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Abstract

The continuous rise in global atmospheric carbon
dioxide has profoundly altered climate patterns
and the spatiotemporal balance of hydrothermal
conditions at regional scales. @ Understanding
species” responses to climatic factors is thus
critical for biodiversity conservation. This study
focuses on Pinus taiwanensis, analyzing changes
in its suitable habitat using distribution data and
environmental variables. Employing the biomod2
ensemble model, potential habitats were predicted
under three climate scenarios (SSPs126, SSPs370,
SSPs585) for the present, 2050, and 2090. Results
show: (1) Model performance is excellent (AUC
> 0.9, TSS > 0.8). (2) Temperature-related factors
(isothermality, diurnal range) play dominant roles,
followed by precipitation. (3) Future climate
changes may lead to moderate habitat expansion.
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(4) The centroid of suitable habitat is projected
to shift northeastward, with higher probability of
a northwestward shift. (5) The SSPs585 scenario
shows the greatest deviation from the current
climate, with diurnal range as the least similar
variable in 2050 and isothermality in 2090. In
conclusion, climate change will reshape the
potential distribution of Pinus taiwanensis, with
habitat dynamics driven by the combined effects of
dominant and secondary environmental factors.

Keywords: biomod2 model, pinus taiwanensis, climate
change, potential habitat suitability.

1 Introduction

Climate change has disrupted the
hydrothermal balance, severely impacting species
reproduction, growth, and distribution [1-3]. It
poses a significant threat to species survival and
development, particularly for those with restricted
habitats, forcing them to adapt to new environments

regional
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or undergo geographical migration [4]. Therefore,
investigating how species respond to climate change
under global climate change scenarios has become a
key issue of international concern.

Species’ responses to climate change are typically
reflected in shifts in geographical range and
phenological changes, while climate change
directly affects the spatiotemporal variation of
climatic factors associated with species’ climatic
niches [5]. During habitat adaptation, species
often alter their original distributions through
migration and dispersal processes to recolonize
suitable habitats [6]. In response to climate change,
many species have already modified their original
horizontal (latitudinal, longitudinal) and vertical
(altitudinal) distribution ranges, particularly those
already inhabiting high-latitude and high-altitude
regions. Changes in species distribution ranges are
often multidirectional and exhibit more complex
responses to climate change than anticipated [7].

Species Distribution Models (SDMs) are critical
and effective tools based on niche theory for
studying the impact of climate change on species
distributions [8]. These models correlate known
species occurrence data with corresponding habitat
variables to probabilistically reflect habitat suitability,
explaining species occurrence probability, habitat
suitability, or species richness. They further serve
as quantitative models to assess changes in species
distribution ranges and their driving factors [9].
Currently, commonly used SDMs include Generalized
Linear Models (GLM), Boosted Regression Trees
(GBM), Classification and Regression Trees (CTA),
Artificial Neural Networks (ANN), Surface Range
Envelopes (SRE), Flexible Discriminant Analysis
(FDA), Random Forests (RF), Ecological Niche Factor
Analysis (ENFA), Genetic Algorithm for Rule-set
Prediction (GARP), Bioclimatic Envelope (BIOCLIM),
and Maximum Entropy (MaxEnt) models [10-
13]. However, most species distribution prediction
studies rely on single-model approaches. Due to
differences in theory, assumptions, algorithms, data
independence, and representativeness—as well as
varying applicability across species—single-model
predictions often lack stability and exhibit certain
biases [14].

The Biomod2 species distribution modeling
framework, implemented on the R platform,
integrates 10 common SDMs. By applying
an Ensemble Model (EM) strategy, it performs
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multiple independent runs under different initial
conditions, parameter optimizations, and constraints.
This approach comprehensively analyzes the
commonalities, discrepancies, and uncertainties
across all model outputs. By separating the "signal"
(true species-environment relationships) from the
"noise" (data errors and model uncertainties), it
reduces uncertainties arising from different modeling
methods and non-independent evaluation samples,
thereby improving predictive accuracy [15, 16]. This
framework addresses the challenge of selecting
appropriate SDMs for predicting species” potential
distributions [17] and has gained widespread
recognition and application due to its ability
to overcome the limitations of single-model
approaches [18-21].

