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Abstract
Rice cultivation accounts for 65% of agricultural
water consumption in China but suffers from
low irrigation water use efficiency (WUE ≈ 0.80
kg/m3) and severe nitrogen and phosphorus
loss, contributing up to 30% of agricultural
non-point source pollution. To address these
core issues, this study developed a multi-source
collaborative sensing-based Intelligent Precision
Paddy Irrigation Control System (IPICS). The
system integrates satellite and UAV remote
sensing with IoT technologies to construct a
“sky-space-ground” three-dimensional monitoring
system, couples the FAO-56 Penman-Monteith
model with LSTM deep learning algorithms to
establish a dynamic irrigation decision model,
and integrates a self-developed solar-powered
intelligent sluice gate (AG-SOLAR-M7) for
precise canal water control. A two-year field
validation (2023-2024) was conducted at Youyi
Farm (131.8121°E, 46.7825°N), comparing the
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Intelligent Precision Irrigation Control System
(IPICS) with conventional flooding(each 40 ha,
3 replicates). Results demonstrated that: (1)
IPICS reduced irrigation by 25.3% (625±32 mm
vs. 837±41 mm, p<0.01); (2) maintained stable
yield (7.0±0.4 t/ha vs. 7.1±0.5 t/ha); (3) increased
WUE by 31.8% (1.12±0.08 kg/m3 vs. 0.85±0.06
kg/m3); (4) decreased nitrogen leaching by
57.4% (18.2±3.1 kg/ha vs. 42.7±5.9 kg/ha). The
“sensing-decision-execution” closed-loop control of
IPICS significantly enhanced water and fertilizer
utilization efficiency, offering a replicable technical
model and practical application for digital farmland
development.

Keywords: precision irrigation, hybrid model,
multi-source data fusion, collaborative control.

1 Introduction
Approximately 90% of the world’s rice is produced
in Asia, and China supports 20% of the global
population’s food demand with only 6% of the
world’s freshwater resources (FAO, 2023). As the
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largest water-consuming crop, rice irrigation accounts
for over 65% of total agricultural water use in
China [1]. However, traditional flooding irrigation
is characterized by three major challenges: (1) Water
waste — Field leakage and surface runoff cause
40% to 50% non-productive water loss [5]; (2)
Agricultural non-point source pollution — Nitrogen
and phosphorus leaching from drainage contributes to
more than 30%of eutrophication in rivers and lakes [3];
(3) Extensive management — 80% of agricultural
areas depend on experience-based irrigation without
quantitative decision support. It is imperative
to resolve three technical bottlenecks: real-time
multi-source data acquisition, dynamic irrigation
scheduling generation, and integrated canal water
volume control.

Current research on intelligent irrigation mainly
focuses on single data source-driven approaches, such
as soil moisture threshold-based control [6], which
often overlooks canopy transpiration demand. Most
applications are implemented at a local scale and
validated in small experimental plots (<1 ha), lacking
engineering implementation at the irrigation district
level [2].Moreover, there is a significant disconnect
between software and hardware, characterized by
inadequate integration between algorithmic models
and execution devices [4].

This study proposes the Intelligent Precision
Irrigation Control System for Paddy Fields (IPICS),
with core innovations in: (1) Multi-scale sensing
layer — integrating satellite remote sensing, UAV
remote sensing, and IoT technologies to enable
“plot-to-district” three-dimensional monitoring;
(2) Hybrid decision model — coupling physical
mechanisms (FAO-56 PM) and data-driven (LSTM)
approaches to generate irrigation prescriptions; (3)
Collaborative sluice control hardware — featuring
a self-developed low-power intelligent sluice gate
(AG-SOLAR-M7) with a flow control accuracy of
±5%.

Unlike previous studies that primarily rely on single
data sources or small-scale experiments, this research
achieves deep integration of “sky-space-ground”
multi-source sensing with a “mechanism + deep
learning” hybrid decision-making approach. It
also includes two consecutive years of engineering
validation conducted across 80 hectares of farmland,
significantly improving the system’s practicality and
scalability.

2 Materials and Methods
2.1 Experimental Design
The field experiment was carried out at Youyi Farm
(131.8121°E, 46.7825°N) in Heilongjiang Province,
China, from 2023 to 2024. The experimental design
adopted a randomized complete block design with
three replicates. Two treatments were established: (1)
IPICS treatment (40 ha), and (2) conventional flooding
irrigation (40 ha, control). Each treatment was divided
into three blocks (replicates) of approximately 13.3 ha
each. Soil sampling andmonitoring were conducted at
15-day intervals throughout the growing season (May
to September).

