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Abstract
Maize productivity in India, a major global
producer, is severely threatened by leaf diseases.
Accurate identification of Common Rust (CR),
Northern Corn Leaf Blight (NCLB), and Gray Leaf
Spot (GLS) remains challenging with traditional
methods. This study evaluated traditional and
ensemble-based classifiers for classifying these
diseases alongside healthy (HL) leaves. Using
accuracy, precision, recall, and F1-score, we
assessed k-NN, DT, RF, ETs, AdaBoost, SGD,
GB, XGBoost, LightGBM, and a Stacking model
on a four-class dataset. Ensemble methods
demonstrated clear superiority. The Stacking
model achieved the highest accuracy (98.50%),
followed by LightGBM (98.46%) and XGBoost
(98.01%). Among conventional models, ETs
(97.38%) and RF (96.93%) outperformed others.
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While HL was consistently identified, GLS proved
most challenging, especially for non-ensemble
methods. The results underscore the robustness
and superior generalization capability of tree-based
ensemble methods for imbalanced multi-class
disease classification.
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1 Introduction
India is the second-largest agricultural producer in
the world. About 60-70% of India’s rural population
is engaged in agriculture (soil cultivation, crop
production, livestock farming), which accounts for
roughly around 15-17% of the country’sGross Domestic
Product (GDP). India relies heavily on the agricultural
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sector for food, employment, and raw materials
for industries. Among all the crops grown, maize
(Zea mays L.), commonly known as corn, is the
third most important food grain crop after rice and
wheat in India [66]. Maize is important due to
its versatility and high demand [1]. In India and
many other developing nations, corn is not just a
staple food for people but also serves as essential
feed for livestock. Plant diseases are a major threat
to agriculture around the world as they can result in
reduced harvests, increased costs of production, and
even cause food insecurity [65]. Plant diseases are
caused by several factors, including living organisms
such as fungi, bacteria, and viruses, as well as
abiotic environmental conditions such as temperature
variation, high humidity, drought, and poor soil
conditions [3]. Amongst biotic factors, pathogenic
fungi are the most prevalent and destructive cause
of crop diseases, including corn [4, 5]. The growth
of the maize plant can be impacted by several leaf
spot diseases, like Northern Corn Leaf Blight (NCLB),
Gray Leaf Spot (GLS), and Common Rust (CR), which
lower its yield and grain quality, ultimately posing a
serious risk to farmer’s livelihood and country’s overall
food security [2, 6, 67]. NCBL, also called turcicum
leaf blight (TLB), is caused by a fungal pathogen.
Setosphaeria turcica, also known as Exserohilum turcicum
(previously classified asHelminthosporium turcicum),
leads to the production of atypically elongated
or cigar-shaped lesions that disrupt photosynthesis
dependent on chloroplast structure. GLS is caused
by two fungal species, Cercospora zeae-maydis and
Cercospora Zeina, which results in rectangular-shaped
spots that are gray to tan, disrupting photosynthesis
[7]. The infectious agent that causes CR is Puccinia
sorghi, which severely constraints the plant growth,
leading to lower corn yields. It is important to
recognize the above-mentioned fungal diseases at an
early stage and prevent them from spreading and
increasing yield loss [68]. If fungal diseases are timely
identified, it provides an accurate opportunity for
their management or control, including strategies such
as fungicide application, use of resistant cultivars,
and crop rotation [8]. However, traditional means of
responding to visible plant disease symptoms involve
manual field visits to collect samples of infected
plant species by trained pathologists and agricultural
specialists.

While traditional methods are effective, they require
a significant amount of time and labor, making
them impractical in practice, especially for small

producers located in remote areas with limited
resources [9]. Reliance on plants, organisms, or
other human tools also contributes to variability in
diagnosis, leading to inconsistent diagnoses and a
lack of scalability in monitoring efforts. Considering
these limitations, there is a huge demand these days
for developing automated, accurate, and scalable
plant disease detection (PDD) systems. Advances in
artificial intelligence (AI), image processing (IP), and
machine learning (ML) have created new opportunities
in this area [8, 70]. Computer models can process
and analyze images of a plant leaves, allowing for
fast and accurate disease detection and classification.
Automated systems can not only reduce dependence
on expert intervention, and can even provide real-time
monitoring via smartphones or IoT-based devices
[10]. These innovations could transform the future of
plant disease management, making it easier, cheaper,
more efficient, and more accessible to both large-scale
agricultural operations and smallholder farmers who
need to protect their crops and incomes [11].

The rise of AI, particularly in the fields of ML and deep
learning (DL), has opened new avenues for solving
complex agricultural problems such as plant disease
detection. These technologies have revolutionized the
way complex data-driven problems are approached,
offering automation, efficiency, and high accuracy in
decision-making processes [12]. In the context of
agriculture, and more specifically PDD, AI is believed
to provide scalable and cost-effective solutions that
could significantly benefit farmers by enabling early
disease diagnosis and timely treatment [13]. The
advent of DL, particularly convolutional neural networks
(CNNs), has transformed PDD. CNNs, which are
frequently employed in target detection, exhibit great
promise for the identification of crop diseases [14–
17]. CNNs are useful for tasks like object detection
[18, 19], segmentation [20], and recognition [21]
because they can accurately detect diseases without
the need for manually created features by training
on large image datasets. For instance, Lin et al.
[22] created a three-channel CNN that, using colour
differences, was able to identify vegetable leaf diseases
with 87.15% accuracy. Using data augmentation to
lessen overfitting [23, 24] developed a deep CNN
(DCNN) that achieved high accuracy on more than
14,000 images in order to detect four cucumber
diseases. On similar lines, Sladojevic et al. [25]
classified plant diseases from leaf photos with 91%
accuracy. Although these studies demonstrate the
efficiency of CNNs, the majority of the datasets
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were collected in controlled laboratory settings with
unnatural backgrounds, which differ from actual
agricultural field settings. Furthermore, the small
lesion size of early-stage maize leaf blight makes
it particularly difficult to detect, necessitating high
accuracy in identifying small targets. Singh et al. [26]
developed a hybrid DL framework, combining Long
Short-term memory (LSTM) units with convolutional
layers to identify corn leaf eye spot (CLES) disease at
different degrees of severity. Six thousand images
collected from actual agricultural fields made up a
real-time dataset used for training the model. With
an accuracy of 95.88%, the system proved to be
most effective among the four defined stages in
spotting early-stage infections. This work emphasized
the need to combine spatial and temporal aspects
for more accurate disease diagnosis in agricultural
fields with enhanced improvements. CNNs can
automatically extract hierarchical features from raw
input images, making them highly effective for image
classification tasks [27]. CNNs are particularly
well-suited for analyzing visual patterns, such as those
found in leaf textures, shapes, and discolorations
caused by different diseases [28, 29]. By learning
spatial hierarchies of features through convolutional
layers, CNNs can distinguish between healthy and
diseased leaves with remarkable precision [30]. In
recent studies, CNN-based models have achieved
outstanding performance in detecting and classifying
corn leaf diseases, with accuracy rates reported as high
as 98.78% [31–33]. This level of precision underscores
the potential of CNNs in real-world agricultural
applications, where accurate disease identification
can lead to better crop management and reduced
yield loss [34]. Furthermore, advancements in transfer
learning (TL), data augmentation, and lightweight
CNN architectures have made it feasible to deploy
such models even on mobile devices and low-cost
embedded systems, thereby increasing accessibility
and practical usability for farmers in remote and
resource-limited areas [35].

