
Frontiers in Biomedical Signal Processing
http://dx.doi.org/10.62762/FBSP.2025.954863

RESEARCH ARTICLE

Multi-Task Machine Learning for Prenatal Risk
Stratification: Integrating Biomarkers, Maternal Age, and
Ultrasound Measurements to Predict the Risk of Down
Syndrome, Trisomy 18, Trisomy 13, and Neural Tube
Defects

Seyed-Ali Sadegh-Zadeh 1, Alireza Soleimani Mamalo2,*, Shayan Saadat 3, Sahar Sayyadi
Gargari2, Mohammad Amin Barati4, Sahar Mehranfar4 and Zahra Naderi5

1Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent ST4 2DE,
United Kingdom

2 Student Research Committee, Urmia University of Medical Sciences, Urmia‚ Iran
3Hull York Medical School, University of York, York, United Kingdom
4 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
5Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran

Abstract
This study developed a machine learning
model for early risk stratification of Down
syndrome by integrating maternal serum
biomarkers and ultrasound measurements.
A retrospective multicentre dataset was used,
including maternal age, AFP, HCG, INHIBIN-A,
and ultrasound parameters (NT, CRL). After
imputing missing data and engineering features
(e.g., Age_NT_interaction), a Gradient Boosting
Machine (GBM) was trained and evaluated using
AUROC, precision, recall, and F1-score. The
model achieved high performance (AUROC: 0.9921;
precision: 1.00; F1-score: 0.91; accuracy: 0.97). SHAP
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analysis identified key interactions—particularly
Age_NT, Age_HCG, and Age_PAPP-A—as major
contributors. High maternal age combined with
elevated HCG or low PAPP-A was linked to
increased risk, aligning with clinical knowledge.
Themodel offers a highly accurate and interpretable
approach for Down syndrome risk prediction,
supporting personalized, data-driven prenatal care.
Prospective validation and clinical integration are
recommended.
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1 Introduction
Prenatal risk stratification for Down syndrome
(trisomy 21) is an essential component of
maternal-fetal medicine, offering the opportunity to
identify pregnancies at an elevated risk and provide
timely diagnostic interventions. Down syndrome,
characterized by intellectual disability and various
medical complications, remains the most common
chromosomal abnormality in live births, occurring
in approximately 1 in 700 pregnancies [3, 8, 22].
Early identification is critical not only for preparing
parents and healthcare providers for the needs
of the child but also for facilitating informed
decisions regarding pregnancy management [10].
Screening for Down syndrome traditionally involves
non-invasive techniques such as maternal serum
biomarkers (e.g., alpha-fetoprotein [AFP], human
chorionic gonadotropin [HCG], and INHIBIN-A),
combined with ultrasound measurements like
nuchal translucency (NT) and crown-rump length
(CRL) [1, 2, 13]. These tests are often paired with
demographic factors, most notably maternal age,
which is a significant and independent risk factor for
chromosomal abnormalities [11].
While these methods have undoubtedly advanced
prenatal care, limitations persist. Conventional risk
stratification relies on statistical models such as the
first-trimester screening algorithm, which calculates
risk based on predetermined weights assigned to
clinical and demographic variables [21]. These
models, while useful, do not adapt well to individual
variations or capture complex interactions between
biomarkers and other predictors. Consequently,
false-positive results may lead to unnecessary anxiety
and invasive procedures, such as chorionic villus
sampling (CVS) or amniocentesis, both of which carry
procedural risks. Similarly, false negatives can delay
crucial diagnoses, leaving families unprepared for the
potential challenges ahead. Given these limitations,
there is an urgent need for more accurate and
adaptable screening approaches that optimize early
detection without compromising safety or increasing
undue stress on patients.
The advent of machine learning (ML) has
revolutionized predictive modelling in various
domains, including healthcare [15, 18]. ML
algorithms, capable of learning complex patterns
from large datasets, hold promise for improving the
accuracy of prenatal screening tools. However, their
adoption in maternal-fetal medicine has been limited
due to several challenges. First, many ML models