2.2 System Architecture
The IPICS system employs a three-tier
"cloud-edge-terminal" architecture, consisting
of a terminal layer with soil multi-parameter sensors
(Decagon EC-5) [14], weather stations, and intelligent
sluice gates; an edge layer with an embedded decision
terminal (NVIDIA Jetson); and a cloud platform
for irrigation prescription generation and multi-gate
collaborative scheduling algorithms. The technical
roadmap of this architecture is illustrated in Figure 1.

Figure 1. Technical roadmap of the cloud-edge-terminal
collaborative three-layer architecture.

2.3 CMulti-Source Data Fusion
2.3.1 System Architecture and Data Fusion Workflow
The framework adopts a four-layer architecture (data
source layer, preprocessing layer, fusion engine
layer, decision output layer), enabling full-process
automation from data acquisition to decision output.
Data source layer: Satellite remote sensing provides
macro farmland parameters (NDVI, LAI, LST);
UAV monitoring acquires high-precision crop
physiological indices (CWSI, chlorophyll) [15]; IoT
sensors (soil sensors, weather stations) monitor the

15



Digital Intelligence in Agriculture

Table 1. Hierarchical data acquisition and processing workflow.
Data Level Technology Monitoring Parameters Accuracy Data Processing Workflow

Satellite RS Sentinel-2 MSI NDVI (10m spatial, 5-day revisit)
Atmospheric correction
(SEN2COR); geometric registration
(WGS84)

UAV Platform DJI Phantom 4
Multispectral

CWSI (0.1m, 5 bands: blue, green,
red, red-edge, NIR)

RTK-PPK positioning (±1cm);
radiometric calibration with
reflectance panel

Ground IoT LoRaWAN
wireless network Soil VWC (±2%), pH (±0.3) NTP time sync; 15-min transmission

interval (915MHz ISM band)

field micro-environment in real time (VWC, pH, EC,
temperature, humidity, etc.).
Preprocessing layer: Standardized processing such
as atmospheric correction [16], geometric refinement,
and outlier filtering is performed according to different
data characteristics. Outliers are identified using
the 3δ principle, while missing data are filled
through temporal interpolation combined with LSTM
prediction based on historical data.
Fusion engine layer: The spatiotemporal fusion
engine uses KD-tree indexing for multi-source
data spatiotemporal alignment and applies missing
data imputation algorithms (cloudy weather error
<8%) [17]. The feature-level fusion model adopts a
weighted fusion strategy (weights ω1=0.4, ω2=0.3,
ω3=0.3) to generate high-precision feature maps
from multi-source data. These weights are optimized
through cloud-edge collaborative training and
multi-objective optimization techniques.
The decision output layer generates soil moisture
forecast maps, water stress indices, and irrigation
prescriptions (timing/amount) [18] to guide precision
irrigation. The multi-source data fusion framework,
which integrates satellite, UAV, and ground IoT data,
is shown in Figure 2. By leveraging hierarchical
data acquisition and fusion technologies, multi-scale
farmland information is collaboratively sensed.
By leveraging hierarchical data acquisition and fusion
technologies, multi-scale farmland information is
collaboratively sensed. The detailed data acquisition
and processing workflow is presented in Table 1.

2.3.2 Core Data Fusion Algorithms
Spatiotemporal registration: Cubic convolution
interpolation is used to unify spatial resolution to
0.1m grids, and Dynamic TimeWarping (DTW) aligns
asynchronous data sequences. Feature-level fusion:

Ffusion = σ(WsSsat+WdDUAV +WgGground+b) (1)

Figure 2. Multi-source data fusion framework.

where Ssat, DUAV , and Gground are feature matrices
from satellite, UAV, and ground sensors, respectively;
W represents learnable weights; σ is the ReLU
activation function. Feature weights are optimized
via cloud-edge collaborative training (loss function:
RMSE < 0.05).

Decision-level validation: Mobile lysimeters (accuracy
±0.02 mm) are deployed for ground-truth validation,

16



Digital Intelligence in Agriculture

with fusion data and actual ET achieving R2 = 0.93
(n=120).
Innovative fusion mechanism: A Space-Time Cube is
constructed for multi-dimensional data integration,
and an attention-based feature selection module and a
data quality assessment system are developed.

