation caused by data
imbalance, we propose a parameter-sharing
federated aggregation algorithm (FedPS), where
model parameters are sequentially shared via the
server. Results: On an imbalanced NSCLC NAC
efficacy dataset, centralized learning achieved
an AUC of 092. FedPS attained competitive
performance (AUC = 0.88), approaching the
centralized benchmark while preserving privacy.
Common FL algorithms performed lower: FedAvg
(AUC = 0.84), FedSGD (0.85), and FedProx
(0.85). On extremely imbalanced data, FedPS
maintained good performance (AUC = 0.86),
compared to FedAvg (0.80), FedSGD (0.83), and
FedProx (0.85). Conclusions: The proposed FedPS
algorithm demonstrates promising classification
and generalization performance in imbalanced
federated learning scenarios.
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1 Introduction

As an important branch of image analysis, radiomics
reveals new features related to treatment outcome,
disease molecular expression, or patient survival by
extracting quantitative features from medical images
(including CT, MRI, and PET) that may exceed human
perception [1, 2]. On the basis of conventional CT
images, CT radiomics uses deep data mining to find
high-dimensional features such as shape features,
morphology, boundaries, histograms, textures, and
wavelet transforms, and converts these features into
quantitative image features to reflect human tissue,
cell and gene level changes [3, 4]. Rational use
of CT radiomics can timely and accurately evaluate
the effectiveness of neoadjuvant chemotherapy, and
can solve the problem of “over-chemotherapy” or
“under-chemotherapy” caused by the failure to adjust
the treatment plan in time. This provides auxiliary
decision support for the optimization of clinical
treatment plans, which is of great significance for
the realization of personalized tumor treatment [5,
6]. Currently, most radiomics efficacy evaluation
only involve single-center and small-sample medical
imaging [7], with limited generalizability and
credibility. Multi-center clinical research involving
multiple hospitals/medical institutions have attracted
more and more attention and has become an important
way for domestic and foreign hospitals or medical
institutions to carry out radiomics [8-10]. However,
the data of each independent medical institution
presents an isolated island distribution. Moreover,
constraints such as privacy security, morality and
ethics make it difficult to gather image from
independent institutions together for model training
inreal world [11, 12]. Federated learning (FL) [13, 14]
is an encrypted distributed machine learning that
allows each participants to achieve the purpose of
jointly building a predictive model without disclosing
the original data. Under the premise of protecting
data privacy, the participants utilizes local data for
model training, and the central server is responsible
for collecting, aggregating and distributing model
parameters. After multiple rounds of training, a
model that is close to the result of centralized machine
learning is obtained on the central server. Therefore,
the application of federated learning in the field of
radiomics has become an inevitable trend [15]. On the
one hand, it breaks the data barriers between different
hospitals due to data privacy protection, so that each
participant can obtain a better model and ensure data
security without sharing data. On the other hand, this
multi-party collaborative model has lossless or even
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better performance than models based on traditional
machine learning methods.

The mainstream algorithm for federated learning is
the federated averaging (FedAvg) algorithm proposed
in [16]. The algorithm assumes that the data on
the participants is a random sampling of the overall
data, while the data of each participation in federated
learning is collected independently and comes from
different hospitals or institutions. Therefore, there
are differences between the data owned by different
hospitals or institutions, resulting in the phenomenon
of Non-1ID [17, 18]. Among them, the most common
situation is that the data volume and data label
distribution are different among different hospitals or
institutions. Different from the assumption that “data
follows independent and identical distribution” in the
derivation of common algorithms such as machine
learning and deep learning, the Non-IID in federated
learning directly affects the performance of the Fed Avg
aggregation algorithm [19].

Aiming at the problem of data Non-IID, many
literatures have proposed methods to optimize the
performance of federated learning. Literature [20]
improves the performance of the FedAvg model by
sharing 5% of the data on the CIFAR-10 dataset.
Based on the FedAvg loss function, the literature [21]
introduces a near-end term to limit the update
range of the client and optimize the aggregation
performance of the federated model in the case of
Non-IID. Literature [22] allows the central server to
select specific clients to participate in federated model
training by using the implicit connection between
model parameters and data distribution, so as to
balance the deviation introduced by Non-IID. Most of
the existing research focuses on MNIST, CIFAR-10 and
other image classification and text prediction tasks,
with the purpose of improving the performance of
the federated learning algorithm on Non-IID data.
However, there are few Non-IID studies on structured
data. The effect of NAC in different participants in
NSCLC is affected by the lack of image data, different
CT model parameters and other factors, leading to
the sample distribution of treatment-responsive or
non-responsive was not balanced. Unlike standard
image datasets such as MNIST and CIFAR-10,
radiomics data is typically characterized by a small
sample size, low dimensionality (following feature
selection and fusion), and an imbalance in class
distribution across different institutions. = When
the distribution of data class is unbalanced, the
aggregation and performance of the federated model
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Table 1. NSCLC Neoadjuvant Chemotherapy patients’ information.