Pinus taiwanensis, an endemic tree species in China, is
an important afforestation and ecological restoration
species in subtropical regions, as well as a valuable
timber resource. It plays a vital ecological and
economic role in mountain vegetation recovery,
carbon sequestration, water conservation, and
medicinal exploitation of coniferous traits [22].
Pinus taiwanensis forests often exist as pure
stands fragmented by plains and lakes, forming
discontinuous "island-like" distributions. Due to
severe threats from climate change and pine wilt
disease, Pinus taiwanensis communities are exhibiting
declining trends [23]. Thus, this species warrants
special attention in biodiversity conservation under
global climate change. Current research on Pinus
taiwanensis primarily focuses on spatial patterns [24],
ecological niches [25], community characteristics and
succession dynamics [26], and pest control [27], with
relatively few studies on its response to climate change.
Although some scholars have used the MaxEnt model
to predict its potential distribution under climate
change based on occurrence records and habitat
factors [28], MaxEnt as a single model carries risks of
overfitting and inherent limitations [29].

Therefore, this study employs the Biomod2 ensemble
modeling framework to predict shifts in suitable
habitats for Pinus taiwanensis under future climate
scenarios using known distribution data.  The
objectives are to identify range contraction zones,
determine future migration centers, and provide a
theoretical basis for developing conservation and
sustainable utilization strategies to alleviate China’s
severe timber shortages.
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2 Data Sources and Methods

21 Data Source and Processing
taiwanensis Distribution

of Pinus

Distribution point data for Pinus taiwanensis were
obtained through the following methods: Firstly,
electronic databases, primarily the Global Biodiversity
Information Facility (GBIF!), China Field Herbarium
(CFH?), Chinese Virtual Herbarium (CVH?),
National Specimen Information Infrastructure
(NSII*), and Flora of China Data (FRPS®). Secondly,
literature searches were conducted using electronic
literature databases like China National Knowledge
Infrastructure (CNKI) and Web of Science (WOS),
filtering by keywords to retrieve target information.
The obtained coordinate data were processed using
ArcGIS 10.8 and saved in .csv format as required by
the biomod2 model for future use. The distribution of
Pinus taiwanensis was showed in Figure 1.
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Figure 1. Distribution of pinus taiwanensis.

2.2 Acquisition of Environmental Factor Data

The relevant environmental factor data used in this
study are listed in Table 1, including climate, soil,
topography, and other related factors. Climate factor
data with a resolution of 30 arc-seconds were obtained
from the WorldClim climate database®. Future climate
data were derived from the BCC-CSM1-1 model
under three Shared Socioeconomic Pathway scenarios:
SSPs126 (low greenhouse gas emissions), SSPs370
(medium greenhouse gas emissions), and SSPs585
(high greenhouse gas emissions) [? |. Elevation data

lhttps://www.gbif‘org/
2http://www.cfh,ac.cn/
3https://www.cvh.ac.cn/
http:/www.nsii.org.cn/
5http://www.iplant.cn/frps
6https://WWW.WorIchim.org/

(Digital Elevation Model, DEM) with a resolution
of 30m were obtained from the Geospatial Data
Cloud’. Aspect and slope were extracted using ArcGIS
10.8 [30]. Relevant soil data were acquired from the

World Soil Database® [31].

When building species distribution models,
multicollinearity among environmental factors can
lead to model overfitting, affecting the reliability of
prediction results. To optimize variable selection, the
following screening steps were applied: First, identify
highly correlated environmental variables based on a
Pearson correlation coefficient matrix (threshold |r| >
0.8). Second, evaluate the importance of each variable
through the factor contribution rate output by the
models. Finally, retain factors with high contribution
rates and low correlation with other wvariables,
eliminating redundant variables. Constructing the
biomod2 model using the screened environmental
variables effectively reduces interference from
redundant information, thereby enhancing model
predictive performance.