2.3.3 Technical Advantages and Performance Indicators
High-precision fusion: Fusion accuracy R2 =
0.92, significantly better than single-source data;
Low-latency response: Decision generation speed <
15 minutes, meeting real-time irrigation needs; Strong
robustness: Data imputation error < 8% under cloudy
conditions, adaptable to complex field environments;
Spatiotemporal collaboration: Efficient alignment of
multi-scale data (10 m→0.1 m) via KD-tree indexing.

2.3.4 Application Value and Scalability
The framework has been validated in precision
agricultural management. Future improvements could
include enhancing feature fusion capabilities through
deep learningmodels [19]; expanding edge computing
nodes to reduce reliance on cloud infrastructure, and
integrating additional data sources—such as weather
radar and socio-economic data—to support more
comprehensive decision-making.

2.4 Hybrid Decision Model
The multi-source data collaborative decision model,
for the first time, achieves the synchronous input
and intelligent fusion of three core data sources:
satellite remote sensing, UAV monitoring, and soil
sensor networks [9].This integration enables the
establishment of a comprehensive farmland state
sensing system. The spatiotemporal alignment
module accomplishes geographic registration,
temporal synchronization, and grid resampling,
effectively solving the challenge of heterogeneous
multi-source data fusion [11]. By integrating
traditional mechanistic models with LSTM deep
learning time series analysis, the model achieves
an optimal balance between physical mechanisms
and data-driven approaches, generating executable
irrigation decision schemes [20]. This provides a
complete technical closed loop from data acquisition
and intelligent analysis to decision execution for
precision agriculture, significantly improving
agricultural water resource use efficiency and crop
productivity. Dynamic Irrigation Calculation:

Irrigationt = α · ETc(t) + (1− α) · LSTM(SMCt−1, CWSIt)

(2)

where ETc(t) = Kc · Ks · ET0 (FAO-56 dual crop
coefficient method).
LSTM input: soil moisture content (SMC) for the
previous 7 days and current-day canopy water stress
index (CWSI). The weight α is determined byNSGA-II
multi-objective optimization.
The model was trained using 70% of the data for
training, 15% for validation, and 15% for testing,
with an LSTM architecture comprising two hidden
layers with 128 and 64 units, respectively. Training
was conducted for 1000 epochs, with early stopping
to prevent overfitting. The multimodal sensing
closed-loop synchronous input decision model is
depicted in Figure 3.

2.5 Intelligent Execution Devices
2.5.1 Device Design Principles
The self-developed solar-powered intelligent sluice
gate (Model: AG-SOLAR-M7) serves as the core
execution terminal of the IPICS system [20], utilizing
a mechatronic design to enable precise regulation of
canal water. Its core components include:
• Steppermotor drive system: Achieves±1mmgate

opening precision via a worm gear reducer.
• Low-power electromagnetic flowmeter [8]:

Real-time flow monitoring with ±2% accuracy.
• Dual-mode control module: Supports both

cloud command execution and edge autonomous
decision-making (e.g., emergency closure during
heavy rainfall).

2.5.2 Core Technological Innovations
Compared with traditional irrigation sluice gates (in
accordance with GB/T 38585-2020 standard), this
device achieves three major breakthroughs:
1. Self-sustaining energy system: Integrates a

20W monocrystalline silicon solar panel and an
8,000 mAh LiFePO4 battery, enabling ≥15 days
of operation in overcast conditions (tested in
compliance with IEC 62133 standard).

2. Collaborative multi-gate control: Utilizes
LoRaWAN ad hoc networking technology [7] to
achieve millisecond-level synchronous response
for up to 100 gates within a 5 km radius.

3. Anti-interference structure: IP68 protection rating,
validated for environmental adaptability in the
range from -40°C to 70°C.

17



Digital Intelligence in Agriculture

Figure 3. Multimodal sensing closed-loop synchronous input decision model.

2.6 System Integration Scheme
The device achieves precise water control through
a three-level linkage mechanism: Cloud decision →
Edge terminal (NVIDIA Jetson) command parsing →
Gate execution (RS485 protocol) Real-time feedback
control process:
1. The cloud platform generates irrigation

prescriptions (water volume Q, duration
T ).

