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Abstract
Remote sensing image plays an important role
in maritime surveillance, and as a result there
is increasingly becoming a prominent focus
on the detection and recognition of maritime
objects. However, most existing studies in remote
sensing image classification pay more attention
on the performance of model, thus neglecting the
transparency and explainability in it. To address the
issue, an explainable classification method based
on graph network is proposed in the present study,
which seeks tomakeuse of the relationship between
objects’ regions to infer the category information.
First, the local visual attention module is designed
to focus on different but important regions of the
object. Then, graph network is used to explore the
underlying relationships between them and further
to get the discriminative feature through feature
fusion. Finally, the loss function is constructed
to provide a supervision signal to explicitly guide
the attention maps and overall learning process
of the model. Through these designs, the model
could not only utilize the underlying relationships
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between regions but also provide explainable visual
attention for people’s understanding. Rigorous
experiments on two public fine-grained ship
classification datasets indicate that the classification
performance and explainable ability of the designed
method is highly competitive.

Keywords: explainable visual feature, remote sensing
image, ship classification.

1 Introduction
With the rapid development of remote sensing (RS)
satellite technology, the quantity and quality of RS
images have been significantly improved. Due to
gradually realizing the significance of maritime rights
and interests [1], a highly accurate and reliable RS ship
images classification method is required.

The traditional RS ship images classification studies
mainly focus on coarse-grained ship classification and
most depend on shallow global features [2], which can
only be used for simple classification task. In recent
years, as the requirements for RS images classification
becoming more detailed in military and civilian ocean
resource utilization [3], fine-grained classification of
RS ship images is becoming more andmore significant.
However, RS ship images can be confusing and difficult
to distinguish, as the ships belonging to different
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Figure 1. The framework of the proposed network.

category may appear very similar, and the content
of RS images can be complex [4]. Fortunately, deep
learning methods seem to be more effective and have
made great achievement in computer vision field. In
the task of fine-grained RS ship images classification,
A push-and-pull network is proposed in [5], which
integrated with the advances of contrastive learning
to make the classification effective. Self-calibrated
convolutions and class-balanced loss are introduced to
the classification network by Chen et al. [6], to enrich
features and overcome the class imbalance.

In addition to the powerful feature representation
capability of the model, explainability is received the
widespread attention in the last few years, which
tries to make the decisions and mechanisms of the
model more understandable to humans [7]. However,
most of the existing fine-grained ship classification
methods based on the end-to-end learning strategy
provide infrequent interpretability, the models are
only trained to match the datasets. If human could
understand the region where models focus on or
the mechanism how models make prediction in the
task of fine-grained image classification, they may
give more trust on the final predicted results. Visual
attention mechanism has already been used in image
classification to improve the performance of the model
[8], and it also can yield heatmaps that indicate
key regions for driving a model’s decision. Notably,
graph convolutional network (GCN) [9] becomes a hot
network architecture, which could establish a graph
structure by analyzing the relations between nodes
[10]. Therefore, GCN could be used to capture and
explore the intrinsic relationships of different regions
in an image, contributing to improve the models’
explainability. Some scholars have tried combining
graph network with other networks to improve the
performance or explainability of the model [11–13].

With the aforementioned consideration, we propose an
explainable RS ship images classification framework
based on graph network. In order to make people

have a better understanding of the model’s final
prediction meanwhile not affecting the classification
ability of the model, the local visual attention and
graph network are combined in the proposed model
to obtain the discriminative feature and explore the
semantic relation of different parts of the target. As
a result, the network can focus on the key regions
of targets and then effectively learn the relations
between them through graph structure. In contrast
to alternative methodologies, our model could present
the targets’ parts it focused on and the relatively clear
decision-making process without compromising the
classification performance. The main contributions of
this paper are as follows.

1) An explainable RS ship images classification
network is proposed, to the best of our knowledge,
we are the first to use the combination of convolutional
neural network (CNN) and GCN in this field to
explore the explainability of it.

2) By adding the local visual attentionmodule (LVAM)
to the feature extraction process, the network can pay
attention to the key local regions which are used for
final prediction. Moreover, attention maps may help
users understand the decision-making progress from
the human visual angle.

3) By introducing the GCN, it could help the
proposed network capture the underlying association
relationships between local regions that are important
for the its final decision. The experimental results
on two public ship classification datasets validate the
classification ability and explainability of the proposed
method.