2.3 Biomod2 Model Construction and Evaluation

This study used the biomod2 package within the
R platform (v4.3.3). Distribution points of Pinus
taiwanensis and the selected environmental factors
were imported into biomod?2 to construct 12 species
distribution models. The models used include:
Generalized Additive Model (GAM), Maximum
Entropy Neural Network Model (MaxNet), Flexible
Discriminant Analysis (FDA), Generalized Boosted
Regression Tree Model (GBM), Classification Tree
Analysis (CTA), Multivariate Adaptive Regression
Splines (MARS), Surface Range Envelope (SRE),
Extreme Gradient Boosting Model (XGBOOST),
Maximum Entropy Model (MaxEnt), Generalized
Linear Model (GLM), Random Forest Model (RF),
and Artificial Neural Network Model (ANN).
Using environmental background sampling, 500
pseudo-absence background points were randomly
generated within the species distribution raster data.
The data were randomly split into training and
validation sets at a 3:1 ratio. To account for sample size
differences, appropriate weighting was applied to both
sets during model training [32]. Model prediction
performance was comprehensively evaluated using
the Receiver Operating Characteristic (ROC) curve
and the True Skill Statistic (TSS) metrics. The Area
Under the Curve (AUC) of the ROC curve is one of

7http://www.gscloud.cn/
8https://www.fao.org/
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Table 1. Environmental factors.

Factor type Code Environmental factor description
AMT Annual Mean Temperature
DATR  Daily average temperature range
Iso Isothermality
SVCT Seasonal variation coefficient of
temperature
MTWAM Max Temperature of Warmest
Month
MTCM  Min Temperature of Coldest Month
TAG Temperature Annual Range
Climate MTWEQ Mean Temperature of Wettest
Quarter
MTDQ  Mean Temperature of Driest Quarter
MTWAQ Mean Temperature of Warmest
Quarter
MTCO Mean Temperature of Coldest
Quarter
AP Annual Precipitation
PWEM  Precipitation of Wettest Month
PDM Precipitation of Driest Month
SVCP Season.al. yariation coefficient
of Precipitation
PDQ Precipitation of Driest Quarter
PWEQ  Precipitation of Wettest Quarter
PWAQ  Precipitation of Warmest Quarter
PCQ Precipitation of Coldest Quarter
altitude  altitude
Topography aspect aspect
slope slope
awc_class Soil Available Water Content
s_ph_h20 Subsoil pH
Soil s_ocC Subsoil Organic Carbon Content
t_oc Topsoil Organic Carbon Content
t_ph_h20 Topsoil pH
ndvi Normalized Difference Vegetation
Other Index
lucc Land Use Type

the most widely accepted and effective indicators for
evaluating SDMs. AUC is independent of specific
diagnostic thresholds and shows low sensitivity to
changes in species presence frequency, ensuring
objective and accurate assessment. The AUC value
ranges from 0.5 to 1, with higher values indicating
better predictive accuracy. The True Skill Statistic
(TSS) serves as an improved model evaluation metric,
retaining the strengths of the Kappa statistic while
overcoming issues with unimodal species presence
distributions. A TSS value approaching 1 indicates
superior model prediction performance [32].

After establishing the single models, those with TSS >
0.8 were selected based on accuracy requirements. An
ensemble model was constructed using the weighted
mean method (EMwmean), and the model with
the highest accuracy was chosen for subsequent
research [33]. Utilizing the model ensemble module
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of the biomod2 package, a performance-based
weighted combination scheme was implemented. This
strategy uses the AUC evaluation value of each
single model as the weight parameter and applies
a weighted averaging algorithm to generate the
ensemble prediction, giving greater weight to models
with higher predictive accuracy in the final combined
model. Based on the maximum TSS threshold method,
the potential distribution area of Pinus taiwanensis
was classified into two major habitat types: suitable
(P > threshold) and non-suitable (P < threshold).
The suitable area was further subdivided into three
grades using the Jenks Natural Breaks classification
method, generating high, medium, and low suitability
levels, thus classifying the potential suitable habitat
of Pinus taiwanensis into four categories. Through
the ensemble model’s variable response curves and
contribution rate analysis, the relative importance of
various ecological factors to distribution prediction
was determined [10]. Model prediction results can be
classified according to the following AUC grades: No
predictive value (0 < AUC < 0.6); Limited predictive
ability (0.6 < AUC < 0.7); Moderate predictive
accuracy (0.7 < AUC < 0.8); Good predictive
performance (0.8 < AUC < 0.9); Excellent predictive
performance (0.9 < AUC < 1.0) [34].