The structure of the paper follows this organizational
order: Section 2, gives the brief idea on the previous
work. Section 3 outlines the description of the
PlantVillage database. In Section 4, the ML models
employed for the evaluation of the dataset, along
with the evaluation metrics, are presented. Section
5 presents the experimental results, their respective
associated discussions, and Section 6 summarizes the
conclusion.

2 Literature Review
A study demonstrated the effectiveness of CNNs in
detecting corn leaf diseases like NCLB (BL), GLS
(GL), and CR, reporting a remarkable 99.58% accuracy
using a relatively shallow architecture with optimized
layers, ReLU activation, and the Adam optimizer [36].
Similarly, provide a comprehensive review of both ML
and DL techniques for disease prediction and seed
quality classification. Their findings emphasize that
while DLmodels perform exceptionallywell with large
datasets, ML models like support vector machine (SVM),
random forest (RF), and Gradient Boosting (GB) are
still valuable, especially when paired with efficient
feature extraction methods [37]. Despite their high
performance, CNNs have certain limitations. CNN
typically requires large, well-labeled datasets and
considerable computational power for training. On
the other hand, traditional ML models like SVM,
k-Nearest Neighbors (k-NN), RF, and GB methods are
more resource-efficient. When paired with carefully
designed feature extraction techniques-such as GLCM,
HoG, LBP, and color histograms. The models can
still deliver strong performance and offer greater
interpretability [2, 37]. Song et al. [38] used
a method called SVM to spot different maize leaf
diseases and achieved an accuracy of 89.6%. SVMs
can handle both small and large datasets, but they
don’t always provide the best accuracy, especially
when compared to some newer techniques. Dash
et al. [39] tried combinations of traditional ML and
DL models, used the DenseNet201 model to extract
features from the images, and then fed those into
an SVM that had been fine-tuned using Bayesian
optimization. This combination performed better
than a plain SVM, achieving a solid 94.6% accuracy
on nearly 5,000 maize leaf images. Authors also
addressed some common problems encountered with
real-world photos, such as reflections and changes
in lighting, which can interfere with model learning.
Another approach from Daneshwari et al. [40], who
worked on a modified k-NN model aimed at early
detection of corn leaf diseases. Researchers designed
it to extract both detailed and general features and
used advanced mathematical techniques behind the
scenes, including something called restricted intensity,
DOR, and a technique called the Directional Set for
optimization. Their model performed exceptionally
well by achieving 99.86% accuracy, with strong
sensitivity and specificity scores too. In fact, it
outperformed several existing methods. Appalanaidu
et al. [41] investigated the performance of various
ML algorithms for classifying plant diseases using
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the PlantVillage benchmark dataset, including k-NN,
Naïve Bayes (NB), SVM, DT, and Artificial Neural
Network (ANN). Their research centered on eight
crops: potatoes, corn, apples, and grapes. With an
average accuracy of 83.71%, the results showed that
ANN consistently outperformed other models. On the
other hand, DT and SVM achieved average precision
scores of 80.42% and 80.27%, respectively; NB and
k-NN performed least, with average precision scores
of 75.62% and 66.23%. With an accuracy of 91.35%,
ANN specifically outperformed SVM (63.6%) and DT
(68.22%) for maize leaf diseases. These outcomes
highlight the superior plant classification accuracy
of neural network models across a variety of crop
plants [64]. Priyaradhikadevi et al. [42] suggested
ML models for identifying plant leaf diseases by
applying DT and GB algorithms. The model was
trained and validated on the PlantVillage dataset,
which consists of images of healthy and infected leaves
of apple, grape, tomato, and corn plants. The proposed
methodology included pre-processing steps such as
grayscale conversion, median filtering, extraction of
textural features using the Gray-Level Co-occurrence
Matrix (GLCM), and using these textural features
for disease prediction via classifiers. The results
indicated that GB achieved 94.59% accuracy on corn
and 80.02% global accuracy, while the DT achieved
95.76% accuracy on corn but only 69.89% on the joint
dataset, clearly evidencing GB to be superior than
DT. Furthermore, this research demonstrated that the
exploitation of ensemble learning for classificationmay
increase classification accuracy in the area of plant
disease diagnosis, especially in the early detection
of diseases affecting food production. Jaisakthi et
al. [43] created an automatic system to detect grape
leaf disease using ML and image processing. The
system identifies the primary area in images using
the GrabCut segmentation algorithm. It extracts
the diseased part using global thresholding and a
semi-supervised color filter. The system retrieves
texture features from the segmentedparts usingGLCM
and also extracts color features. It then classifies
grape leaves into four groups, such as healthy, black
rot, esca, and leaf blight. The study tested three ML
classifiers-SVM, RF, andAdaBoost on a dataset of 1,135
grape leaf images. The SVM classifier performed best
with global thresholding, achieving a test accuracy
of 93.03%. AdaBoost, which uses DTs, achieved 83%,
while RF reached 74.79%. This work revealed that
SVM performs well for disease detection. Amin et
al. [33] combined features from two pre-trained
CNN architectures: EfficientNetB0 and DenseNet121.