Dataset 1 Dataset 2 Dataset 3
CR+PR NC+PD CR+PR NC+PD CR+PR NC+PD
(n=75) (n=43) (n=114) (n=63) (n=41) (n=40)
Age Range 38-75 33-72 36-74 35-68 40-75 35-71
Mean+SD 65.6+7.6 61.2+8.3 63.1+9.6 59.1+7.1 67.5+8.2 64.1+7.9
Sex male 48 30 73 46 25 29
female 27 13 41 17 16 11
Smoking Yes 45 26 59 41 17 24
No 30 17 55 22 24 16

are seriously affected. To address this challenge,
we propose a novel federated aggregation algorithm
to mitigate aggregation difficulties and performance
degradation caused by data imbalance in federated
models.

2 Materials and Methods

2.1 Data Acquisition

Three Grade A hospitals in Yiyang City, Changsha
City, and Zhongshan City are selected to participate
in the efficacy study of non-small cell neoadjuvant
chemotherapy. According to the requirements of the
project initiators, each hospital needs to prepare tools
such as 3D-Slicer and PyRadomics, and collect NSCLC
cases undergoing similar NAC between 2015 and 2021.

Inclusion criteria include:
a) The patient is between 18 and 75 years old.

b) The patient was diagnosed as NSCLC by
histopathological biopsy or multidisciplinary
consultation.

¢) The patient has one measurable lesion.

d) The patient has a pre-treatment CT image with a
scan slice thickness of 5 mm.

e) There is other demographic information about the
patient, such as gender and smoking status.

f) The patient has no history of surgical resection of
the tumor.

g) The patient
chemotherapy.

has undergone neoadjuvant

Exclusion criteria include:

a) The patient has received any anti-tumor-related
treatment before admission.

b) The patient is accompanied by other primary
tumors;

¢) The patient voluntarily requests withdrawal
without completing the treatment plan;

d) There is no curative effect evaluation information
for the patient after treatment.

The neoadjuvant chemotherapy program mainly
uses chemotherapy programs such as TP
(paclitaxel+carboplatin), GP (gemcitabine+cisplatin)
or PP (pemetrexed+ cisplatin). Paclitaxel, which
prevents cancer growth by interfering with the cell
cycle, and cisplatin, which destroys DNA structures,
have anti-tumor effects. Both improve treatment
efficacy by inhibiting tumor cells. Therefore, the above
chemotherapy regimen was selected and included
in the scope of this work. For the convenience of
expression, the data corresponding to the three
hospitals are respectively represented by dataset 1,
dataset 2 and dataset 3. The specific statistics are
shown in Table 1.

In Table 1, (CR+PR) represents the neoadjuvant
chemotherapy sensitive group, namely good response
group, while (NC+PD) represents the neoadjuvant
chemotherapy insensitive group, namely poor
response group.

2.2 Extraction and Selection of Radiomics Features

The 3D-Slicer is used for tumor segmentation on CT
images of NSCLC, and the PyRadiomics is used to
extract 875 radiomics features from ROIs of NSCLC.
Considering that the subsequent radiomics analysis is
for quantitative features, non-numerical features are
removed. 856 quantitative features are obtained. Then,
5 informative features about medical image version,
and size are removed. After preliminary processing,
851 quantitative features are finally retained. Each
participating center uses a coefficient threshold-based
multi-level feature selection method [23] for feature
screening. Due to the difference in the final reserved
feature subsets of each participation, a combination
of sequence forward search (SFS) method and
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unsupervised evaluation (SOM) method is used
to fuse multiple center feature subsets. Finally, a
federated feature subset of 10 features is retained.