2 Methodology
The overall framework proposed in this paper is shown
in Figure 1, and there are mainly two parts, namely,
convolutional feature extraction and semantic relation
learning. The LVAM in feature extraction is to capture
the important regions of the objects in input images,
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Figure 2. The schematic illustration of the learning process.

and then these local representations are further input
to the relation learning part which utilizes GCN to
exploit intrinsic relationships of the regions, providing
more thorough explanations. Next, we will explain
each of these components in detail.

2.1 Local Visual Attention Module
Most existing deep neural network explanation
methods only produce low-level attention maps, but
they may not be intuitive for human to understand.
The LVAM in the network is developed to capture
key regions of the object and help improve model’s
explainability, and nowwe give a detailed introduction.
As shown in Figure 1, when a RS ship image is input
to the proposed network, the global high-level feature
maps obtained from the last residual blocks of ResNet
is represented as F ∈ RW×H×C , whereW , H , and C
represent the weight, height, and number of channels
of feature maps, respectively. First, different sizes
convolutional kernels are used to obtain the fused
feature maps:

Ff = Conv1×1(ψ(Conv1×1(F ),Conv3×3(F ))) (1)

where Convk×k denotes the size convolutional kernel,
and ψ() represents the cat operation between feature
maps in the channel dimension.

Then, the LVAM adopts a simple structure to obtain
local attention maps L = φ(Ff ), L = {L1,L2, · · · ,
LR} ∈ RW×H×R, where φ() is the convolutional
function with the kernel size of 3× 3, and note that R
is the outputting channel number which indicates the
number of key regions and is set in advance. Finally,
the key regions of Ff can be obtained according to
the maximal value of the channel-wise position in L.
Furthermore, local attention loss function is designed
to supervise this learning process, and we give detail
introduction in Section 2.3.

2.2 Semantic Relation Learning
Based on the local attention maps, we could get the
visual explanations and be aware of the important

object parts which are beneficial to the final decision.
In this step, the GCN is further used to mine the
semantic relations between them so as to make the
obtained feature representation is more discriminative.
The GCN utilizes node features and neighborhoods’
relations to extract advanced features. A graph is
defined as G = (V,E), where V is the set consisting
of nodes and E represents the set of edges. Generally,
the adjacency matrixA is used to represent the edge
relations between nodes. About a single-layer GCN,
the process of graph convolution can be defined as:

Y = σ(A ·X ·W ) (2)

where X is the input feature matrix, Y is the output
feature matrix, W is the trainable matrix, and σ()
denotes the activation function.

As shown in Figure 2, in the proposed model, the
regions obtained from the LVAM is regarded as the
nodes to construct a graph. Specifically, according to
the index of the maximal value in each local attention
map, we average the fused features within each region
as the graph nodes xi ∈ RC , which form the input
feature matrix X = {x1,x2, · · ·xR}. So as to capture
the regions’ interrelationship, the adjacency matrixA
is defined as:

Aij = e−d(xi,xj)
2 (3)

where d()means the Euclidean distance metric, which
is used to measure the resemblance between graph
nodes. After the GCN updating nodes’ features
according to equation (2), a convolution function with
the kernel size of 1 × 1 is applied as the feature fusion
module to obtain the discriminative features, and the
convolution’s output channel number is equal to the
number of semantic classes in corresponding dataset.
Then, the final feature representation vector is obtained
through calculating the average of each feature map,
so as to get the ship images’ semantic labels rapidly
and precisely.
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2.3 Loss Function
The loss functions for training our model can be
divided into two parts: local attention loss function
and total loss function.

Generally, the attention maps may not focus on the
discriminative parts of the objects. In order tomake the
model pay attention to different and important regions
after the LVAM, the local attention loss function is
designed to guide the attention learning process.
Specifically, the definition is as follows:

`local = e−α
∑B

m=1

∑
i,j s

2
ij +

λ

B

B∑
i=1

CE(âi, yi) (4)

where CE() is the standard cross-entropy loss, â
indicates the prediction from output attention features
of the LVAM, sij (i 6= j) is the Pearson’s correlation
coefficient among different local attention features,
and y is the true label of the input, α and λ are the
hyper-parameters, which could balance the weight of
corresponding part.

About the total loss function, we use cross-entropy loss
function as the model’s total classification loss, which
provides a supervision signal over the feature learning
process. It could be expressed as follows:

`total =
1

B

B∑
i=1

CE(ŷi, yi) (5)

where ŷ indicates the model’s final prediction, and y
is the true label of the input.