This model identified four categories: GLS, CR,
NLB, and healthy corn (HL) leaves, using a portion
of the PlantVillage dataset. The system extracted
deep features from each CNN and then combined
them to build a more robust feature representation,
improving the classification performance. The
model achieved a classification accuracy of 98.56%.
This result outperformed other architectures tested,
such as ResNet152 (98.37%), DenseNet121 (97.82%),
EfficientNetB0 (97.91%), and InceptionV3 (96.26%).
Data augmentation, early stopping, and the use of
separate preprocessing layers for each CNN helped
the model perform well on new data. The study
concluded that combining features from lightweight
CNNs can outperform larger models with many
parameters, offering a promising direction for future
work. Sami et al. [44] investigated a method to classify
plant leaf diseases based on texture, using SVM,
XGBoost, and CNNs. The study employed Local Binary
Patterns (LBP) to extract texture details from images
of five plant types. These details included ridges,
hairs, and waxy coatings. Along with mango, the
plants studied included Alstonia, Guava, Jamun, and
Lemon. The images were captured in various outdoor
settings. They trained several models using the texture
details. These models performed a two-category
classification—healthy versus diseased. The CNN
that used LBP features (CNN-LBP) performed best
among all the models, achieving accuracies of 97% for
Guava, 95% for Mango and Lemon, 98% for Jamun,
and 97% for Alstonia. SVM-LBP and XGBoost-LBP
models, however, showed lower accuracies. This was
especially true for leaves with complex structures,
such as Guava and Alstonia. The study showed that
CNN-LBP effectively handles variations in lighting,
orientation, and size, making it a suitable option
for classifying plant diseases in farm settings [69].
Lokhande et al. [45] conducted a comparative
study on AlexNet and ResNet50, focusing on their
effectiveness in classifying plant leaf diseases in
maize and soybean crops. They worked with over
6,500 labeled images sourced from the PlantVillage
dataset and local agricultural fields, which included
prevalent diseases such as GLS, CR, and NCLB in
maize, and frogeye leaf spot, powdery mildew, and downy
mildew in soybean. The models were trained with
an 80 : 20 split for training and testing, employing
pre-processing and data augmentation techniques
to enhance generalization. Both feature extraction
and classification were performed end-to-end using
CNNs, and TL was used to fine-tune both models
for improved performance on the specific plant data.
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The experimental results clearly showed that ResNet50
consistently outperformed AlexNet in both crop types.
Specifically, ResNet50 achieved an impressive 97.41%
accuracy in classifying soybean diseases and 96.74%
for maize. In contrast, AlexNet achieved 96.40%
accuracy for soybeans and 95.99% for maize. The
study also highlightedResNet50’s greater depth and its
effectiveness in addressing vanishing gradient issues,
making it a better choice for tackling complex PDD
tasks. These results emphasize how deeper CNN
architectures can significantly improve accuracy and
reliability in practical agricultural applications. Reddy
et al. [46] presented a system for automatically
detecting plant diseases using DL methods. They
utilized image pre-processing along with classification
techniques involving SVM and k-NNs. Despite this,
the results indicated that a CNN model outperformed
both methods. The experimental results revealed that
the CNN model achieved an impressive accuracy of
96%, compared to 94% for SVM and just 82% for k-NN.
Hassan et al. [47] conducted a comparative study on
various DL models for detecting plant leaf diseases
using TL. Their research utilized a large and diverse
dataset that included 87,612 images representing
38 different plant disease categories. The dataset
comprised leaf samples from different crops, featuring
both healthy and infected specimens of apple, corn,
tomato, grape, and pepper. Researchers assessed
five CNN-based architectures: DenseNet, ResNet50,
MobileNet, Xception, and EfficientNetB3, all while
applying the same pre-processing and augmentation
techniques. Each model underwent fine-tuning with
early stopping and optimized hyperparameters. In the
end, EfficientNetB3 stood out as the best performer,
excelling in both accuracy and training efficiency. The
experimental findings indicated that EfficientNetB3
achieved an outstanding test accuracy of 99.92%
and an F1-score of 0.999, which was a significant
improvement over DenseNet (92.59%), ResNet50
(95.27%), MobileNet (96.39%), and Xception (98.92%).
The study highlighted the critical importance of
choosing suitable architectures and TL methods for
effective PDD, particularly when handling extensive
multi-class datasets. The approach presented in
this research shows great promise for real-time
applications in smart agriculture systems, aiming to
reduce crop losses and enhance disease management
efforts.

Despite substantial advances in traditional and
modern ML approaches, the existing literature
indicates several ongoing challenges. Deep neural

networks, although highly accurate, typically
require extensive computational resources, large
volumes of annotated data, and meticulously
tuning of hyperparameters. These requirements
limit their practical deployment, particularly in
real-world agricultural settings where computational
infrastructure may be constrained. In contrast,
classical ML models offer greater interpretability and
lower computational overhead, but often struggle
to maintain consistent performance across diverse
maize leaf diseases, especially in the presence of class
imbalance, natural variability in field conditions, and
heterogeneous imaging environments. Collectively,
these limitations underscore the need for models that
combine high predictive accuracy with robustness,
scalability, and operational efficiency. In response to
these gaps, the present study focuses on evaluating
the potential of tree-based ensemble learning methods
including RF, ETs, GB, LightGBM, XGBoost, and
a Stacking ensemble for the accurate classification
of key maize foliage fungal diseases such as NCLB,
GLS, CR, and healthy leaf categories. Supporting a
large and balanced subset of the PlantVillage dataset,
this work systematically compares the performance
of these algorithms to identify a computationally
lightweight yet highly reliable diagnostic solution. The
overarching objective is to establish a generalizable
and field-ready framework capable of enabling timely,
automated disease detection in precision-agriculture
applications.
In summary, while previous studies have
demonstrated the potential of digital and intelligent
systems in various agricultural domains, there
remains a lack of integrated approaches that
combine data-driven analytics, IoT-based sensing,
and AI-powered decision models for sustainable
agricultural management. To address these gaps, the
present study focuses on developing and validating
an intelligent agricultural framework that supports
digital technologies for improved productivity and
resource optimization.