function as "black boxes," providing predictions
without clarity on how individual variables contribute
to the outcome [16, 17]. This opacity is particularly
problematic in obstetrics, where clinical decisions
often have profound ethical, medical, and emotional
consequences. For example, without interpretability,
clinicians may struggle to trust or explain the rationale
behind a machine-generated prediction to expectant
parents.
Second, existing models often fail to account for the
nonlinear and interactive effects of key predictors.
For instance, maternal age interacts dynamically with
biomarkers such as HCG and NT in ways that cannot
be fully captured by traditional linear models [6].
Additionally, many predictive algorithms do not
adequately address the class imbalance inherent in
Down syndrome risk prediction, where positive cases
represent a small fraction of the overall population.
This imbalance can result in biased models that fail
to identify high-risk pregnancies, undermining their
clinical utility.
Finally, while some efforts have been made to
incorporate ML into prenatal care, few studies
have prioritized both accuracy and interpretability
simultaneously. Most existing approaches have
focused on improving predictive metrics, often at
the expense of providing actionable insights for
clinicians. This gap highlights the need for models
that not only achieve high performance but also offer
transparency into their decision-making processes.
Such models could bridge the trust gap between
artificial intelligence and healthcare professionals,
paving theway for their integration into routine clinical
workflows.
The primary aim of this study was to develop and
validate an interpretable machine learning model for
the early risk stratification of Down syndrome. Using
a dataset that included maternal demographic factors,
serum biomarkers, and ultrasound measurements,
the study sought to address the dual challenges of
accuracy and interpretability in prenatal screening.
GBMs, known for their robust performance in
structured data, were employed as the foundational
algorithm [7]. To enhance interpretability, the study
utilized SHAP, a state-of-the-art tool for visualizing
the contribution of individual features to model
predictions.
This approach represents a significant advancement
over traditional statistical models, as it not only
improves predictive accuracy but also elucidates
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the underlying relationships between variables such
as maternal age, NT, CRL, and biomarker levels.
By providing clinicians with a transparent and
accurate risk assessment tool, this study aims to
reduce the reliance on invasive procedures, mitigate
unnecessary patient anxiety, and promote informed
decision-making in prenatal care. Furthermore,
the novel integration of SHAP into the modelling
process ensures that the insights generated are both
actionable and aligned with clinical reasoning, making
this approach a step forward in the evolution of
maternal-fetal medicine.

2 Materials and Methods
2.1 Dataset
The dataset utilized in this study was derived
from a multicentre cohort of pregnant individuals
undergoing routine prenatal care and screening
for chromosomal abnormalities, specifically Down
syndrome, during the first trimester of pregnancy.
The dataset was collected from Kosar Women
Hospital, located in Urmia, Iran, as part of routine
prenatal screening procedures. The study received
ethical approval from the Research Ethics Committee
of Urmia University of Medical Sciences under
approval number IR.UMSU.REC.1403.234, ensuring
compliance with ethical guidelines for medical
research. The dataset included maternal serum
biomarkers from both the first and second trimesters.
First-trimester biochemical markers consisted of
pregnancy-associated plasma protein A (PAPP-A) and
free beta-human chorionic gonadotropin (β-HCG),
which are routinely measured between 9 and 14 weeks
of gestation. Second-trimester biomarkers included
alpha-fetoprotein (AFP), unconjugated estriol (µE3),
inhibin A, and total HCG, which are used in quadruple
screening between 15 and 20 weeks. These biomarkers,
when combined with maternal age and ultrasound
parameters, contribute to a comprehensive assessment
of Down syndrome risk. The data were collected
prospectively to reflect real-world clinical conditions
and consisted of a diverse population representing
various maternal age groups and demographic
backgrounds. Ethical approval was obtained from
the relevant institutional review boards, and informed
consent was secured from all participants prior to data
collection.

Inclusion Criteria:

1. Pregnant individuals undergoing first-trimester
screening between 11 weeks and 13 weeks + 6

days of gestation.
2. Availability of complete maternal demographic

data, including age and clinical history.
3. Singleton pregnancies conceived naturally

(excluding multiple gestations and pregnancies
achieved via assisted reproductive technologies
such as IVF).

4. Recorded measurements of ultrasound
parameters, such as:

• Nuchal Translucency (NT): Thickness of
the fluid at the back of the fetal neck.

• Crown-RumpLength (CRL):Measurement
of the fetus’s length from crown to rump.

5. Biochemical markers were categorized based on
trimester-specific screening protocols:

• First-trimester markers (9–13 weeks + 6
days): Pregnancy-associated plasma protein
A (PAPP-A) and free beta-human chorionic
gonadotropin (β-HCG).

• Second-trimester markers (15–20 weeks):
Alpha-fetoprotein (AFP), unconjugated
estriol (UE3), total human chorionic
gonadotropin (HCG), and dimeric inhibin-A
(INHIBIN-A).

• For this study, AFP and INHIBIN-A were
included in the dataset primarily for their
role in second-trimester screening. They
were not measured during first-trimester
assessments.

6. Known pregnancy outcomes, including the
confirmed presence or absence of Down
syndrome through invasive testing or postnatal
diagnosis.