The final loss function for training is written as:

` = `local + `total (6)

3 Experiments and Analysis
3.1 Datasets and Implementation Details
Two public datasets are adopted to verify the proposed
model in subsequent experiments, and they are
FGSC-23 [1] and FGSCR-42 [14]. The FGSC-23 dataset
is a 23-category fine-grained RS ship classification
dataset, and it contains totally 4080 ship images
cropped from Google Earth public images and GF-1
satellite. The sizes of images range from 40 × 40
pixels to 800 × 800 pixels. The FGSCR-42 dataset is a
lager fine-grained RS ship classification dataset, and it
contains 42 categories and about 7776 RS images. The
sizes of images range from 50 × 50 pixels to 1500 ×
1500 pixels.

We conduct adequate experiments to demonstrate the
effectiveness and explainability of our proposedmodel.
In our experiments, the FGSC-23 dataset is divided into
a training set and test set in a 8:2 ratio in accordance
with [1], and we follow [14] to randomly select half of
the images of each category from the dataset FGSCR-42
for training, while the rest for testing. Similarly, in
order to get over the imbalanced sample problem, data
augmentation operations are performed to supplement
image samples of the fewer sample subclasses in
the training set. The ResNet50 [15] pretrained on
ImageNet is adopted to extract the high-level features
from the input RS images in our network. All the
models are trained for 80 epochs with a minibatch
size of 16. The adaptive moment estimation (Adam)
optimizer is employed for the training with an initial
learning rate set at 5e-5.

The classification performance of the proposedmethod
is evaluated by overall accuracy (OA), average
accuracy (AA) and accuracy rate (AR) of each
category. OA is the ratio of the correctly predicted
images of total testing images, AA which seems
more reasonable is the average of the accuracy of all
categories, and AR is the ratio of correctly classified
images among a category on the testing set.

3.2 Comparison With Other Methods
To verify the performance of the proposed model, we
compare the classification accuracy of the proposed

Table 1. Experimental results of comparison with
other methods.

Dateset Model OA

FGSC-23

Inception-v3 83.88
DenseNet 84.00
MobileNet 84.24
Xception 87.76
ME-CNN 85.58

FDN 82.30
B-CNN 84.00
SIM 86.30
P2Net 87.27
ours 88.85

FGSCR-42

VGG19 77.36
DenseNet 88.69
ResNext-50 89.16
B-CNN 89.53
RA-CNN 91.63

DCL 93.03
TASN 93.51
SIM 97.90
ours 98.35
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Table 2. Experimental results of AR for each category on FGSC-23 dataset.

Model AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 AR10

ResNet50 90.72 79.41 97.92 100.00 89.66 66.67 90.00 100.00 100.00 84.06 81.82
ours 87.63 94.12 93.75 100.00 96.55 64.44 85.00 100.00 100.00 81.16 87.88

AR11 AR12 AR13 AR14 AR15 AR16 AR17 AR18 AR19 AR20 AR21 AR22

40.00 85.19 66.67 100.00 100.00 81.82 88.14 66.67 81.36 83.33 96.77 88.89
70.00 94.44 72.22 100.00 90.91 77.27 94.92 94.44 86.44 100.00 100.00 83.33

Table 3. Experimental results of AR for each category on FGSCR-42 dataset.

Model AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9

ResNet50 95.27 100.00 77.14 100.00 97.47 96.02 100.00 91.67 96.77 79.14
ours 100.00 100.00 85.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00

AR10 AR11 AR12 AR13 AR14 AR15 AR16 AR17 AR18 AR19 AR20

84.28 79.41 81.82 89.52 92.00 83.10 84.62 84.95 92.59 80.65 96.04
100.00 100.00 100.00 100.00 96.00 98.59 94.87 100.00 98.41 96.77 100.00

Model AR21 AR22 AR23 AR24 AR25 AR26 AR27 AR28 AR29 AR30

ResNet50 98.46 99.04 98.97 99.38 94.69 92.50 100.00 100.00 100.00 50.00
ours 100.00 100.00 99.74 99.38 100.00 100.00 100.00 100.00 91.67 50.00

AR31 AR32 AR33 AR34 AR35 AR36 AR37 AR38 AR39 AR40 AR41

100.00 0.00 85.29 100.00 80.00 100.00 33.33 88.89 0.00 76.57 65.52
100.00 50.00 100.00 100.00 100.00 100.00 66.67 88.89 33.33 94.39 91.38

method with other deep learning-based methods on
two datasets aforementioned.