3 Database Description
Corn is one of the major staple foods consumed
worldwide, alongside rice and cassava, and plays
a particularly important role in Indonesia as a
primary source of carbohydrates [59]. The high
demand for corn necessitates its large-scale production
to ensure an adequate supply. Any decline in
production levels can significantly disrupt market
stability, thereby negatively impacting consumers in
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Table 1. The number of corn leaves distribution is represented from the PlantVillage dataset.

Diseases HL GLS NCLB CR
Number of Images 3,486 2,629 3,548 3,682

regions such as Indonesia, where corn consumption
is substantial. Multiple factors contribute to reduced
corn yields, among which plant health is a critical
determinant. Unhealthy corn plants often exhibit
stunted growth, fail to develop kernels, suffer severe
damage, ultimately leading to yield losses and,
in extreme cases, crop failure [60]. The dataset
used in this study is an organized subset of the
publicly available PlantVillage dataset hosted on
Kaggle [61]. The complete PlantVillage dataset,
originally introduced by Hughes and Salathe [62, 63],
contains approximately 2,17,000 images that span
38 categories of healthy and diseased plant leaves.
The selected subset comprised of four classes: NCLB
(3,548), CR (3,682), GLS (2,629), andHL (3,486) leaves.
The classwise distribution of the images is provided
in Table 1, while the respective representatives are
provided in Figure 1 to highlight the variability in the
diseases of corn. Thus, this subset of the PlantVillage
dataset gives a diverse and balanced representation of
both diseased and healthy corn leaves, enabling the
early detection of corn plant diseases and ultimately
assisting farmers in improving crop health and yield.

4 Model Architectures
k-NN: It is a straightforward and useful instance-based
learning method. This method is often applied
to classification and regression problems. It does
not rely on any specific distribution of the data,
making it a suitable and baseline option for real-world
datasets with irregular class boundaries [48]. For a
classification problem, the model checks the classes
of its k-NNs in the feature space to decide the class
of a new data point that is not in the training set.
The neighbors are projected based on the Euclidean
distance, which defines similarity based on the label
for an unknown sample that can be estimated by
majority voting of its neighbors. The k-NN model
was set to k = 300 neighbors with distance weighting.
While k-NN with majority vote calculation is the
more common method, this k-NN model assigns
greater relative importance to closer neighbors based
on inverse distance weighting. The class χ̂ can be
predicted as:

χ̂ = argmax
c

∑
i∈Nk(χ)

1

‖χ− χ̂‖+ ε
· I(χi = c) (1)

where Nk is the set of k-NNs of the test instance χ,
χ̂ is the class label of neighbor i, and ε is a small
constant to prevent division by zero. A large k value
ensures smoother decision boundaries and minimizes
overfitting, especially when combined with feature
selection and normalization.
DT: A popular supervised learning algorithm, the DT
classifier learns a set of decision rules from the input
features to solve classification problems. The model
is organized in a tree-like fashion, with each internal
node standing for a feature test, each branch for the
test’s outcome, and each leaf node for the final class
assignment. The algorithm keeps breaking the dataset
down into smaller chunks, and with each split, the
groups get more uniform in terms of the target class.
At every step or node, it picks one feature and a cutoff
value that helps separate the classes more clearly. This
choice is usually guided by impurity measures like
entropy or the Gini index, which provide the algorithm
with information about how mixed the data is at that
point [49]. The trained DT classifier was produced
using a hyperparameter optimization routine
GridSearchCV . The parameters optimized included:
max_depth,min_samples_split,min_samples_leaf ,
ccp_alpha, and max_features. The parameter
class_weight =′ balanced′ was also specified to
appropriately counter class imbalance in the model
training. The DT classifier recursively splits the feature
space by finding the feature and threshold that yields
the smallest Gini impurity, defined as:

Gini(S) = 1−
N∑
k=1

p2k (2)

where pk is the proportion of samples belonging
to class k in a node S. At every node, the DT
classifier finds the feature and threshold that yields
the greatest decrease in Gini impurity before splitting
this node. In this way, the classifier develops
purer child nodes and, consequently, better class
separation in the training model. The final model
was chosen based on the maximum cross-validation
accuracy throughout the grid search, while ensuring
the resulting model provided a good balance between
explainable outcomes and predictive power.
SVM: The SVM is a popular supervised training
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Figure 1. The diseased leaves from the maize of PlantVillage dataset represent HL, GLS (GL), NCLB (BL), and CR used
for plant leaf disease classification. The classification of various diseases of maize leaves by learning the local and global

features together.

algorithm for binary and multiple-class classification
problems. It performs extremely well with datasets
that include a large number of characteristics,
regardless of whether there are fewer samples than
features. Identifying the best hyperplane, or boundary,
that divides classes by providing the greatest space
between them is the main goal of SVM. Since they
are the data points closest to this boundary, support
vectors are the most important in developing it [50].
The SVM has been configured with a Radial basis
function (RBF) kernel, regularization parameter C =
10, and class_weight =′ balanced′. This model creates
the best separating hyperplane in the transformed
feature space using a nonlinear kernel. The decision
function is defined as:

f(χ) = sign(

L∑
l=1

ξlγl£(χl, χ) + α) (3)

where αl are the Lagrange multipliers, ξl are the class
labels, and £(χl, χ) is the RBF kernel, defined as:

£(χl, χm) = exp(−β ‖χl − χm‖2) (4)

The class_weight =′ balanced′ parameter enables
the model to account for class imbalance during
training. The RBF kernel allows the model to
capture nonlinear and complex patterns in the
manually constructed feature space, enabling strong
generalization performance in multiclass classification
problems.
RF: A single DT may be quite weak, especially if the
data used to train it has noise or is small. RF works
on this by having many trees. Each tree looks at a
slightly different portion of the data and selects from
a random group of features. Then, when it’s time to
make a prediction, the model averages the results or
takes a vote for classification. It’s a straightforward
concept, but it performs effectively because it reduces
overfitting without requiring much tuning [51].