2.4 Multivariate Environmental Similarity Surfaces
(MESS) and Most Dissimilar Variables (MOD)

This study used Multivariate Environmental Similarity
Surfaces (MESS) and Most Dissimilar Variable (MOD)
methods to quantitatively assess the differences
between future climate scenarios and the current
climate scenario. By calculating the climate similarity
index (S), key driving factors influencing the potential
distribution area of Pinus taiwanensis under future
climate scenarios were explored. If S > 0, a larger
positive S value indicates a greater difference between
the future climate conditions in the study area and the
current conditions. When S = 0, it signifies that future
climate conditions are identical to the current ones. If
S < 0, at least one environmental variable in the future
climate scenario exceeds the current climate range.
This point is a climate anomaly point, and a larger
absolute value indicates a greater difference in climate
conditions. This study established a reference baseline
using the climate metrics from the current suitable
range of Pinus taiwanensis. By integrating MESS and
MOD spatial algorithms, it analyzed the correlation
between future climate factors and current climate
conditions, thereby identifying areas where climate
anomalies may occur within the suitable habitat of
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Pinus taiwanensis under future climate change and
the corresponding anomalous climate factors [35].

2.5 Suitability Grading for Pinus taiwanensis
Habitat

Using the raster data of species distribution probability
output from the biomod2 ensemble model, the study
area for Pinus taiwanensis was classified into four
ecological response units based on suitability gradients
using the Raster Reclassification tool in the Spatial
Analyst module of ArcGIS 10.8: Non-suitable area
(0.0-0.2), Low suitability zone (0.2-0.6), Medium
suitability zone (0.6-0.8), and High suitability zone
(0.8-1.0) [36]. A spatial measurement matrix was
constructed to characterize the spatial occupancy
characteristics of each suitability grade under different
climate scenarios. Using spatial overlay analysis tools,
the current suitable distribution range was spatially
erased with the potential distribution range under
future climate conditions to obtain spatial distribution
patterns of habitat reduction rate (future range minus
current range) and expansion rate (current range
minus future range).

2.6 Centroid Shift of Pinus taiwanensis Habitat

Based on the distribution centroid extraction
tool in ArcGIS 10.8, this study extracted the
spatial geometric centroid coordinates of high
suitability areas (probability value > 0.8) under
the three climate scenarios (SSPs126, SSPs370,
SSPs585). The spatial transformation characteristics
along the climate pathway were compared across
three time periods: baseline (2020s), mid-century
(2050s), and end-century (2090s). By constructing
migration trajectories of the geometric center under
multidimensional climate scenarios, the dynamic shift
patterns of the spatial centroid of the ecologically
suitable core area were analyzed.  Specifically,
continuously distributed suitable habitat patches
were merged into a single vector point. A geographic
vector field model was established based on the
spatiotemporal offset of the centroid coordinates,
enabling the visualization of its spatial migration.