2.3 Method
2.3.1 FedAvg Algorithm

FedAvg is currently the most common aggregation
algorithm [24], which is suitable for horizontal
federation scenarios [25]. FedAvg algorithm
aggregates the client model parameters in an average
way, and then distributes them to the client. The
specific algorithm flow is shown in Algorithm 1.

When the ¢t round of training starts, each client receives
the parameter w'™! of the global model from the
central server. After receiving the model parameters,
each client continues to train the model using the
local data. After several iterations, the local model
parameter wy, is obtained. The server will receive
gradient update information from the client and
perform weighted average aggregation, then send the
aggregated parameter information to the client. The
client will utilize aggregated information for the next
iteration of training.

According to the above Fed Avg process, the complexity
of the algorithm is controlled by three key parameters,
including the proportion of clients participating in
federated model training C, the client mini-batch size
B, and the number of training rounds of the model
on the local dataset . C' represents the proportion of
clients selected by the central server. C'=1 indicates
that all clients participate in federated learning training.
When FE is too small, it increases the number of global
communications. On the contrary, the federated model
is prone to fall into the problem of local optimum,
long aggregation time of the global model or failure
to converge. This situation is exacerbated when
the distribution of client data is unbalanced. The
reduction of B can effectively reduce the number of
communication rounds, which helps to relieve the
communication pressure between the client and the
central server. The experiment shows that the Fed Avg
can reduce the communication overhead between the
client and the central server, and its performance
under independent and identically distributed data
is basically consistent with traditional centralized
model training methods. Although FedAvg can also
converge under Non-IID. Considering the unbalanced
distribution of positive and negative samples between
clients, the data features of the minority class will
be suppressed by the data features of the majority
class, resulting in divergence in the direction of model
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Algorithm 1: Fed Avg

Input: Initializes model parameters w.
Output: Global model parameters w*.

Parameters:
K : Number of clients;
C': The proportion of central server selecting
clients (0 < C' < 1);
B : The local mini-batch size of the client;
E : Number of local training rounds;
n : Learning rate;

Server: ;

(1) Initializes the global model parameters w;

(2) Randomly select m = max{C x K, 1}
clients to participate in this federation
training;

(3) The selected client performs local updates
(steps can be found in the client local update
section), and the server receives model
parameters wy, from each client, where
kell,K];

(4) Aggregate all client model parameters wy,
update current global model parameters
w= Yo npw", and distributed to each
client;

(5) Iterations (2) to (4) continuously update
the global model parameters w until the stop
condition is met;

(6) Training completed, return the final global
model parameters w* to all K clients;

Client Local Update (Taking the k-th client and
round t as an example): ;

(1) Client k receives the current global model
parameters wz_l, as a local model
initialization parameter;

(2) Partition the local dataset Dy, into multiple
sets of size B, represented by f;

(3) Gradient update is performed on set 3, i.e.
wh, = wit = VU (855w );

(4) Iterate over all elements in set Dy, calling
(3) to continually update the model
parameters wy, until the last batch;

(5) Call (4) repeatedly E times, constantly
update the model parameters wy;

(6) Return the final local model parameters wy,

to the central server;

update parameters [26], that is, gradient divergence.
Ultimately, problems such as slow model aggregation
and low accuracy will seriously affect the performance
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of the federated model, which is not conducive to the
implementation of the federated model.

Research on the evaluation of radiomics effect of
NSCLC neoadjuvant chemotherapy with Federated
learning. = Among them, the data comes from
3 clients (hospitals). Since Medical imaging
are collected independently by each hospital, the
distribution of effective patients and ineffective
patients in NSCLC neoadjuvant chemotherapy in
different hospitals is relatively different. In the process
of aggregation of client model parameters based on
Fedavg, gradient divergence may occur, which will
reduce the aggregation speed and performance of the
global model. In view of the imbalance of positive
and negative samples between clients, it is necessary
to explore a more suitable federated aggregation
algorithm.

2.3.2 FL under data category imbalance

The imbalance of positive and negative samples in the
dataset can lead to large differences in trained models
between clients. When the Fed Avg to aggregate global
model parameters, there will be weight divergence,
which hinders the aggregation of the prediction model
under the federation framework and greatly reduces
the accuracy of the model. It is assumed that two
clients (k1 and ky) participate in federated learning
training, and px; and pg2 represent client £; and ko
distribution forms, where py;,pr2 obey a uniform
distribution.