The RF classifier was employed with 200 estimators,
max_depth = 19, and class_weight = “balanced′′. It
is an ensemble model that aggregates the outputs of
multiple DTs trained on bootstrapped samples and
random feature subsets. Each tree uses Giniimpurity
to determine the best split.

Gini(S) = 1−
N∑
k=1

p2k (5)

where pk is the proportion of samples of class k in a
node S. The final prediction is made by majority vote.

χ̂ = mode(h1(x), h2(x), . . . , hK(x)) (6)

where hK(x) is the prediction of the Kth DT. RF
reduces variance and is robust to noise and overfitting,
especially when combinedwith balanced class weights
and limited tree depth.
ETs: Extremely randomized trees (ERT) is a classification
method that makes many DTs to make more right
guesses and fewer wrong ones. This way of making
trees is often used in the field of fixed data because it
learns fast and is steady. The best part of ERT is that it
makes many different trees by adding randomness,
when the basic part of ERT is that it makes many
different trees by adding randomness when choosing
features and setting a split to go into a new branch at
each node. This way of making trees makes the model
work better and does notmatter if the data are changed.
ERT works well with structured or tabular data sets,
where every feature has its own meaning, and is not in
a way that is spatial or makes sense in a row. In these
cases, models based on trees tend to do better than
DL ways of working [52]. DL often needs a lot of data
that is in a spatial or row type of way. ERT also lets
us know how it makes its results. This is very good
for health and farm jobs. It is good to know how the
model makes its calls.
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The ET classifier was created with 250 estimators
and max_depth = 22. In contrast to RFs, which
seek the best splitting thresholds, ETs introduce more
randomization by selecting split points randomly
within the feature’s value range. This contributes to
lower variance and better generalization. The decision
at each node is made by: Split : xf ≤ θ, Where θ ∼
U(a, b)with a and b being theminimum andmaximum
values of feature f in the data subset. Like RFs, ETs
aggregate decisions using majority voting across all
trees. χ̂ = mode(h1(x), h2(x), . . . , hk(x)). The model
employed class_weight = ‘balanced′ to address class
imbalance and leveraged parallel processing n_jobs =
−1 to accelerate training.
GB: GB is an ensemble learning method that builds
a strong predictive model by combining several weak
learners, usually DTs, one after another. In each
step, the algorithm adds a new model that tries to fix
the mistakes made by the earlier combined models.
This fix is done by fitting the new model to the
negative gradient, or pseudo-residuals, of a specific
loss function based on the current ensemble prediction.
Unlike methods like bagging that build models at the
same time, GB improves the model step by step using
gradient descent in function space [53]. This approach
effectively captures complex non-linear patterns and
works well with many types of loss functions. The GB
model was configured with 200 estimators, a learning
rate of 0.05, and a maximum depth of 5 for each
tree. This ensemble method builds DTs in a sequential
manner, where each new tree is trained to minimize
the residual error from the previously built ensemble.
The model is updated iteratively as:

Fm(x) = Fm−1(x) + ξhm(x) (7)

where Fm(x) is the ensemble prediction at iteration
m, ξ is the learning rate, and hm(x) is the weak
learner fit to the negative gradient of the loss function.
A min_samples_s[lit of 5 was used to regulate the
minimum number of samples required to split an
internal node, which aids in generalization. This
configuration enables effective learning of complex
relationships in the feature space while minimizing
overfitting through controlled model complexity and
shrinkage from the learning rate.
SGD: SGD is an optimization algorithm, and it helps
to train large linear models. The method changes the
model parameters one step at a time. It uses samples
from the training set, which are picked at random,
instead of using all the data. This way, the process

uses less computation time and less memory -it works
well with data that has many dimensions. It also
performs well in online learning setups. The SGD
classifier was improved by using themodified_huber
loss function, which provides a smooth approximation
of the hinge loss and is robust against outliers [54]. The
classifier was trained withmax_iter = 5000 to ensure
sufficient convergence, and α = 0.00005 to apply
weaker regularization and avoid underfitting. An L2−
norm penalty was applied to manage the complexity
of themodel. Theweight update rule for SGD followed
the standard gradient descent formulation.

βk+1 = βk − ξk∇ψ(ωk) (8)

where ξk is the adaptive learning rate with
learning_rate =′ optimal′ and∇ψ(ωk) is the gradient
of the loss function. The flag early_stopping = True
monitored validation performance, using 10% of the
training dataset. The system is stopped training if no
further improvement is observed for 15 consecutive
epochs n_iter_no_change = 15. These configurations
were chosen for their robustness in generalization,
reducing training time, and ability to tolerate noise in
the corn leaf disease detection dataset.
AdaBoost: AdaBoost is a step-by-step way to use weak
learners to make one strong one. It trains weakmodels,
shallowDTs, onweighted data. It focuses on correcting
samples that were wrong. In each round, the weights
of the misclassified samples increase. This causes
the next learner to focus more on these tough cases.
This reweighting process is what makes AdaBoost
different from other boosting methods. The AdaBoost
framework assumes that each base learner does a bit
better than random chance. It combines their outputs
using weighted majority voting. A weak learner’s role
in the final prediction depends on its accuracy, which is
based on the classification error related to theweighted
distribution of training samples. This method allows
AdaBoost to reduce both bias and variance over several
iterations while keeping it easy to understand by using
decision stumps or shallow trees [55].
The AdaBoost classifier was improved by setting the
DecisionTreeClassifier with max_depth = 4, and
min_samples_split = 5 as the weak learner. The
model was trained using 400 estimators and a learning
rate of 0.1 to constrain the contribution of each weak
learner and stabilize training. AdaBoost is an ensemble
of weak classifiers trained sequentially, with each new
classifier emphasizing the observations that previous
onesmisclassified. The final hypothesis is theweighted
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sum of the weak hypotheses:

χ̂ = sign(

K∑
k=

ξkhk(x)) (9)

wherehk(x) is the kthweak learner, andχk is itsweight,
calculated as

ξk =
1

2
ln(

1− εk
εk

) (10)

where εk denotes the weighted classification error
associatedwith hk. This formulation ensures thatmore
accurate learners contribute more to the final decision.
The use of shallow trees as base learners helps reduce
overfittingwhile maintaining performance on complex
patterns.
LightGBM: LightGBM is a fast and efficient version
of the Gradient Boosting DT (GBDT) framework.
Microsoft introduced it in 2017. LightGBM stands
out from traditional GBDT algorithms because it
uses a leaf-wise tree growth strategy instead of a
level-wise approach. In each iteration, it picks the
leaf with the highest delta loss for splitting. This
results in quicker convergence and improved accuracy.
LightGBM also employs a histogram-based feature
binning method, which groups continuous feature
values into discrete bins [56]. This significantly
reduces memory use and speeds up training. The
LightGBM classifier was trained using 200 estimators,
with a learning rate of 0.05, a maximumdepth of 7, and
31 leaves per tree. The LightGBMmodel extends the
benefits of GB by incorporatingGradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB)
to accelerate training time while preserving predictive
accuracy. Unlike traditional boosting frameworks such
as XGBoost that grow trees level-wise, LightGBM
grows trees leaf-wise, which can achieve lower loss
but may risk overfitting. This was mitigated using
min_child_samples = 10. Similarly to regular
boosting, the ensemble is constructed additively as
follows:

Fk(x) = Fk−1(x) + ξ · hk(x) (11)

where Fk(x) is the model prediction at iteration k, ξ is
the learning rate, and hk(x) is the weak learner fit to
the residuals or negative gradients. This formulation
enables LightGBM to prioritize informative data points
and minimize loss efficiently. The chosen parameters
facilitate fast computation and strong generalization
across the high-dimensional feature space extracted
from corn leaf images.

XGBoost: It is an advanced ensemble learningmethod
that generates additive models sequentially in a
stage-wise fashion to optimize a regularized objective
function. XGBoost differs from traditional GB in
that it uses the first-order gradients (residuals) and
second-order derivatives (Hessians) in formulating
the search direction for boosting, allowing for more
accurate approximations and faster convergence
times. It is very well regarded for its scalability,
regularized optimization approach, and ability to
handle structured/tabular data [53].
The XGBoost model was configured with 200
estimators, a learning rate of 0.05, maximum tree depth
of 6, and both subsamples and colsample_bytree set to
0.8 to reduce overfitting. XGBoost extends classical GB
by applying second-order Taylor expansion to the loss
function, capturing both the gradient and curvature
information. The objective minimized at each boosting
iteration is:

L(t) =
K∑
k=1

[gkft(xk) +
1

2
hkf

2
t (xk)] + Ω(ft) (12)

where gk and hk are the first and second derivatives
(gradient and Hessian) of the loss with respect
to the prediction, and Ω(ft). This formulation
allows for more precise optimization and improved
convergence speed. By incorporating regularization,
feature sampling, and row subsampling, XGBoost
achieves better generalization and is well-suited for
high-dimensional and class-imbalanced datasets such
as those derived from handcrafted corn leaf features.

5 Experimental Results and Discussion
The performance of several ML models was tested
on the data set consisting of 4 classes: NCLB, CR,
GLS, and HL. The former compared the conventional
classifiers: k-NN, DT, SVM, RF, and ETs, and the
latter compared the ensemble and boosting techniques
such as GB, SGD, AdaBoost, LightGBM, XGBoost, and
stacking model. The performance was evaluated in
terms of precision (P), recall (R), F1-score (F), overall
accuracy (%), macro average, and weighted average
scores. The macro average precision: Macro-averaging
combines the contributions of every class to create
a global performance measure. True positives (TP),
true negatives (TN), false positives (FP), and false
negatives (FN) for every class are summed, and the
precision is calculated based on aggregated TP, FP, and
FN.Macro-averaged precision is the total number of TP
predictions divided by the total number of predicted
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Table 2. The comparative performance of ML models such as k-NN, DT, SVM, RF, and ETs evaluated across multiple metrics on the
classification task. The performance was assessed in terms of P, R, and F for four label categories: NCLB, CR, GLS, and HL. In addition, overall

accuracy (%), macro average, and weighted average values are provided to capture model-level performance.

Models k-NN DT SVM RF ETs
Metrics P R F P R F P R F P R F P R F
NCLB 0.90 0.93 0.92 0.89 0.90 0.90 0.91 0.95 0.93 0.95 0.96 0.96 0.96 0.96 0.96
CR 0.99 0.94 0.97 0.99 0.96 0.97 0.99 0.98 0.98 1.00 0.96 0.98 1.00 0.97 0.98
GLS 0.85 0.90 0.87 0.84 0.87 0.86 0.92 0.87 0.89 0.92 0.95 0.93 0.92 0.96 0.94
HL 0.99 0.96 0.97 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy (%) 93.52 93.44 95.39 96.93 97.38
Macro Avg. 0.93 0.93 0.93 0.93 0.93 0.93 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97

Weighted Avg. 0.94 0.94 0.94 0.94 0.93 0.93 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97

Figure 2. Confusion matrices of different ML classifiers for maize disease classification. Each matrix compares the true
and predicted labels for four disease categories: NCBL, CR, GLS, and HL. The diagonal values represent correctly
classified samples, while off-diagonal cells indicate misclassification. Among all models, RF and ETs exhibited the

highest classification accuracy with minimal misclassification across all disease classes.