3 Results and Analysis

3.1 Selection of Environmental Predictors and
Ensemble Modeling

To prevent model overfitting due to multicollinearity
among environmental variables, which affects
model precision, species distribution sample points
were plotted onto 29 contemporary climate factor

layers. Pearson correlation analysis of environmental
factors was performed in R software. When the
correlation coefficient |r| between two climate factors
exceeded 0.8, the climate factor with the highest
contribution value was retained. The correlation
analysis result of environmental factors was showed
in Figure 2. Consequently, this study selected 7
climate factors (Precipitation of Driest Month (PDM),
Min Temperature of Coldest Month (MTCM), Mean
Diurnal Range (DATR), Precipitation of Warmest
Quarter (PWAQ), Temperature Annual Range
(TAG), Seasonal variation coefficient of Precipitation
(SVCP)), 4 soil factors (Soil Available Water Content
(awc_class), Subsoil pH (s_ph_h20), Topsoil Organic
Carbon Content (t_oc)), 3 topographic factors
(Elevation (altitude), Slope (slope), Aspect (aspect)),
and Land Use/Land Cover (lucc), Normalized
Difference Vegetation Index (ndvi). Comprehensive
analysis within the biomod2 ensemble model
highlighted PWAQ, PDM, Iso, and TAG, indicating
that temperature and precipitation are the most
influential factors on the distribution of Pinus
taiwanensis (see Figure 3).

49 0.17 {80088 0. 626 0. 027 0191 0. 603 -0 4-0. . 0.6

1-0.05

Figure 2. The correlation analysis result of environmental
factors.

Model outputs revealed that the average AUC values
for Pinus taiwanensis in future periods (2050s and
2090s) were all greater than 0.9 (see Figure 4), and
TSS values reached above 0.85. The model validation
results demonstrate that the biomod2 modeling
framework exhibits high reliability in predicting
suitable habitats.

After creating pseudo-absence points twice and
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Figure 3. Environmental factor contribution rates.

running each single model 10 times, evaluation
results (KAPPA, TSS, AUC) for 13 single models were
obtained (Figure 4). The Artificial Neural Network
model (ANN) had AUC, TSS, and KAPPA values
of 0.75, 0.51, and 0.11, respectively. The Surface
Range Envelope model (SRE) had AUC, TSS, and
KAPPA values of 0.66, 0.33, and 0.23, respectively.
Both failed the model accuracy test. The remaining
single models all had AUC and TSS values above
0.8 and 0.6, respectively, indicating excellent model
performance. To further optimize the algorithm,
models with AUC > 0.90 and TSS > 0.80 were selected
for ensemble model (EM) construction, including
GBM, GLM, MARS, RF, and XGBOOST. The resulting
EM achieved a mean AUC of 0.97 and a mean TSS of
0.85, representing improvements of 0.05 and 0.08 over
the average AUC and TSS values of the single models.
These data indicate that this ensemble model has a
clear advantage in predicting the suitable growth area
for Pinus taiwanensis.

3.2 Potential suitable habitats of Pinus taiwanensis
under current climatic scenarios

The Biomod2 output results were visualized using
ArcGIS 10.8 (see Figure 5). Calculate the raster
data of the layer through the Raster to Polygon
tool (Table 2). Table 2 and Figure 5 show that
the total area of ecologically suitable habitat for
Pinus taiwanensis is 257.62 ten thousand square
kilometers, exhibiting significant spatial heterogeneity
with gradient characteristics. Specifically, the High
Suitability (HS) distribution area covers 86.53 ten
thousand square kilometers, the Medium Suitability
(MS) area is 71.35 ten thousand square kilometers, and
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Figure 4. Model accuracy evaluation.

the Low Suitability (LS) area spans 99.73 ten thousand
square kilometers. Overall, high suitability areas
account for approximately 33.59% of the total suitable
area. In contrast, low suitability areas, constituting
38.71%, are the dominant type. Non-suitable areas,
lacking suitable biological conditions, dominate the
study region, covering approximately three-quarters
(76%) of the total study area. Furthermore, by
reclassifying the raster data within the study area
in ArcGIS 10.8, it is visually evident that the high
suitability zones for Pinus taiwanensis are primarily
concentrated in southeastern China.

2,000 km

Figure 5. Classification of habitat suitability grades for
pinus taiwanensis under current climate scenario.

3.3 Prediction of Suitable Habitat for Pinus
taiwanensis under Future Climate Scenarios
The distribution of Pinus taiwanensis in the future
was predicted using the biomod2 ensemble model and
visualized for suitability in ArcGIS 10.8 (see Figure 6).
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Figure 6. Suitability grading of pinus taiwanensis habitat under future climate scenarios.