2. The edge computing terminal optimizes the gate
opening/closing sequence.

3. The gate executes and feeds back the actual flow
(Qactual).

4. Dynamic calibration: ∆Q = |Q−Qactual|/Q ≤ 5%
(meets industrial standards).

2.6.1 Performance Validation Experiments
Field application data are derived from Section 3.3
on stability validation (over 4,000 hours of operation

across 2 consecutive years). Control accuracy of ±5%
is achieved via a PID-fuzzy control algorithm:

u(t) = Kp · e(t) +Ki

∫
e(t) dt+Kd ·

de(t)

dt
(3)

where e(t) is the deviation between set and measured
flow, and parameters are optimized by the particle
swarm algorithm.
Table 2 presents the laboratory and field validation
results, highlighting the opening response time, flow
control linearity, and the extreme environment failure
rate. The results meet the standard requirements with
high accuracy.

2.6.2 Comparative Technical Advantages
Compared with mainstream market devices [10],
this device demonstrates significant advantages in
communication range (>5 km vs. 2 km), energy
efficiency (0.1 W standby vs. 0.5 W), and cost (63%
reduction), offering robust hardware support for
large-scale irrigation district applications.
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Table 2. Laboratory and field validation results.

Test Item Result Standard
Requirement

Opening
response time 1.8 ± 0.3 s ≤ 3s

(GB/T38585)
Flow control
linearity

R2 = 0.998
(p0.001) ≥ 0.95

Extreme
environment
failure rate

0.42% ≤ 1%

2.7 Statistical Analysis
All statistical analyses were performed using SPSS 26.0
(IBM Corp., Armonk, NY, USA). Data normality was
assessed using the Shapiro-Wilk test [12]. Differences
between treatments were analyzed using one-way
analysis of variance (ANOVA), followed by Tukey’s
post-hoc test. Statistical significance was set at p <
0.05. All results are presented as mean ± standard
deviation.

3 Results and Analysis
3.1 Irrigation Water Use Efficiency
Compared with conventional irrigation, the IPICS
treatment demonstrated statistically significant
improvements in irrigation water savings [21],
effective rainfall utilization, and water use efficiency
(irrigation productivity).

3.1.1 Total Irrigation Volume
The total irrigation volume was calculated in
accordance with the "Rice Irrigation Water
Consumption Calculation Standard" (SL/T
810-2021) [13]. The IPICS treatment significantly
reduced irrigation water use by 25.3% (a reduction
of 212 mm) compared to conventional irrigation
(p<0.01),with a relatively low standard deviation
indicating good data stability.

3.1.2 Effective Rainfall Utilization Rate
The effective rainfall utilization rate reflects a crop’s
capacity to make use of natural rainfall [22]. The
IPICS treatment significantly increased the effective
rainfall utilization rate by 34.1% (p<0.05). The IPICS
technology significantly enhanced the system’s ability
to capture and utilize natural precipitation, reducing
dependence on irrigation.

3.1.3 Irrigation Productivity
Irrigation productivity is a key indicator of both
irrigation water use efficiency and economic output,

representing the crop yield produced per cubic meter
of irrigation water consumed. The IPICS treatment
significantly increased irrigation productivity by 31.8%
(reaching 1.12 kg/m3, p<0.001). The technology not
only reduced water consumption but also greatly
improved the output efficiency per unit of irrigation
water. Note: Table 3 Data are mean ± standard
deviation for 2023–2024 (n=6). Data source: Field
experiment of this study.

3.1.4 Model Accuracy Validation
The proposed hybrid water requirement model
(FAO-56 PM + LSTM) demonstrated high prediction
accuracy in two consecutive years of field validation:
Model accuracy: The predicted water requirement
values closely matched lysimeter measurements, with
the daily mean ETc prediction accuracy reaching 87.6
± 2.1% (n=730 days), significantly higher than the 85%
design threshold (p<0.001). During key growth stages
(from tillering to heading), accuracy increased to 91.3
± 1.8%, verifying the model’s adaptability to sensitive
periods. As shown in Table 4, the spatiotemporal
accuracy breakdown demonstrates the model’s high
performance at both plot and district scales.
Comparison with traditional models: The hybrid
model improved accuracy by 23.5% over the single
FAO-56 model (control: 64.1 ± 4.7%) and increased
stability by 32% compared to pure data-driven
(LSTM)models (standard deviation reduced to ±2.1%
vs. ±3.1%). Technical mechanism: The model
dynamically balances the advantages of physical and
data-driven approaches via weight α:

α(t) = 1/(1 + e( − kCWSI(t))) (4)

where k = 0.5 is the adjustment coefficient, and CWSI
is the canopy water stress index. Model validation
methods: Mobile lysimeters (accuracy ±0.02 mm)
were used as ground truth. Model performance was
evaluated using coefficient of determination (R2), root
mean square error (RMSE), and relative error (RE):

RE = |ETpred− ETmeas|/ETmeas100% (5)

Engineering value: Achieving >85% model accuracy
marks a leap from experience-based to quantitative
irrigation decision-making, providing core algorithmic
support for digital irrigation district management.