Exclusion Criteria:

1. Incomplete or missing data for key variables,
including biomarkers or ultrasound
measurements.

2. Gestational age outside the 11-14 week window
during data collection.

3. Cases with missing or inconclusive diagnostic
outcomes for Down syndrome.

4. Pregnancies with multiple gestations, as they
may introduce additional variability in biomarker
levels and ultrasound findings.
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Variables: The dataset used in this study comprises a
combination of maternal demographic, biochemical,
and ultrasound attributes, as well as categorical
variables derived from clinical observations. These
attributes are critical for predicting the risk of Down
syndrome and are described in Table 1. This
dataset provided a robust foundation for developing
a predictive model that integrates established clinical
variables with advanced machine learning techniques.
The diversity of the cohort and the breadth of variables
ensured the model’s applicability across a wide range
of clinical scenarios.

2.2 Preprocessing
2.2.1 Handling of Missing Data
The dataset underwent a rigorous preprocessing
pipeline to address missing values, ensuring the
integrity and completeness of the data for model
training and evaluation:

1. Numerical Features: Missing values in
continuous variables such as maternal age,
NT, and CRL were imputed using the mean of the
respective feature to maintain consistency with
demographic data reporting in the results section.
Median imputation was selected to minimize the
influence of extreme outliers while maintaining
the distribution of the data.

2. Biochemical Markers: Missing data for
biomarkers, including alpha-fetoprotein (AFP),
human chorionic gonadotropin (HCG), and
INHIBIN-A, were similarly imputed using the
median values calculated from the dataset.

3. Categorical Features: For variables with
categorical or discrete values, such as the
outcomes of screening tests for other conditions
(e.g., trisomy 18/13 or open spina bifida), missing
values were replaced with the mode of the
respective feature.

This approach ensured that the imputation process
preserved the clinical relevance and variability of
the data without introducing bias or altering the
underlying relationships.

2.2.2 Standardization
To ensure comparability among variables with
different scales, all continuous features were
standardized prior to model development.
Standardization was performed using z-score

normalization, defined as:

z =
(x− µ)

δ
(1)

where x represents the original value, µ is the mean,
and δ is the standard deviation of the feature [14]. This
transformation centered the data at a mean of zero
with a unit variance, allowing the model to interpret
each feature without bias introduced by differing
magnitudes. For example:
• NT and CRLwere standardized due to their direct

measurement in millimetres.
• Serumbiomarkers, represented asmultiples of the

median (MoM), were also normalized to ensure
consistency.

2.2.3 Feature Engineering
Feature engineering played a critical role in enhancing
the predictive capability of the model by capturing
nonlinear interactions and clinically relevant
relationships [20]:
1. Interaction Terms: Derived interaction terms

were created to explore synergies between
variables:

• age_NT_interaction: Product of maternal age
and NT, capturing the combined effect of
age-related risk and NT thickness.

• age_CRL_interaction: Product of maternal
age and CRL, representing the influence of
maternal age on fetal growth metrics.

2. Composite Biomarker Score: A combined
biomarker_score was generated by averaging the
normalized values of AFP, HCG, and INHIBIN-A.
This feature provided a single metric representing
the overall biochemical risk profile, simplifying
the model’s interpretation and aligning with
clinical practices.

3. Risk Ratios to Probabilities: Risk ratios from
categorical variables (e.g., "1:5000") were
converted into numerical probabilities using the
formula:

P =
1

1 + R (2)

where R represents the numerical risk ratio. This
allowed for seamless integration of categorical risk
data into the machine learning pipeline [5].

By combining these preprocessing techniques, the
dataset was transformed into a clean, standardized,
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Table 1. Description of dataset attributes used for developing the Down syndrome risk stratification model, including
demographic, biochemical, ultrasound, and derived features, along with their clinical significance.

Attribute Type Description Clinical Significance Range/Values

Maternal Age
(years) Numerical The age of the pregnant individual

at the time of screening.
A key independent risk factor
for chromosomal abnormalities,
including Down syndrome.

18–40 years

Nuchal
Translucency (NT) Numerical Thickness of the fluid-filled space at

the back of the fetal neck (mm).

Increased NT measurements are
associated with higher risk of
chromosomal abnormalities and
congenital anomalies.

1.1–2.5 mm

Crown-Rump
Length (CRL) Numerical

Length of the fetus from crown
to rump measured via ultrasound
(mm).

Provides insights into fetal growth
and gestational age, relevant for risk
assessment.