Table 2. Area of contemporary suitable habitat for pinus

taiwanensis.
Index Type Value
Non-suitable 8238143.6
Low suitability 997330.7
Suitable Area (km?) Medium suitability =~ 713530.3
High suitability 865326.1
Total Suitable 2576187.1
Proportion of Low suitability 38.71%
Suitable Area (%) Medium suitability ~ 27.70%
High suitability 33.59%

The area was subsequently calculated by converting
raster to polygon (see Table 3).

Based on SSPsl126 scenario simulations, the total
potential suitable habitat area for Pinus taiwanensis
by 2050 could reach 325.95 ten thousand square
kilometers. Compared to the present, the medium
suitability, high suitability, and total suitable
areas show increases of 0.16%, 0.19%, and 0.19%,
respectively. By 2090 under this scenario, the total
suitable area expands to 4,083,676.5 km?, with the high
suitability area increasing by 0.21%, and the medium
suitability and total suitable areas increasing by 0.19%
and 0.18%, respectively.

Based on SSPs370 scenario simulations, by 2050,
the total potential suitable habitat area for Pinus
taiwanensis is projected to reach 395.40 ten thousand
square kilometers. Compared to the current climate
baseline, medium suitability, high suitability, and total
suitable areas show increases of 0.19%, 0.18%, and
0.17%, respectively. Extending to 2090, the suitable

habitat area expands to 441.94 ten thousand square
kilometers, with the medium suitability increase rising
to 0.21%, the high suitability increase reaching 0.24%,
and the total suitable area increasing by 0.19%.

Under the SSPs585 scenario simulation, by 2050, the
total potential suitable habitat area is projected to be
398.87 ten thousand square kilometers. Compared
to the current baseline, the medium suitability area
increases by 0.19%, the high suitability area increases
by 0.23%, and the total suitable area increases by 0.18%.
By 2090 under this scenario, the suitable area further
expands to 479.25 ten thousand square kilometers,
with the medium suitability increase reaching 0.20%,
the high suitability increase reaching 0.24%, and the
total suitable area increasing by 0.20%.

3.4 Analysis of Centroid Shift in High Suitability
Areas of Pinus taiwanensis under Different
Climate Scenarios

Raster data layers for the current period and for the
2050s and 2090s under the three climate scenarios were
imported into ArcGIS 10.8. Each layer was reclassified
into four categories. Features with attribute value
4 (High suitability) were selected. Each layer was
converted from raster to polygon, renamed accordingly.
The Mean Center tool was then used to visualize the
centroid of the high suitability area for each layer,
which were then plotted (see Figure 7).

According to Table 4 and Figure 7, the centroid position
of the high suitability area for Pinus taiwanensis in
the current period is (111.821652°E, 31.294436°N).
Under the SSPs126 scenario, the predicted centroid
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positions for the 2050s and 2090s are (111.100804°E,
32.378402°N) and (111.559171°E, 35.076825°N), with
migration directions of northeast and northwest,
respectively.  Under the SSPs370 scenario, the
predicted centroid positions for 2050s and 2090s
are (110.695562°E, 35.099849°N) and (110.226264°E,
36.175191°N), both shifting northwest. Under the
SSPs585 scenario, the predicted centroid positions
for 2050s and 2090s are (110.889082°E, 34.890013°N)
and (110.515474°E, 36.293402°N). Spatial distribution
modeling reveals that the centroid of the high
suitability area for Pinus taiwanensis exhibits a
characteristic northwestward latitudinal shift.

1,000 k.

Figure 7. Centroid shift of high suitability areas for pinus
taiwanensis.

3.5 Multivariate Environmental Similarity Surfaces
(MESS) and Most Dissimilar Variable (MOD)
Analysis

The "density.tools.Novel" analysis tool within MaxEnt
was used to analyze the Multivariate Environmental
Similarity Surfaces (MESS) and the Most Dissimilar
Variable (MOD) for the 2050s and 2090s periods.
Based on the spatial heterogeneity distribution of
future climate scenarios constructed by MESS and
MOD models (see Figure 8), differences between
future and current climate environments were
analyzed, and the main environmental factors driving
changes in the suitable habitat of Pinus taiwanensis

were identified.