3.1.5 Stability Analysis
The model maintained high accuracy under various
disturbance scenarios: Table 5 Accuracy >85% was
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Table 3. Experimental results of irrigation water use efficiency.
Indicator IPICS Treatment Conventional Irrigation Change Rate Significance (p)
Total irrigation (mm) 625 ± 32 837 ± 41 ↓25.3% 0.01
Effective rainfall utilization (%) 73.2 ± 5.1 54.6 ± 6.3 ↑34.1% 0.05
Irrigation productivity (kg/m3) 1.12 ± 0.08 0.85 ± 0.06 ↑31.8% 0.001

Table 4. Validation of model accuracy.

Scale RMSE (mm/d) R2 Compliance
Rate (85%)

Plot scale 0.41 0.89 93.7%
District scale 0.68 0.82 87.2%

maintained for 95% of the operation period, meeting
the Grade I standard (>80%) of the “Technical
Specification for Intelligent Irrigation Systems” (SL/T
810-2021).

Table 5. Stability analysis.
Disturbance Type Accuracy Fluctuation Recovery Time
Extreme high
temperature
(35°C)

-3.2% 48 hours

Prolonged cloud
cover (3 days) -5.1% 2 hours after data

recovery

3.2 Rice Growth Response
As shown in Table 6, the IPICS treatment maintained
stable yields while significantly improving nitrogen

use efficiency and reducing environmental risk. In
terms of yield components, panicle number (358 ±
21 panicles/m2) and 1000-grain weight (26.5 ± 0.8 g)
showed no significant difference from conventional
irrigation (p>0.05). For nitrogen use, partial factor
productivity of nitrogen reached 48.2 kg/kg, 19.3%
higher than that under conventional irrigation (40.4
kg/kg, p<0.01). For environmental benefits, total
nitrogen concentration in drainage decreased from 4.8
mg/L (conventional) to 1.8 mg/L, a reduction of 62.7%.

3.3 System Stability Validation
3.3.1 Validation System Design
Table 7 presents the validation system design,
including dimensions such as hardware stability,
model adaptability, control accuracy, and long-term
performance. Each dimension is evaluated
using specific methodologies and corresponding
performance indicators.
3.3.2 Core Stability Validation Results
Table 8 shows the hardware system reliability, with
a failure rate of 0.42%, which is below the design

Table 6. Comparison of rice yield and nitrogen use indicators.
Indicator IPICS Treatment Conventional Irrigation Change Rate p-value

Yield (t/ha) 7.0 ± 0.4 7.1 ± 0.5 -1.40% 0.21
Panicle number (panicles/m2) 358 ± 21 365 ± 24 -1.90% 0.15

Grains per panicle 125 ± 8 122 ± 7 2.50% 0.08
1000-grain weight (g) 26.5 ± 0.8 26.2 ± 0.9 1.10% 0.12

Partial factor productivity of N (kg/kg) 48.2 ± 3.1 40.4 ± 2.8 19.30% 0.01
Agronomic efficiency of N (kg/kg) 18.6 ± 1.5 15.3 ± 1.2 21.60% 0.01

Total N in drainage (mg/L) 1.8 ± 0.3 4.8 ± 0.9 -62.50% 0.01

Table 7. Designs of the validation system.
Validation Dimension Methodology Evaluation Indicator
Hardware stability 7×24h sensor/actuator failure monitoring Device downtime rate (0.5%)
Model adaptability Drought/rainstorm extreme weather simulation Decision response delay (≤3 min)
Control accuracy Deviation analysis of set vs. measured soil moisture Humidity fluctuation (±5%)

Long-term performance 2-season irrigation data vs. conventional Water saving rate, yield increase

Table 8. Reliability of the hardware system.