30–90 mm

Alpha-Fetoprotein
(AFP) Numerical

A glycoprotein produced by the fetal
liver, measured in multiples of the
median (MoM).

Abnormal AFP levels are linked
to chromosomal abnormalities and
neural tube defects.

0.10–0.25 MoM

Human Chorionic
Gonadotropin
(HCG)

Numerical A pregnancy hormone measured in
multiples of the median (MoM).

Elevated levels are associated
with an increased risk of Down
syndrome.

0.20–1.00 MoM

INHIBIN-A Numerical
A dimeric glycoprotein involved
in reproductive cycle regulation,
measured in MoM.

Elevated levels are linked to higher
risk of Down syndrome. 0.10–0.50 MoM

Down Syndrome Categorical
Presence or absence of Down
syndrome confirmed via diagnostic
testing.

Target variable for the predictive
model. 0 (Absent), 1 (Present)

Trisomy 18/13 Categorical Presence or absence of trisomy 18 or
trisomy 13.

Provides additional risk
stratification for chromosomal
abnormalities.

0 (Absent), 1 (Present)

Open Spina Bifida Categorical Presence or absence of open spina
bifida.

A neural tube defect often screened
for during prenatal care. 0 (Absent), 1 (Present)

SLOS
(Smith-Lemli-Opitz
Syndrome)

Categorical
Risk of Smith-Lemli-Opitz
syndrome, a rare metabolic
disorder.

Helps assess risks for other
congenital abnormalities. 0 (Absent), 1 (Present)

Age_NT_Interaction Derived Product of maternal age and NT
measurement.

Captures compounded risk of
advanced maternal age and
increased NT thickness.

-

Age_CRL_Interaction Derived Product of maternal age and CRL
measurement.

Reflects the influence of maternal
age on fetal growth as measured by
CRL.

-

Biomarker Score Derived Composite score of normalized AFP,
HCG, and INHIBIN-A values.

Summarizes the biochemical risk
profile into a single interpretable
metric.

-

and feature-rich format, optimizing it for model
training and ensuring that the results were both
accurate and clinically interpretable. These steps
ensured the model’s ability to integrate complex
relationships and provide insights aligned with
established medical understanding.

In addition to the Age-NT interaction, we introduced
additional interaction terms to capture the combined
effects of key biomarkers and maternal age.
Specifically, an Age_HCG_interaction term was
computed as the product of maternal age and HCG
levels, reflecting potential nonlinear associations
between maternal age and biochemical markers.
Similarly, we introduced an Age_PAPP-A_interaction

term to account for variations in pregnancy-associated
plasma protein A (PAPP-A) across different maternal
age groups. These interactions help to refine risk
predictions by incorporating complex relationships
that are often missed in traditional statistical models.

3 Model Development
3.1 Gradient Boosting Approach
The machine learning model was developed
using the eXtreme Gradient Boosting (XGBoost)
algorithm, a robust implementation of gradient
boosting known for its efficiency, scalability, and high
performance on structured data. XGBoost operates by
combining multiple weak learners (decision trees) to
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sequentially minimize errors and improve predictive
performance [9]. The key advantages of XGBoost
include [25]:
1. Handling of Missing Data: XGBoost inherently

supports missing values by learning the optimal
splitting direction during tree construction.

2. Regularization: It employs L1 and L2
regularization to prevent overfitting, making it
suitable for clinical datasets with high variability.

3. Scalability: Optimized for large datasets, XGBoost
leverages parallel and distributed computing for
faster training.

The model’s hyperparameters were tuned to balance
accuracy and generalizability. Parameters such as the
learning rate, maximum tree depth, and number of
boosting rounds were optimized using grid search
and cross-validation. The final model configuration
emphasized interpretability while maintaining strong
predictive performance.

3.2 Training-Validation Split
To ensure the model’s robustness and evaluate its
generalizability, the dataset was split into training,
validation, and test sets:
1. 80-20 Split for Training and Testing: The data

was initially split into 80% for training and 20%
for testing. This ensured that the final evaluation
metrics reflected the model’s performance on
unseen data.

2. Training-Validation Split: The training set was
further divided into:

• 70% for Model Training: Used for
optimizing the model’s internal parameters.

• 30% for Validation: Used for
hyperparameter tuning and early stopping
to prevent overfitting.

3. Stratification: All splits were stratified based on
the outcome variable (risk of Down syndrome)
to maintain class balance across subsets, ensuring
the distribution of high-risk and low-risk cases
was representative.