As shown in Table 1, wemake comparisonwith various
methods. Specifically, common CNN-based methods
such as Inception-v3 [16], DenseNet [17], MobileNet
[18], Xception [19], VGG19 [20], ResNext-50 [21]
are included, in addition to B-CNN [22], RA-CNN
[23], DCL [24], TASN [25], SIM [26] are fine-grained
classification methods for natural images, and
there are also some methods including FDN [27],
ME-CNN [28], P2Net [5] which are proposed
for the remote-sensing image classification. In
Tables 2 and 3, we list the AR for each category of
FGSC-23 and FGSCR-42 in the experiment respectively,
and we compare the results of proposed method
with the backbone network ResNet50. We can
see that the performance of proposed method has
achieved significantly enhanced compared with the
representative commonCNNmodels on both FGSC-23
and FGSCR-42 datasets and it also achieves superior
results in contrast to other classification algorithms.
This demonstrates the effectiveness of the model and
shows the sufficiently good classification performance.
In particular, the corresponding confusion matrixes of
our method on FGSC-23 and FGSCR-42 datasets are
displayed in Figures 3 and 4 respectively.

Figure 3. The confusion matrix of our method on FGSC-23.

3.3 Ablation Study
Ablation studies are conducted to evaluate the
effectiveness of each part in the proposed model and
analyze the influence on the experimental results.
Specifically, we set up the ablation experiments about
the modules of LVAM and GCN, and at the same time
give the time spent on corresponding model testing on
each dataset. As shown in the Table 4, R50 represents
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Figure 4. The confusion matrix of our method on FGSCR-42.

Table 4. Experimental results of the ablation study.

Dataset Model Test time OA AA

FGSC-23

R50 2.01 s 85.21 85.18
R50+LVAM 2.09 s 87.27 87.55
R50+LVAM

+GCN 2.17 s 88.85 89.33

FGSCR-42

R50 7.12 s 89.83 84.41
R50+LVAM 7.17 s 96.27 91.60
R50+LVAM

+GCN 7.31 s 98.35 93.71

convolutional backbone Resnet50, we can see that the
LVAM can help improve the learning performance
notably compared with the same backbone network.
This is because the LVAM focuses its attention on
important parts of the ship images, which contribute
to the final prediction. Furthermore, combined with
GCN, the model’s performance is further improved.
This is mainly attributed to the semantic relationships
between regions are exploited by the GCN, so that
the model could learn more discriminative feature
representation. Although the elapsed time for model
testing has a certain degree of increase in the process
of adding LVAM and GCN module, it is still very
close to the convolutional backbone network. Besides,
the proposed model has markedly enhanced the
classification ability, which further demonstrates the
effectiveness of our model.

3.4 Visualization
In this section, we simply select part representative
attention maps as samples for analysis, and visualize

Figure 5. Visualization results of attention maps from
different channels on FGSC-23 dataset.

Figure 6. Visualization results of attention maps from
different channels on FGSCR-42 dataset.

them to verify the effectiveness of the designed LVAM,
further to illustrate the effectiveness and explainability
of the proposed method.

As shown in Figures 5 and 6, the first column displays
input RS ship images, and different channel’s attention
maps are placed in the following last three columns.
It can be seen that most areas of attention are focused
on discriminative parts of the ship object and other
irrelevant parts catch little attention in the image.
Also, different channels concentrate on diverse local
visual information of the objects. And the meaningful
visualization information of provided by the model
could make it easier for users to know key regions that
the classification model pays attention to clearly, thus
helping people better understand its decision-making
progress. Meanwhile, the feature representation from
LVAM will input to the graph network for further
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relation learning among the regions, which may
contribute to enhancing the discriminative ability of
the model. Combined the results in Table 4, we can
conclude that the proposed method could provide
explainable classification results and maintain an
acceptable classification performance.

4 Conclusion
In this paper, an explainable classification method for
RS ship images based on graph network is proposed.
The method mainly consists of local visual attention
and graph network two parts. When an image is
input, the LVAM could make the model focus on
important regions, and then the graph network is
used to exploit the underlying relationships between
them and get the final feature representation through
the process of feature fusion. Extensive experiments
and ablation studies on two public fine-grained ship
classification datasets verify the effectiveness of the
proposed model. Although we provide explainable
attention maps visualization which may help people
understand, we will seek a more powerful theory of
explainable causal effect in future work.
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