Under different climate scenarios in the 2050s, the
average MESS values were 4.17, 4.68, and 6.21. Climate
anomalies primarily occurred in the northeastern
and southern parts of the current suitable area.
The corresponding MOD was the daily average
temperature range (DATR).

Under different climate scenarios in the 2090s, the
average MESS values were 5.18, 5.72, and 6.53. Climate
factor anomalies mainly appeared in the northeastern
and southern parts of the current suitable area. The
corresponding MOD was isothermality (Iso).

4 Discussion

4.1 Model Evaluation and
Environmental Factor Influence

Analysis  of

The excellent performance of various evaluation
metrics for the biomod2 ensemble model indicates
a high degree of credibility and reliability for this
study [37]. Further optimization of the biomod2
model results showed that the AUC values for
predictions in the 2050s and 2090s were all above 0.9,
and TSS values were above 0.85. This confirms that
the biomod2 model simulation performs "excellently"
in predicting the potential distribution area of Pinus
taiwanensis.

The environment determines plant growth and
geographical distribution patterns [38]. Different
tree species have distinct biological characteristics
and ecological habits, resulting in different responses
to climate. The adaptability and dispersal capacity
of plants to their environment often determine the
distribution patterns of their groups. Simultaneously,
biotic and abiotic environmental factors can also
cause changes in these distribution patterns [39].
Various ecological factors influence the animals,
plants, and microorganisms living within them, while
the presence of these organisms also alters the
natural environment to some extent. Considering
current climate change trends, shifts in global climate
patterns profoundly impact the distribution and

Table 3. Suitable habitat area for pinus taiwanensis under future climate scenarios.

i 2
Climate Areas of suitable are/km’

Area change rate of the suitable area/%

Period Non-suitable Low suitable

area area

scenario

area area

Mid-natural High fitness Total suitable

Mid-natural High fitness Total suitable
area area area

area
Increased Decreased Increased Decreased Increased Decreased

SSPs126 2050 7555056.5 1142415.7 818897.6 1298212.5 3259525.8 0.16 0.15 0.19 0.09 0.19 0.14
2090 6731287.1 1648453.5 1002540.6 1432682.4 4083676.5 0.21 0.14 0.19 0.09 0.18 0.12
SSPs370 2050 6860763.9 1609480.2 871774.4 1472713.1 3953967.8 0.19 0.14 0.18 0.09 0.17 0.12
2090 6395480.7 1726087.8 1056213.2 1637061.1 4419362.1 0.21 0.13 0.24 0.10 0.19 0.12
SSPs585 2050 6826127.3 1517074.4 926105.8 1545508.1 3988688.3 0.19 0.13 0.23 0.10 0.18 0.12
2090 6021998.6 2014946.4 1201795.4 1575788.9 4792530.7 0.21 0.12 0.24 0.11 0.20 0.24
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Figure 8. Multivariate environmental similarity surfaces (MESS) and most dissimilar variable.

Table 4. Centroid Position and Migration Direction of High
Suitability Areas for Pinus taiwanensis under Future
Climate Scenarios.

Climate The direction of

.~ Period Centroid position e
scenario centroid migration
Current 111.821652E, 31.294436N
SSPs126 2050  111.100804E, 32.378402N Northeast
2090  111.559171E, 35.076825N Northwest
SSPs370 2050  110.695562E, 35.099849N Northwest
2090  110.226264E, 36.175191N Northwest
SSPs585 2050  110.889082E, 34.890013N Northwest
2090  110.515474E, 36.293402N Northwest

survival of Pinus taiwanensis and related tree species.

Furthermore, given the important ecological roles of
Pinus taiwanensis, such as climate amelioration and
soil improvement, this study focused on the influence
of various environmental factors on its potential
distribution area.  Analysis using the biomod2
ensemble model revealed that temperature factors
have the greatest impact on its distribution, followed
by precipitation patterns. This should be the focus

for protection, development, and utilization efforts
concerning Pinus taiwanensis.