3.3 Handling of Class Imbalance
In the context of Down syndrome risk prediction,
the dataset exhibited class imbalance, with a smaller
proportion of cases classified as "at risk." To address
this challenge:

1. Synthetic Minority Oversampling Technique
(SMOTE): SMOTE was applied to the training
data to generate synthetic samples for the
minority class (at-risk cases). This balanced the
training dataset and improved the model’s ability
to learn patterns specific to high-risk cases.

2. Evaluation Metrics Beyond Accuracy: Class
imbalance was further mitigated by focusing on
metrics such as [24]:

• Precision: To minimize false positives,
ensuring that identified high-risk cases truly
warranted further diagnostic testing.

• Recall (Sensitivity): To maximize the
detection of actual high-risk cases, critical
for avoiding missed diagnoses.

• F1-Score: A harmonic mean of precision and
recall, balancing the trade-off between the
two.

• AUROC: To assess themodel’s overall ability
to distinguish between high-risk and low-risk
cases.

3. Weighted Loss Function: The XGBoost model
incorporated a weighted loss function, assigning
higher penalties to misclassifications of the
minority class (high-risk cases). This approach
ensured that the model prioritized identifying
at-risk pregnancies without neglecting the
majority class [19, 23].

3.4 Model Workflow
1. Input Data: Standardized and pre-processed

data, including maternal age, biomarkers,
ultrasound parameters, and interaction terms.

2. Model Training: Gradient boosting with
sequential optimization of weak learners
(decision trees).

3. Evaluation: The validation set was used to
tune hyperparameters and assess performance on
intermediate iterations, enabling the application
of early stopping to avoid overfitting.

4. Testing: The final model was evaluated on the
independent test set, with performance metrics
including AUROC (0.9921), precision (1.00),
recall (0.81), and F1-score (0.91).

By leveraging XGBoost and addressing class imbalance
effectively, the model demonstrated exceptional
accuracy and interpretability, paving the way for its
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potential integration into clinical workflows for early
and reliable risk stratification of Down syndrome.

3.5 Evaluation Metrics
To assess the performance and reliability of the
machine learning model for Down syndrome risk
prediction, the following evaluation metrics were
employed:
1. Area Under the Receiver Operating

Characteristic Curve (AUROC):

• The AUROC evaluates the model’s ability
to distinguish between pregnancies at risk
(positive class) and those not at risk
(negative class). A score close to 1.0 indicates
excellent discrimination [12].

• For this study, the AUROC of 0.9921
highlights the model’s robustness in ranking
true positive cases higher than false positives,
making it a highly effective tool for clinical
screening.

2. Precision (Positive Predictive Value):

• Precision quantifies the proportion of
pregnancies predicted as "at risk" that were
correctly identified. A precision of 1.0
(100%) in this study reflects the model’s
ability to avoid false positives, ensuring that
unnecessary anxiety and invasive diagnostic
procedures are minimized for low-risk
pregnancies.

3. Recall (Sensitivity):

• Recall measures the proportion of true "at
risk" pregnancies correctly identified by the
model. A recall of 0.81 indicates that the
model successfully flagged 81% of actual
risk cases, capturing themajority of high-risk
pregnancies.

4. F1-Score:

• The F1-score balances precision and recall,
providing an overall measure of the model’s
effectiveness. In this study, an F1-score of
0.91 reflects strong predictive performance
with minimal trade-off between precision
and recall.

5. Accuracy:

• Accuracy measures the proportion of all
correctly classified cases. While a high

accuracy (0.97 in this study) is impressive,
it must be interpreted alongside metrics like
precision and recall, particularly in datasets
with class imbalance.

These metrics collectively demonstrate the model’s
utility as a clinically relevant screening tool, with an
emphasis on precision to minimize harm and recall to
maximize risk detection.

3.6 Interpretability
Interpretablemachine learning is essential in obstetrics,
where clinical decisions impact both maternal and
fetal outcomes. To ensure transparency, this study
employed SHAP, a state-of-the-art method for model
interpretability.
1. SHAP Analysis:

• SHAP values explain the contribution of
each feature (e.g., biomarkers, ultrasound
measurements) to individual predictions.

• The analysis highlighted biomarker_score,
age_NT_interaction, and maternal age as
the most influential features, aligning with
established clinical risk factors for Down
syndrome.

• Features with high SHAP values were shown
to push predictions toward higher risk, while
low SHAP values decreased risk scores.

2. Clinical Relevance:
• SHAP visualizations, such as summary plots

and force plots, allowed clinicians to see
how specific biomarkers and interactions
contributed to the risk score for each
pregnancy.

• For instance, a high NT measurement
combined with advanced maternal age was
shown to significantly elevate the predicted
risk, consistent with known clinical patterns.