Pr1 = pPr2 ~ U (1)
When the model starts training, it is assumed that the
initial parameters of the model are the same, as shown
in formula (2):

w? = wp = why (2)
where ! is the weight for centralized learning (the 0
above w represents the initial parameter; centralized
learning represents that all client data are pooled
together to participate in model training), w) is the
k-th client weight in federated learning, and w, is the
initial weight in FedAvg. The update method of w is
shown in formula (3).

wiﬂ =w' — vaz zn: L (f ($(i)§ a,wf) ay(i)) (3)
=1

where wz is the centralized learning weight, ¢ is the
round, « is the model structure, L is the loss function,
7 is the learning rate, and (¥, y() ~ U. At this point,
the update process of w}, is shown in formula (4).

t+1 t

UVZ

L (s (e
@)

where w} is the weight trained by the client & on the
local dataset, and (x,(;),y,(;)) ~U. k € [k, ko], and Ny
is the number of samples that client k participated in

training.

The server uses the FedAvg to integrate the model
parameters of multiple clients, as shown in formula

(5):

t+1 Nk t—l—l
Fed N
k=1
K
=3
N Yk
k=1
K
Y ZL( (el k) o)
N k k k

i
I

(5)

where K and N represent the number of clients and
samples participating in federated model training,
respectively. Thatis N = >_& | N;. When mg), y,g)
U, formula (5) is further simplified.

t+1 ¢t
Wpeq = Wi —

NV ¢ ZL( (xk Q, w,(f)> ,y,(:)) (6)

According to formula (6) and formula (4), it can be
obtained that wi'{ = w!*l. That is, when the client
data follows a uniform distribution, the centralized
learning and Fed Avg update model parameters are the
same. With the roughly same client data distribution,
FedAvg can get the same or similar parameters for
centralized learning.

In the federated learning framework, in order to better
describe the gradient divergence problem of Fed Avg
when the distribution of positive and negative samples
is not uniform, it is assumed that the client k; obeys a
uniform distribution, while k3 does not obey a uniform
distribution. In formula (5), when & is taken as k; and
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ks respectively,

ZL (7 (o 00 w?) ")
. )

#ZL(]‘ <a:k , QL wk ),y,(:)>.

That is, there is a difference in the model parameter
update between client k; and client k;. When the
FedAvg is used to average the two client parameters, it
is obvious that

t+1

t+1
Wred £ w, .

(8)
In order to reduce the communication frequency
between the client and the server, the Fed Avg generally
uploads the model parameters obtained through
iteration to the central server after the client performs
multiple rounds of local iteration. The more local
iterations there are, the greater the difference in
model weights between the client (k2) and centralized
learning, i.e., the greater the weight divergence. For
local more iteration client k9, formula (4) is used to
calculate client-local updates. It can be concluded that:

9)

t+1 > ,wt-l-l

When aggregating parameters by using formula (5),

the federated parameters wj,; are updated as shown
in (8):
N, N,
t+1 _ Yk 41 ko t4+1
Fed = v Wk Ty Wi (1.8)

When the client k; obeys the uniform distribution,
w?fl ~ !l In formula (8), when the positive
and negative samples are unbalanced, the more the
federated model parameter wh'| deviates from the
centralized model parameter w!™!. That is to say, when
the distribution of data categories is unbalanced, the
FedAvg cannot achieve the optimal weight. As the
imbalance of data categories increases, the weight
divergence will become more significant, making it
difficult for the model to aggregate on the central
server.

In theory, it is obviously impossible to use the Fed Avg
to aggregate client model parameters and obtain global
optimal model parameters for multiple low-correlation
client model parameters. Based on the FedAvg, this
paper will discuss the federated model aggregation
method to reduce the negative impact of the unbalance
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Algorithm 2: Parameter Sharing Federated
Learning Algorithm

Input: Initialize model parameter wy.
Output: Global model parameter w*.

Parameters:
K : number of clients;
D; : the training data in the i-th client;

(1) Model initialization: the central server
initializes the model parameters wy;
(2) Weight sharing: ;

a) Wheni € [1, K — 1], the i-th client
downloads the model parameter w;_; from
the central server, and uses the local data D;
to perform a round of model training. The
obtained model parameter w; is uploaded to
the central server;

b) When i = K, the last client downloads the
model parameter w;_; from the central server,
and uses the local data D; to perform a round
of model training. The obtained model
parameter w; is uploaded to the central server,
and setting wy = w;. A round of parameter
sharing is completed;

(3) Set the number of rounds: Repeat step (2)
until the set number of rounds is met;

of client data categories, so as to improve the predictive
performance of the federated model.