positives across all classes. Macro-averaged precision
gives equal weight to every instance, regardless of
its class, and is therefore beneficial for multi-class
classification problems with imbalanced datasets,
adding more weight to classes that have more samples
[57]. The weighted-average precision is especially
valuable in problems with multiple classes because
it helps with class imbalance by specifying weights
based on the number of class instances. Thus, classes
with larger sample sizes will weigh more in the overall
metric, providing a more accurate indication of overall
system performance than a macro-average, which
could treat each class equally [58].
The different algorithms tested in the dataset in Table
2 showed that ETs and RF consistently achieved
the highest accuracy scores of 97.38% and 96.93%,
along with macro and weighted average P, R, and
F scores of 0.97 each. As both methods are
ensemble learning algorithms based on multiple
DTs combining in a strong classifier, this was
reflective of the complexity of the dataset being
evaluated. The k-NN classifier, while slightly lower
in absolute terms (93.52%), at least suggested that
nearest-neighbor-based classification could be a useful
method to explore for the dataset. The SVM classifier

suggested an accuracy of 95.39%. Although SVM
obtained balanced class prediction performance for
the dataset, the performance was lower than the
ensemble methods. The DT model obtained the
lowest accuracy (94.08%) overall, suggesting poor
generalization for all classes, although the DT model
appropriately characterized the HL class. Among
the individual class-level metrics, HL demonstrated
near-perfect classification across all models, with
several achieving P=R=F=1.00. Conversely, the GLS
class exhibited more variability, where models such
as DT and k-NN yielded slightly lower F1-scores
(0.86-0.87), while ensemble models like RF and ETs
improved the performance to 0.93-0.94 can be observed
from Figure 2.
Table 3 represents the data, which indicates that
the stacking model had the best accuracy (98.50%),
closely followed by the LightGBM accuracy (98.46%)
and XGBoost (98.01%), demonstrating the strong
generalization capability of ensemble approaches.
These boosting and stacking-based methods are
able to produce strong classifiers from several weak
learners and are effective for complex data sets. The
customized GB method also performed well with
solid results at 97.94%, whereas AdaBoost records
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Table 3. The comparative performance of ML models such as GB, SGD, AdaBoost, LightGBM, XGBoost, and stacking models evaluated across
multiple metrics on the classification task. The performance is assessed in terms of P, R, and F for four label categories: NCLB, CR, GLS, and

HL. In addition, overall accuracy (%), macro average, and weighted average values are provided to capture model-level performance.

Models GB SGD AdaBoost LightGBM XGBoost Stacking Model

Metrics P R F P R F P R F P R F P R F P R F
NCLB 0.97 0.98 0.97 0.90 0.85 0.87 0.92 0.95 0.93 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98
CR 0.99 0.97 0.98 0.97 0.95 0.96 0.99 0.97 0.98 0.99 0.98 0.99 0.99 0.97 0.98 0.99 0.98 0.98
GLS 0.96 0.96 0.96 0.77 0.86 0.81 0.91 0.90 0.90 0.97 0.98 0.97 0.95 0.96 0.96 1.00 1.00 1.00
HL 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98

Accuracy (%) 97.94 91.61 95.84 98.46 98.01 98.50

Macro Avg. 0.98 0.98 0.98 0.91 0.91 0.91 0.96 0.95 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Weighted Avg. 0.98 0.98 0.98 0.92 0.92 0.92 0.96 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99

Figure 3. Confusion matrices of ensemble ML classifiers for maize disease classification. The matrices display the
correspondence between true and predicted labels for four classes: CR, GLS, NCLB, and HL. Diagonal values indicate
correct classification, while off-diagonal values represent misclassifications. Among all models, LightGBM, XGBoost and
Stacking Model demonstrate superior performance with the highest number of correctly classified samples across all

disease categories.

slightly lower performance (95.84%). On the other
hand, SGD produced the lowest with 91.61% accuracy,
which reflected limited effectiveness for this data set,
indicating its limited capability to capture complex
non-linear relationshipswithin the dataset. The overall
performance matrices in Table 3 indicated that the
stacking model, LightGBM, and XGBoost models had
the highest results on P, R, and F, whereas SGD,
AdaBoost, and GB performed slightly lower than other
ensemble methods.

The overall performance matrices present in Table 3
suggested the following. At the class level, near-perfect
classification was observed for the HL category, where
most models achieved P=R=F=1.00, except for the
stacking model (0.98). The NCLB and CR classes
also achieved consistently high scores across models,
particularly under ensemble methods. However,
the GLS class exhibited noticeable variation, while
the stacking model achieves perfect P, R, and F
(1.00). SGD lagged with an F of 0.81, highlighting
the benefits of ensemble learning in handling class

imbalance and variability. The macro and weighted
averages further reinforced these findings, where
ensemble-based models (LightGBM, XGBoost, and
stacking) consistently achieved values of 0.98-0.99
across all three evaluation metrics, significantly
outperforming traditional approaches, as observed in
Figure 3.

Taking into consideration both Table 2 and Table 3, it
seems that the stackingmodel and LightGBM achieved
the best results, and they were followed closely by
GB, XGBoost, ETs, and RF. The SVM classifier also
showed performance competent enough to come in
the same category, while DT had moderate success.
On the other hand, k-NN and SGDwere two classifiers
that were the least reliable in this study. These results
show that ensemble and boosting-based methods
have a significant advantage over traditional classifiers
and may be the best candidates for plant disease
classification. Based on the algorithms applied in Table
2 and Table 3, the following conclusions can be drawn:

• The stacking model culminated in the best overall
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accuracy of 98.50%, thus providing the best
performance when being learned in the data. It
consistently provided the best P, R, and F through
all classes.

• LightGBM came in at a high accuracy of 98.46%.
This shows strong power for generalization ability;
LightGBM has been seen to be efficient, scalable,
and thus is very useful for large-scale data.

• The XGBoost achieved accuracy scores of 98.01%,
slightly lower than LightGBM and GB, but still a
high-performance learner. XGBoost also yielded
one of the best unweighted average precision and
recall.

• The GB algorithm was able to achieve an accuracy
of 97.94%. Being an ensemble, meaning it takes
advantage of multiple DT learners. The GB
algorithm was consistent through all classes, with
its metrics balanced.

• ETs and RF classifiers had an accuracy of 97.38%
and 96.93%, respectively, confirming the power of
ensemble methods. Both ETs and RF were able to
classify effectively, especially for the CR and HL
classes.

• The k-NN classifier achieved an accuracy of
93.52% and was the most competitive base model
despite its simplicity. However, it was slightly
less consistent than the boosting and stacking
methods.

• The SVM classifier achieved 95.39% accuracy,
which suggests there was balanced performance
across classes, but ultimately did not do as well as
other ensemble and boosting-based methods.

• The DT classifier had the lowest accuracy in
Table 2 (93.44%), indicating it had weaker
generalization despite performing well for the HL
class.