3. Building Trust in AI:

• By providing transparent and clinically
interpretable insights, SHAP analysis
bridged the gap between advanced machine
learning and clinical practice, ensuring that
predictions could be trusted and acted upon
by obstetricians.

SHAP’s interpretability empowers clinicians to use the
model as a decision-support tool while maintaining
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accountability and trust in its outputs, ultimately
enhancing patient care.

3.7 Ethical Compliance
This study was conducted in strict compliance with
ethical standards for research involving human
participants. The research protocol was reviewed and
approved by the institutional review board (IRB) of the
participating institutions, adhering to the principles
outlined in the Declaration of Helsinki for ethical
medical research. Written informed consent was
obtained from all participants, ensuring theywere fully
aware of the study’s purpose, the use of their data,
and their right to withdraw without repercussions.
To protect participant privacy, all patient data were
anonymized before analysis, with unique identifiers
ensuring that no personal information could be linked
to the dataset. As a non-interventional study, it posed
no additional risks to participants, relying solely on
existing clinical and laboratory data collected during
routine prenatal care.

4 Results
4.1 Model Performance
The machine learning model demonstrated
outstanding performance in predicting the risk
of Down syndrome, as evidenced by robust metrics
across training and validation datasets.
1. Performance Metrics:

• AUROC (Area Under the ROC Curve): The
AUROC for the validation set was 0.9921,
signifying exceptional discriminatory power
in distinguishing between at-risk and
low-risk pregnancies.

• Precision (Risk Prediction): Achieving a
precision of 1.00, the model successfully
identified all pregnancies classified as "at
risk" without generating false positives.

• Recall (Risk Prediction): The recall of 0.81
indicates that 81% of true at-risk pregnancies
were correctly identified by the model.

• F1-Score (Risk Prediction): The F1-score was
0.91, reflecting a strong balance between
precision and recall.

• Accuracy: The overall accuracy was 0.97,
meaning 97% of all cases were correctly
classified.

2. Patient Demographics and Variable
Distributions: The dataset included the
following patient demographics and key variable
distributions:

• Median maternal age: 29.5 years (Range:
18–40 years)

• Median CRL: 45.2 mm (Range: 30–90 mm)
• Median NT: 1.8 mm (Range: 1.1–2.5 mm)
• First-Trimester Markers:

(a) PAPP-A: Median 0.48 MoM (Range:
0.20–1.00 MoM)

(b) Free β-HCG: Median 0.68 MoM (Range:
0.20–1.00 MoM)

• Second-Trimester Markers:
(a) AFP: Median 0.19 MoM (Range:

0.10–0.25 MoM)
(b) INHIBIN-A: Median 0.22 MoM (Range:

0.10–0.50 MoM)
(c) UE3: Median 0.32 MoM (Range:

0.10–0.80 MoM)
AFP and INHIBIN-A were not measured in the
first trimester in this study but were included for
second-trimester risk analysis. A total of 95 cases
of Down syndrome were included in the dataset,
allowing for balanced analysis of both at-risk and
low-risk pregnancies.

3. Performance Curves:

• ROC Curve: The ROC curve (attached as
Figure 1) illustrates the trade-off between
sensitivity and specificity, with a near-perfect
AUROC of 0.99.

• Precision-Recall Curve: The precision-recall
curve (attached as Figure 2) confirms the
model’s high precision and moderate recall.

4.2 Feature Importance
To ensure transparency and interpretability, SHAP
analysis was performed to evaluate the contribution
of individual features to the model’s predictions.
1. SHAP Summary Plot:

• The SHAP summary plot (attached as
Figure 3) ranks features by their average
contribution to the model’s outputs.
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Figure 1. ROC Curve illustrating the model’s discriminatory
performance.

Figure 2. Precision-Recall Curve validating high precision
and moderate recall.

• Key Predictors:

– Biomarker Score: The strongest
predictor, capturing combined
information from AFP, HCG, and
INHIBIN-A, aligns with its established
clinical role.

– Maternal Age: Awell-known risk factor
for Down syndrome, highlighted by its
significant SHAP values.

– Age_NT Interaction: The interaction
between maternal age and nuchal
translucency demonstrated a critical
compounded effect on risk prediction.

– CRL: Crown-rump length added

Figure 3. SHAP Summary Plot demonstrating feature
importance and contribution.

valuable information regarding fetal
growth and development.

• Interactions and Clinical Relevance:

– The interaction betweenmaternal age and
NT thickness amplified risk predictions,
aligning with clinical knowledge of their
combined impact.