There has always been a problem with catastrophic
forgetting in the field of deep learning. Catastrophic
forgetting refers to the possibility of forgetting the
knowledge learned on old datasets when training
models on new datasets. The task of using a deep
learning model to identify pictures containing cats and
dogs is taken as an example. Dataset a and dataset
b are composed of individual cat and dog pictures,
respectively. First, the data of client a is used to train
the deep learning model M. Model M is able to
capture the features of cats and accurately recognize
pictures of cats. Then, the model M continues training
on the client b which only contains dog pictures. At
this point, the model M can obtain the features of
the dog and accurately identify the picture of the dog.
However, the model M cannot accurately recognize
cat pictures because it has forgotten the cat features.

Performing model training on dataset a and dataset b
respectively is equivalent to completing two different
tasks. When the model learns new knowledge, the
old knowledge will be replaced by new knowledge.
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Client 1

i} C

Client 2

Where (D 3 @ represents downloading parameters from the server;

@ @ © represents uploading parameters to the server

Figure 1. The parameter passing process in one round of FedPS.

Alternative learning of new and old knowledge
refers to learning old task knowledge while learning

new tasks, which can avoid catastrophic forgetting.

Therefore, the design of the federated learning
algorithm can adopt a method similar to alternate
learning to avoid the catastrophic forgetting in deep
learning.

Therefore, the design of federated aggregation
algorithm for unbalanced categories datasets needs
to pay attention to the following two issues:

1. FedAvg aggregation model parameters are used.

Datasets with unbalanced distribution of positive
and negative samples are prone to gradient
divergence phenomenon.  The more local
iterations the client model has, the more gradient
divergence it will exacerbate.

2. For datasets with unbalanced distribution of
positive and negative samples, catastrophic
forgetting exists in the training of deep learning
models.

To solve the above problem, the number of local
iteration needs to be reduced to avoid gradient
divergence. Furthermore, a method similar
to alternating learning can solve catastrophic
forgetting. In response to this, the parameter sharing
federated learning aggregation algorithm (FedPS) for

unbalanced radiomics data was proposed, referred to
as the parameter sharing federated learning algorithm.
See Algorithm 2 for details:

Algorithm 2 mainly solves catastrophic forgetting and
gradient divergence in the model training process
through the following two aspects.

1. The number of client iterations is set to 1.

2. The client model parameters are uploaded to the
central server. The next client downloads the
model parameters of the previous client from
the central server. The training of the local
model is performed so that the federated model
is alternately trained on different clients.

In the model training process of Algorithm 2, the
model parameters are shared between adjacent clients
through the central server, which is similar to the
centralized model training process. The client model
uses local data D; for training to avoid catastrophic
forgetting and gradient divergence. Figure 1 describes
the parameter passing process in one round of FedPS.

Figure 1 completes the parameter sharing process
in the order of 1)-2-3)-®-%)-(6), which is a round
of training. For the convenience of expression,
NSCLC curative effect evaluation federal database 1
is represented by client 1, and so on. Client 1 starts
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Multilevel feature
selection

Radiomics feature
extraction

Federated Model
Construction

Multi-center feature

XGBoost (AUC=0.8014)

Figure 2. The parameter passing process in one round of FedPS.

training the model using the parameters of client 3
in the previous round, and client 2 uses the model
parameters of client 1 to train the model, and so
on. This is similar to training models in batches in
centralized machine learning.

Compared with FedAvg, this algorithm needs to
frequently pass and share parameters with the central
server, resulting in relatively high communication
costs. In this paper, research on the curative effect
evaluation of radiomics based on federated learning
was carried out. Participating clients, data samples,
and data passed between clients and central server
parameters are few. In this case, the impact of
communication cost on the algorithm is almost
negligible.

The workflow of introducing federated learning into
the process of radiomics model construction is shown
in Figure 2.

3 Result

This study utilizes a federated database for evaluating
the efficacy of neoadjuvant chemotherapy in NSCLC.
To address the issue of class imbalance within
client data, a parameter-sharing federated learning
algorithm is proposed. The data distribution for the
three clients involved in the experiment is presented
in Table 1.