4.2 Distribution of Pinus taiwanensis Suitable
Habitat under Various Climate Scenarios

Analyzing changes in potential species distribution
patterns under climate change is critical for assessing
the impact of environmental changes on species and
formulating corresponding conservation strategies
to maintain ecosystem balance [40]. By importing
seven potential suitable habitat distribution maps into
ArcGIS 10.8, the centroid migration path of Pinus
taiwanensis was analyzed. The analysis shows that
the high suitability area of Pinus taiwanensis will
shift northwestward. This provides some theoretical
guidance for the prevention and control of pine
wilt disease (Bursaphelenchus xylophilus) in Pinus
taiwanensis. Predicting the distribution of Pinus
taiwanensis is significant for pine wilt disease control
and regional zoning.
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According to the analysis, the direction and path of
centroid migration for the high suitability area of Pinus
taiwanensis are not entirely identical but generally
trend northwest. However, this study has limitations.
Economic conditions, social conditions, historical
evolution, and biological relationships within the
same species or between different species within the
study area were not fully considered. For example,
interspecific competition among different tree species
or intraspeciﬁc competition within Pinus taiwanensis,
and anthropogenic disturbances damaging ecological
habitats can alter the geographic location and various
biological characteristics of Pinus taiwanensis to some
extent. Future research should pay more attention
to the influence of anthropogenic factors on the
distribution of Pinus taiwanensis to further improve
the accuracy and credibility of distribution predictions.

This study, by analyzing the suitable growth areas
of Pinus taiwanensis under current and future
climate conditions, provides scientific support for the
resource conservation and sustainable utilization of
this species nationwide. When formulating ecological
conservation strategies, the dynamic impact of climate
change on species geographic distribution must be
prioritized. Differentiated management approaches
can be adopted: firstly, strengthening the protection
of core habitats relying on the natural protected area
system; secondly, promoting population restoration
through scientifically planned artificial breeding.
This holds positive significance for biodiversity
maintenance and ecosystem protection.

5 Conclusion

This study on predicting the potential distribution
area of Pinus taiwanensis was primarily based on
species distribution point data and biomod2 ensemble
model simulations. It examined changes in the
spatial location and suitable habitat area of Pinus
taiwanensis for the contemporary period and the
future periods (2050s and 2090s) under three climate
scenarios (SSPs126, SSPs370, SSPs585). This allowed
the identification of future migration trends and
changes in occupied area for Pinus taiwanensis.
Based on this, various environmental factors were
screened and analyzed to determine the main factors
influencing Pinus taiwanensis, providing a solid basis
and scientific guidance for the protection and rational
development and utilization of this species.

1. The TSS values for both current and future periods
in the biomod?2 ensemble model simulation results
were greater than 0.8, and AUC values were all
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greater than 0.9, indicating high accuracy and
reliability of the model for predicting the potential
distribution area of Pinus taiwanensis.

2. Using R software for correlation analysis of
various habitat factors, combined with factor
contribution rates, the habitat factors with the
highest contribution rates were retained. Analysis
confirmed that temperature and precipitation are
the main environmental factors influencing the
potential distribution area of Pinus taiwanensis.

3. Research analysis indicates that under the three
climate scenarios in future periods, the suitable
habitat area for Pinus taiwanensis may expand to
some extent.

4. Under different future climate scenarios, the
centroid of Pinus taiwanensis is predicted to
migrate mainly northwestward. This can provide
guidance and basis for zoning the distribution
area of Pinus taiwanensis and related pest and
disease control.

5. According to Multivariate Environmental
Similarity Surfaces (MESS) and Most Dissimilar
Variable (MOD) analysis, the SSPs585 climate
scenario in future periods differs the most
from the current climate scenario. The most
dissimilar variable for the 2050s is the mean
diurnal temperature range (DATR), and for the
2090s, it is isothermality (Iso).
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