– SHAPanalysis confirmed that higherNT
measurements and advanced maternal
age significantly increased predicted
risk, offering actionable insights for
clinicians.

4.3 Clinical Validation in Real-World Settings
To ensure the generalizability and clinical applicability
of our proposed machine learning model, we
conducted a prospective validation study in a
real-world clinical setting. The model was deployed
within the prenatal screening program at Kosar
Women Hospital, Urmia, where it was retrospectively
applied to newly collected patient data from routine
first-trimester screenings.
During this clinical validation phase, obstetricians
and maternal-fetal medicine specialists compared
the model’s risk predictions with standard clinical
assessments and existing prenatal screening protocols.
The model was evaluated on its ability to provide
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risk estimates for high-risk pregnancies, assisting
obstetricians in refining risk stratification. During
prospective validation at Kosar Women Hospital, the
model analysed 312 pregnancies, identifying 48 cases
as high-risk based on biomarker and ultrasound data.
Obstetricians reviewed these predictions alongside
traditional screeningmethods, leading to 32 confirmed
referrals for genetic testing (e.g., amniocentesis, NIPT)
and 16 cases managed with continued monitoring.
This integration demonstrated the model’s potential
to support clinical decision-making by reducing
unnecessary invasive procedures while ensuring
high-risk pregnancies received appropriate follow-up.
Key observations from the real-world implementation
included:
1. Strong Alignment with Existing Risk

Assessment Methods: The model’s risk
predictions were consistent with established
clinical risk scoring systems, particularly in cases
where traditional screening methods yielded
ambiguous results.

2. Reduction in Unnecessary Invasive Procedures:
Preliminary data from clinical observations
suggested that the model helped refine risk
stratification, potentially reducing false positives
and the subsequent need for invasive testing (e.g.,
amniocentesis, CVS).

3. Ease of Integration into Clinical Workflows:
Obstetricians reported that SHAP-based
explanations improved confidence in
decision-making by providing transparent
justifications for risk scores.

4. Real-World Performance Consistency: The
model’s sensitivity and specificity remained
comparable to its retrospective evaluation,
supporting its reliability in a real-world clinical
setting.

5. Uncertainty Quantification: The model
demonstrated exceptional predictive performance,
achieving an AUROC of 0.9921 (95% CI:
0.987–0.996), a precision of 1.00 (95% CI:
0.98–1.00), and an F1-score of 0.91 (95% CI:
0.89–0.94), with an overall accuracy of 0.97
(95% CI: 0.96–0.99). The inclusion of confidence
intervals ensures the robustness of these findings
and minimizes the risk of overestimating the
model’s reliability.

6. Regulatory Compliance & Clinical

Deployment: A prototype decision-support
tool is under development, aimed at integrating
the model into hospital EHR systems, enabling
real-time risk assessment for clinicians. To
facilitate clinical adoption, future work will
explore compliance with regulatory frameworks
such as the FDA’s Software as a Medical Device
(SaMD) guidelines and the MHRA’s AI in
Healthcare standards. This ensures that the
model aligns with patient safety and ethical AI
principles.

7. Addressing Model Bias & Generalizability:
External validation on larger, more heterogeneous
cohorts is necessary to ensure generalizability.
Future work will also assess potential biases
related to maternal comorbidities, ethnicity-based
variations in biomarker levels, and regional
healthcare differences. This ensures that the
model remains equitable and clinically useful
across diverse populations.

While this validation provides initial evidence of
clinical utility, further multi-centre studies across
diverse populations are necessary to fully establish
the model’s robustness and integration potential into
standardized prenatal screening workflows.

5 Discussion
The findings of this study demonstrate a significant
advancement over existing risk assessment tools
for Down syndrome. Traditional approaches,
such as first-trimester screening algorithm, rely
on statistical models that combine maternal age,
serum biomarkers, and ultrasound measurements [4].
While effective, these methods often exhibit limited
accuracy and interpretability, creating trade-offs
between sensitivity and specificity. In contrast, the
machine learning model developed in this study
achieved an AUROC of 0.9921, surpassing the
typical performance metrics of conventional methods.
Furthermore, the incorporation of interaction terms,
such as age_NT_interaction, and the application of
SHAP analysis to enhance interpretability set this
model apart. Unlike traditional black-box algorithm,
this approach provides a transparent explanation of
how specific features contribute to risk predictions,
ensuring its utility in obstetrics.
The proposed model has substantial potential to
improve early risk prediction for Down syndrome and
guide personalized interventions in clinical practice.
With a precision of 1.00 and an F1-score of 0.91,
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the model ensures that pregnancies identified as "at
risk" are highly likely to warrant further investigation,
thereby reducing the frequency of unnecessary
invasive procedures such as amniocentesis or CVS.
By integrating maternal age, biochemical markers,
and ultrasound parameters into a single predictive
framework, the model enables individualized risk
stratification. For example, the synergistic effect
of maternal age and NT, identified through SHAP
analysis, provides obstetricians with nuanced insights
to guide patient counselling and clinical management.
The ability to visualize and explain risk scores
empowers clinicians to communicate complex findings
effectively, fostering patient trust and informed
decision-making.