24

All three clients participate in each round of federated
learning training, that is, C=1. Each client builds the
same deep learning network and trains the model
once on the local data. Mini-batch gradient descent
is chosen for updating the local model parameters.
In the central server, the parameter sharing is used to
transfer model parameters. The deep learning network
structure of the client is shown in Figure 3.

~——

Output layer

Input layer

Hidden layer

Figure 3. Neural network structure.

Deep neural network consists of an input layer, a
hidden layer, and an output layer. Among them,
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the input layer consists of 10 neurons, which is the
number of features retained after feature selection. The
hidden layer consists of 3 layers, in which the number
of neurons is 6, 4 and 2 in sequence. In addition,
hidden layer neurons have a built-in ReLu function for
nonlinear transformation. The output layer consists of
one neuron. Through the Sigmoid function, the input
of the previous layer is converted into a probability
value output. Other hyperparameters are set to
Batch-Size=8, and Learning Rate = 0.01. It was divided
into training set and test set according to the ratio of
8:2.

We intentionally employed a simple deep neural
network architecture for this study. The primary
objective of our work was to demonstrate and
validate the core mechanism of the FedPS
algorithm—specifically, its capability to mitigate the
challenges of data imbalance in a federated learning
setting. To achieve this proof-of-concept, we utilized
a standard, lightweight architecture (e.g., a simple
multilayer perceptron), which is commonly adopted
in foundational federated learning research. This
deliberate choice was made to minimize confounding
factors and to clearly attribute any performance
improvements to our aggregation strategy, rather than
to model complexity.

16 4

14 4

12 4

10 A

loss

N T T T T
2000 2500 3000 3500 4000

epoch

0 500 1000 1500

Figure 4. FedPS training process.

We chose the PySyft framework to conduct federated
model training. Figures 4 and 5 show that the
model was trained for 4000 rounds with the above
parameters and dataset, and the results show that
after about 1800 rounds of training, the model tends
to stabilize. The final AUC on the test set was
0.88. In order to compare the performance of FedPS,
we chooses FedAvg, FedSGD, FedProx, centralized

Table 2. Comparison with baseline federated algorithms.

Local Iteration Parameter Limit update
Count averaging  magnitude
FedProx multiple Yes Yes
FedAvg multiple Yes No
FedSGD one Yes No
FedPS one No No

learning and other methods for comparison. For a
clearer comparison, Table 2 presents a comparative
summary of the differences between FedPS and
FedAvg, FedSGD, and FedProx.

It can be observed from Table 2 that a primary
divergence lies in the local iteration count: FedPS and
FedSGD are limited to one iteration, in contrast to the
multiple iterations of Fed Avg and FedProx. Another
key difference is the aggregation process; FedPS
is distinct in operating without central parameter
averaging, a requirement for the other method. Finally,
FedProx is uniquely characterized by the imposition
of a constraint on local update magnitudes, a feature
absent in the compared approaches.

ROC Curve

1.04

0.8

o
o
L

True Positive Rate
(&
»>

0.2

0.0 ROC (area = 0.88)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5. Classification performance of FedPS.

The methods mentioned above all adopt the same
network model and hyperparameters as FedPS. Table 3
shows the classifier performance under different
methods.

Table 3 shows the mean and standard deviation of
AUC, ACC, Recall and F1 under 20 random repetitions,
expressed in the form of mean + standard deviation
(std). When the model is trained with centralized
learning, the prediction performance achieved is
significantly better than other methods. =~ When
FedAvg, FedSGD, FedProx, FedPS and other federated
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aggregation algorithms are used to train the model,
the proposed FedPS is closer to centralized learning
in performance. In order to compare the stability of
the models, each performance index is set to standard
deviation. In addition, their standard deviations
on different methods were calculated separately.
The results show that FedPS algorithm obtains the
minimum standard deviation except for centralized
learning, which directly indicates that FedPS algorithm
has good stability.