Component Failure Count Mean Time Between
Failures (MTBF) Redundancy Effectiveness

Multi-source sensing nodes (soil/weather) 2 ≥1800 hours 100% auto-switch success
Intelligent valve actuators 1 ≥2000 hours Dual-circuit control effective
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threshold of 0.5%, and features 100% effective
redundancy.
Table 9 presents the hybrid model control accuracy,
where the target soil moisture was maintained for
95.3% of the period, exceeding the industry standard
of 90%.

Table 9. Control accuracy of the hybrid model.
Disturbance
Scenario

Maximum
Deviation

Recovery
Time

Sudden rainstorm
(50 mm/h) 8.20% 22 min
Prolonged high
temperature
(35°C/3d)

-6.70% 41 min

3.3.3 Long-term Performance Stability
Water-saving stability—annual water-saving rate
remained at 25.3–25.8% with a standard deviation
of only ±1.3%; yield sustainability—irrigation
productivity steadily increased by 31.8–34.1%
(p<0.001); effective rainfall utilization showed no
significant interannual difference (72.8–73.6%).
Table 10 presents the long-term performance stability,
showing the water-saving rate, irrigation productivity,
and the fluctuations over the 2023 and 2024 seasons.
The results indicate no significant interannual
difference in the effectiveness of rainfall utilization.

Table 10. Long-term performance stability.
Performance
Indicator 2023 Season 2024 Season Fluctuation

Range
Significance
(p)

Total irrigation
(mm) 629 ± 29 621 ± 35 ±1.3% 0.05
Irrigation
productivity
(kg/m3)

1.10 ± 0.07 1.14 ± 0.09 ±3.6% 0.05

3.3.4 Risk Resistance Validation
Table 11 presents the risk resistance validation,
showing the system’s response strategies for various
scenarios and the corresponding disaster loss
reductions.

4 Discussion
The IPICS system has achieved innovative
breakthroughs in multi-source sensing, hybrid
modeling, and intelligent execution devices,
significantly enhancing the engineering feasibility and
economic viability of district-level precision irrigation.
Compared with similar domestic and international

Table 11. Risk resistance validation.

Scenario System Response
Strategy

Disaster Loss
Reduction

Prolonged
drought (30d
no rain)

Dynamic
micro-spray + root
zone replenishment

Yield reduction
≤8% (control:
35%)

Typhoon
rainstorm (120
mm/day)

Intelligent
pre-drainage +
real-time water level
feedback

Lodging area
reduced by 82%

systems, IPICS demonstrates clear advantages in
multi-source data fusion accuracy, decision response
speed, and hardware collaborative capabilities. A
quantitative analysis of these technical advantages is
presented in Section 2.3.3.
However, the system still has certain limitations:
the model’s generalization ability is influenced by
regional climate and crop varieties, data collection and
maintenance costs remain relatively high, and network
coverage in remote areas requires improvement.
Future work will focus on integrating root CT imaging
technology to improve soil moisture monitoring,
expanding the use of multi-modal sensors, and
developing intelligent decision systems for the
integrated management of irrigation, fertilization, and
pest control — aiming to further enhance the system’s
adaptability and intelligence.
Additionally, it is recommended to carry out multi-site
validation in different regions, quantify economic and
environmental benefits, and promote the nationwide
application of the IPICS system.
The economic benefits of the IPICS system include:
(1) Water cost savings of approximately 2,500
CNY/ha/year based on local water prices; (2) Labor
cost reduction of 1,200 CNY/ha/year due to automated
operation; (3) Environmental benefits through
reduced nitrogen leaching, which contributes to
water quality improvement. The system demonstrates
strong applicability in Northeast China and holds
promise for extension to similar rice-growing regions
across Asia.

5 Conclusion
The IPICS system enables district-level precision
irrigation control, achieving a water-saving rate
of >25% while maintaining stable yields, thus
demonstrating high technical feasibility. The
"multi-source sensing–hybrid model–collaborative
sluice control" technology chain holds significant
scientific research value and broad application
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prospects for supporting the implementation of
the intelligent irrigation module in the Ministry of
Agriculture and Rural Affairs’ "Digital Farmland
Construction Standards." Future work will focus
on integrating root CT imaging for optimized soil
moisture monitoring, developing intelligent decision
systems for irrigation-fertilization-pest control
integration, and building blockchain-based platforms
for water rights trading and carbon accounting,
further advancing applications in smart agriculture.
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