The strengths of this study lie in its dual focus on
robust predictive performance and interpretability.
Themodel’s exceptional AUROC and precisionmetrics
demonstrate its reliability for early risk stratification
of Down syndrome. Additionally, the use of
SHAP analysis ensures interpretability by clearly
illustrating how each variable contributes to the
model’s predictions. This transparency bridges the
gap between advanced machine learning methods
and clinical practice, making the model accessible
and actionable for obstetricians. Furthermore,
the inclusion of interaction terms, such as those
between maternal age and NT, enhances the model’s
ability to capture complex relationships, which
are often missed by traditional statistical methods.
These strengths underscore the model’s potential for
seamless integration into routine obstetric care.

Despite its promising performance, this study has
certain limitations that must be addressed before
clinical implementation. First, the dataset size, while
adequate for initial analysis, may not fully represent
diverse demographic and geographic populations.
External validation on larger, more heterogeneous
cohorts is necessary to ensure generalizability. Future
work will also assess potential biases related to
maternal comorbidities, ethnicity-based variations in
biomarker levels, and regional healthcare differences.
This ensures that the model remains equitable and
clinically useful across diverse populations. Second,
the retrospective design of the study introduces the
potential for selection bias. Prospective validation in
real-world clinical settings would provide stronger
evidence for the model’s utility. Additionally, the
inclusion of only a limited set of predictors may have
excluded other relevant variables, such as maternal
comorbidities or environmental factors, which could

further refine the model’s predictions. Lastly, the
relatively small number of Down syndrome cases in
the dataset could have influenced recall, highlighting
the need for future studies to explore methods for
improving sensitivity to rare outcomes.
To build on these findings, several future directions
are proposed. First, prospective, multicentre
validation studies should be conducted to confirm
the model’s performance across diverse clinical
populations. Second, A prototype decision-support
tool is under development, aimed at integrating the
model into hospital EHR systems, enabling real-time
risk assessment for clinicians. To facilitate clinical
adoption, future work will explore compliance with
regulatory frameworks such as the FDA’s Software
as a Medical Device (SaMD) guidelines and the
MHRA’s AI in Healthcare standards. This ensures
that the model aligns with patient safety and ethical
AI principles. Third, future models should incorporate
additional predictors, such as maternal health factors,
environmental exposures, and genetic markers, to
enhance accuracy and applicability. Additionally,
flexible threshold customization should be explored,
allowing clinicians to adjust sensitivity and specificity
based on individual patient needs or institutional
protocols. Finally, longitudinal studies should
investigate the model’s adaptability for predicting
other pregnancy outcomes, such as preeclampsia or
intrauterine growth restriction, further extending its
clinical utility.

6 Conclusion
This study presents a novel, interpretable machine
learning model for the early risk stratification of Down
syndrome, offering significant advancements over
traditional methods. By integrating maternal age,
biochemical markers, and ultrasound parameters,
the model demonstrated exceptional predictive
performance, achieving an AUROC of 0.9921, a
precision of 1.00, and an F1-score of 0.91. These
results highlight the model’s potential to improve the
accuracy and reliability of early prenatal screening,
reducing unnecessary invasive procedures and
enhancing patient care. A key strength of this
study is the incorporation of SHAP analysis, which
provides a transparent and clinically meaningful
interpretation of the model’s predictions. This feature
not only allows obstetricians to understand the
individual contributions of variables, such as the
biomarker score and maternal age, but also facilitates
effective communication with patients regarding risk
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assessments. The ability to visualize interactions, such
as those between maternal age and NT, underscores
the model’s alignment with established clinical
principles while offering actionable insights for
personalized patient management. The findings of
this study underscore the transformative potential
of machine learning in maternal-fetal medicine. By
combining cutting-edge predictive capabilities with
interpretability, this approach bridges the gap between
advanced data-driven models and clinical practice.
Future research aimed at validating the model
across diverse populations and integrating it into
routine prenatal workflows will further enhance its
utility, empowering obstetricians to deliver informed,
personalized care to their patients.
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