To comprehensively assess the predictive reliability
of the model, we employed a calibration curve
(Figure 6) to evaluate the agreement between
predicted probabilities and actual observations. The
curve visually reflects the calibration performance
of the model on a probability scale. In general,
the calibration curve of a well-performing predictor
approximately follows the reference line y = x (red
line), with minor deviations expected, rather than
overlapping perfectly with it. The degree of agreement
between the calibration curve (blue line in the figure)
and the reference line serves as an important metric for
evaluating the model: the closer the calibration curve
is to the reference line, the more reliable the model’s
predictions are considered to be; conversely, greater
deviation indicates poorer predictive performance.
Moreover, if the calibration curve lies entirely above the
reference line, it suggests that the model systematically
underestimates the probability of a positive outcome;
if it lies below, the model tends to overestimate the
probability of a positive outcome.

A key finding is that FedPS and FedSGD achieve
the best calibration performance among the tested
algorithms. Their calibration curves align most closely
with the reference line (y=x), which translates into
more reliable predictions characterized by greater
accuracy and lower uncertainty in the probability
estimates.

To verify the generalization performance of the
proposed FedPS algorithm, we constructed three
highly unbalanced datasets by randomly drawing
samples without replacement from the three original
datasets. A classifier is known to be biased towards
the majority class in binary classification when the
imbalance ratio (IR) exceeds 4:1. To investigate this
under extreme conditions, our experimental setup
assigned an IR greater than 4:1 to each of the three
local hospitals, whereas the overall sample IR was
maintained below this threshold. The detailed data
distributions are provided in Table 4.
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To simulate real-world data distributions and further
investigate the performance of FedPS on extremely
imbalanced datasets, we repeated the previous
section’s experiment on such datasets. Accordingly,
Table 5 summarizes the classification performance of
the different methods under these extreme conditions.

Table 5 shows the performance of the model in cases
where the dataset is extremely imbalanced. Among
them, the proposed FedPS achieves similar results on
imbalanced datasets.

(1) On extremely wunbalanced datasets, the
performance of the four federated aggregation
algorithms all decline to varying degrees. For
example, the AUC, ACC, Recall, and F1 of the FedAvg
on extremely unbalanced datasets are 0.8, 0.78, 0.75,
and 0.78, respectively, which are 4.8%, 4.9%, 10.7%
and 4.9% lower than the performance on unbalanced
data. The corresponding FedPS algorithm is only
down 2.8%, 4.5%, 6.8% and 4.5%.

(2) Based on the FedAvg, FedSGD sets the number
of local iterations to 1 time. The imbalance between
positive and negative samples can alleviate the
gradient divergence in federated aggregation. In
Table 3 and Table 5, the AUC of the FedSGD
aggregation is higher than that of the Fed Avg, which
verifies that the reduction of the number of local
iterations on the unbalanced dataset is beneficial to
improve the performance of the federated aggregation
algorithm.

(3) In Table 3 and Table 5, the standard deviation of
DNN model prediction performance (such as AUC
and ACC) based on FedPS aggregation algorithm is
relatively low, and it is better than other federated
aggregation algorithms, which shows that the DNN
model based on the FedPS aggregation algorithm has
good stability.

In summary, it can be concluded that the performance
of the proposed FedPS is better than other federated
aggregation algorithms.

4 Discussion

Radiomics uses computer technology to extract a
large number of features that cannot be recognized
by human eyes from medical images to describe
tumor heterogeneity, which plays an important role in
tumor screening, clinical diagnosis, treatment options
selection, and curative effect evaluation. According
to existing research, radiomics modeling based on
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Table 3. Classifier performance on unbalanced datasets.

Aggregatlon AUC ACC Recall F1 Pre Spec
algorithm
FedAvg 0.84+0.037 0.82+0.021 0.83+0.022 0.82+0.021 0.81+0.024 0.81+0.026
FedSGD  0.8540.049 0.8240.032 0.8340.023 0.8240.032 0.8140.028 0.8140.030
FedProx  0.854+0.038 0.8340.022 0.8440.029 0.824+0.024 0.80+0.019 0.82+0.018
CL 0.92+40.063 0.92+0.144 0.90+0.190 0.92+0.145 0.94+0.180 0.94+0.016
FedPS 0.884+-0.015 0.89+0.018 0.88+0.021 0.89+0.019 0.90+0.018 0.90+40.020

Note: CL stands for centralized learning. Recall, Spec, and Pre are abbreviations for

sensitivity, specificity, and precision, respectively.
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Figure 6. Calibration curves under different federal aggregation algorithms.

Table 4. Extremely unbalanced datasets.

Table 5. Classifier performance on unbalanced datasets.