• AdaBoost achieved an accuracy of 95.84%, which
was lower than other boosting-based approaches,
namely GB and XGBoost. It was effective in its
usage but not consistent across all classes.

• The last classifier is SGD, which had the lowest
overall accuracy of 91.61%, ranked it as the least
effectivemethod in all the experiments performed.

Ultimately, ensemble-based methods such as the
stacking model, LightGBM, XGBoost, GB, ETs, and
RF demonstrated superior performance over classical
classifiers. k-NN and SVMproduced acceptable scores,

but were outweighed by DT, AdaBoost, and SGD,
which were the weakest. These results confirm that the
stacking and boosting algorithms are the most reliable
for the classification of plant diseases.
Table 4 presents a comprehensive analysis of the
related literature, which reveals that earlier ML
approaches, such as classical SVM, yielded moderate
accuracy of around 89.6% in [38]. With the rise of DL,
hybrid models such as DenseNet201 + SVM achieved
improved performance 94.6%, presented in [39], while
advanced mathematical feature-engineering methods
like modified k-NN [40], reported very high accuracy
99.86%. Neural networks and CNN-based studies [41,
42] achieved accuracy in the 91-96% range for Maize,
especially when applied on PlantVillage subsets.
DL architectures, particularly ResNet50 (96.74%)
and EfficientNetB3 (99.92%), demonstrated strong
performance but typically require high computational
cost and extensive training data. Compared with
theseworks, our study shows that tree-based ensemble
methods such as Stacking, LightGBM, and XGBoost
consistently achieve superior performance, reaching
up to 98.50% accuracy with excellent macro and
weighted average metrics across all four (CR, NCLB,
GLS, and HL) classes. Particularly, our stack-based
ensemble outperforms ML models such as SVM:
95.39%, DT: 93.44%, and approaches the accuracy of
deep CNNs while maintaining far lower computation
cost and faster training speed. This positions our
method as a practical, robust, and computationally
efficient alternative to DL heavyweights-especially
valuable for real-time deployments, mobile devices,
and low-resource environments.

6 Conclusion
The experimental evaluation demonstrates that the
ensemble-based methods consistently outperform
traditional classifiers for the classification of NCLB,
CR, GLS, and HL in maize plants. Among
conventional models, ETs, and RF achieved the
highest accuracies, 97.38% and 96.93%, respectively,
with strong and balanced macro and weighted
average scores across all metrics. In contrast, DT,
and k-NN yielded lower accuracies (93-94%) and
exhibited reduced performance for the GLS class,
although HL classification remained near perfect for
all models. Similarly, for advanced ensemble and
boosting techniques, the stacking model achieved the
best performance (98.50% accuracy), closely followed
by LightGBM (98.46%) and XGBoost (98.01%), all
delivering near-perfect macro and weighted average
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Table 4. The comparative performance of ML models—including GB, SGD, AdaBoost, LightGBM, XGBoost, and stacking ensembles—was
evaluated across multiple metrics. Their classification accuracy was further compared with the results reported in existing literature to assess

relative effectiveness.

Authors’ Model(s) Used Dataset Accuracy Reported Key Notes

Song et al. [38] SVM Maize Leaves 89.6%
Early ML approach; lower accuracy
than modern ensemble-based models

Dash et al. [39]
DenseNet201+SVM
(BO optimized)

∼5000 Maize Images 94.6%
Deep features + optimized SVM improve

performance over classical SVM

Daneshwari et al. [40] Modified k-NN Maize Leaf Images 99.86%

Very high accuracy; method designed for
early detection; heavy mathematical

preprocessing

Appalanaidu et al. [41]
ANN, k-NN, NB,

SVM, DT
PlantVillage

(Maize + other crops)
ANN: 91.35%, SVM:63.6%

DT: 68.22% for Maize

ANN outperforms classical ML but still
lower than modern ensembles.

Priyaradhikadevi et al. [42] DT, GB PlantVillage
(Corn + other crops)

GB: 94.59%, DT: 95.76%

(Corn Only)

Shows boosting >DT; ensemble trend
consistent with our findings.

Lokhande et al. [45] ResNet50, AlexNet PlantVillage + Field Images ResNet50: 96.74%

AlexNet: 95.99%

Deep CNNs outperform earlier architectures;
still slightly below our ensemble performance.

Hassan et al. [47] CNN, TL Multi-crop Datasets ∼96 - 99% (Varies)
CNNs strong but require heavy compute +

data augmentation.

Sambana et al. [11] EfficientNetB3 Multi-crop PlantVillage 99.92%
Highest DL accuracy reported; very deep network;

high complexity.

Ensemble Models

(Our Work)

Stacking, LightGBM, XGBoost,
RF, ETs, DT, k-NN, AdaBoost, SGD

PlantVillage (Maize Subset:
CR, GLS, NCLB, HL)

Stacking: 98.50%,

LightGBM: 98.46%

XGBoost: 98.01%

Best classical-ML ensemble performance; high
generalization and robustness, particularly for

difficult GLS class.

precision, recall, and F1-scores. GB also performed
competitively at 97.94%, while AdaBoost and SGD
showed reduced effectiveness, with SGD recording
the lowest accuracy (91.61%) due to its limited ability
to capture complex non-linear patterns. Class-level
analysis revealed that the HL category is consistently
classified with near-perfect precision and recall across
all models, while the GLS class posed more challenges,
particularly for non-ensemble methods. Overall, the
results confirm that tree-based ensemble methods
work well. Especially, stacking models, LightGBM,
and XGBoost models offer superior generalization
and robustness for imbalanced, multi-class datasets.
Future work would focus on the development of
automated, reliable, and accurate disease detection
systems to strengthen global food security by enabling
early diagnosis and targeted intervention, thereby
optimizing pesticide usage, reducing crop mortality,
and promoting sustainable agricultural productivity.
The future work will be focus on integrating
the proposed model with IoT and mobile-based
diagnostic platforms to enable real-time, on-field
disease detection and monitoring. The approach
can also be extended to other crop species to
develop a generalized bioinformatics framework for
plant disease classification. Additionally, exploring
deep learning-ensemble hybrid architectures will
help capture spatial, temporal features under real
agricultural conditions, further improving robustness,

scalability, and prediction accuracy.
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