Dataset1 Dataset2 Dataset3 AUC ACC Recall F1
FedAvg  0.80£0.098 0.78+0.071 0.7540.086 0.78+0.071
CR+PR 13 63 40 FedSGD  0.83+0.057 0.74+0.077 0.74+0.078 0.75+0.078
NC+PD 60 14 9 FedProx  0.85+0.251 0.80+0.133 0.7940218 0.80+0.133
Unbalance 4 >4:1 >4:1 Centralized o) 0160 0.8840.047 0.86+0.224 0.88+0.197
ratio learning
FedPS  0.86+0.050 0.85+0.060 0.82+0.050 0.85+0.060

artificial intelligence algorithms has an accuracy rate
reaching the level of clinicians. However, traditional
machine learning and deep learning algorithms need
to collect a large amount of medical imaging data
for model training, which violates the principle of
non-sharing of private data. Therefore, this paper

applies federated learning technology to the study
of the efficacy evaluation of NSCLC neoadjuvant
chemotherapy radiomics. On the premise of not
sharing local data, the value of data scattered in various
medical institutions is aggregated and the model is

27



Chinese Journal of Information Fusion

ICJK

jointly trained. After multiple rounds of iteration
and training, the NSCLC neoadjuvant chemotherapy
efficacy evaluation model was formed, which can
accurately predict the efficacy of NSCLC neoadjuvant
chemotherapy (AUC=0.88). In the application
scenario of federated learning, the data is collected
independently by the participants. Each dataset
basically does not meet independent and identical
distribution. Among them, client data category
imbalance is common. Currently, common federated
learning algorithms such as FedAvg, FedSGD, and
FedProx typically use aggregation and updating of
client model parameters, and their performance on
imbalanced datasets needs further improvement. In
order to improve the performance of the algorithm, the
FedPS was proposed. On the one hand, it can avoid
catastrophic forgetting and gradient divergence in
deep learning. On the other hand, its training process
is close to the centralized machine learning training
process, which can reduce the performance difference
caused by the aggregation of model parameters.

(1) In order to verify the effectiveness of the proposed
parameter sharing algorithm (FedPS) on the NSCLC
neoadjuvant chemotherapy efficacy evaluation dataset,
FedPS was compared with Fed Avg, FedSGD, FedProx,
and centralized learning algorithms. On the NSCLC
neoadjuvant chemotherapy efficacy evaluation dataset,
through the comparison of performance index such
as AUC, ACC, Recall, and F1, it can be found that
the performance of the FedPS is very close to that
of traditional centralized learning. On the extremely
unbalanced data, the FedPS also achieves similar
results, which further verifies its effectiveness. The
FedPS uses the parameter transfer method to share
model parameters and a similar serial method to train
the federated model, which increases the training time
of the federated model. Due to the small number
of clients participating in the NSCLC neoadjuvant
chemotherapy efficacy evaluation and the small data
sample size, clients training deep learning models on
high-performance equipment can reduce the waiting
time between clients. In this scenario, the impact of
time on the algorithm is almost negligible.

(2) The unbalanced distribution of positive and
negative samples between participation is a common
scenario in federated learning. Due to differences in
regions, grades, and data integrity among different
hospitals, there is often an imbalance in the collected
radiomics data for NSCLC efficacy evaluation. In order
to verify the performance of the FedPS algorithm in this
case, FedPS is compared with models such as FedAvg,
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FedSGD, FedProx, and Centralized Learning. On the
extremely unbalanced NSCLC efficiency evaluation
dataset, the performance of the FedPS is close to that
of traditional centralized learning, which verifies its
generalization performance.

(3) The proposed algorithm has certain limitations.
First, the expansion of clients or samples participating
in federated learning will increase the transmission
and time costs of training models. Secondly, when the
client fails to train the local model due to unexpected
reasons such as power failure or system crash,
the federated model training will be automatically
terminated. These factors will affect the training of
the federated model.

5 Conclusion

In this paper, we propose a federated aggregation
algorithm based on parameter sharing to address the
scenario of imbalanced positive and negative samples
across different participants. The algorithm achieves
strong classification performance on a non-small
cell lung cancer neoadjuvant chemotherapy efficacy
evaluation dataset (AUC = 0.86). Furthermore, it
demonstrates robust classification results on extremely
imbalanced datasets, confirming its generalization
capability.
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