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Abstract

A numerical technique for the nonlinear thermal
radiation effect on 3D (“Three Dimensional”)
nanofluid (NFs) motion through shrinking or
stretching surface with convective boundary
condition is examined. In this investigation we

use the convective and velocity slip conditions.

The governing equations were converted into
a set of couple non-linear ODE’s by suitable
similarity transformations. The converted
nonlinear equations are obtained by applying R-K-F
(“Range-Kutta-Fehlberg”) procedure along with
shooting technique. The physical parameters are
explained graphically on velocity, temperature and
concentration. Moreover, we found the coefficient
of skin friction, rate of heat transfer with various
nanofluid parameters. It is very good agreement
when compared with previous study.
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1 Introduction

In most of the investigation, developed the no-slip
condition is established Kn (“Knudson Number”),
but in some circumstances such as suspensions,
emulsions, foams and polymer solutions [1-4], the
no-slip condition is not acceptable for the slip flow
range 0:01Kn0:1, still the basic equations of energy
and Navier-Stokes can be used by taking into account
velocity slip and temperature jump. It has a lot of
importance in physics. The stagnation point flow
of NFs via surface with different slip conditions
examined by [5-8]. Wang et al. [9] introduce
boundary layer slip with microscale gas motion.
Magnetohydrodynamic (MHD) slip motion over a
sheet/wall was investigated by Mahabaleshwar et
al. [10] for hybrid nanofluid flow with Navier’s slip,
Aziz and Jamshed [11] for non-Newtonian nanofluid
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with temperature-dependent conductivity, and Abbas
and Sheikh [12] for ferrofluid with nonlinear slip
conditions.  Nojoomizadeh et al. [13] studied
permeability effects on slip velocity in microchannels,
while Farooq et al. [14] explored second-order slip in
Sisko nanomaterial flow. Abd El-Aziz and Afify [15]
analyzed MHD stagnation-point flow with induced
magnetic fields, and Majeed et al. [16] investigated
nanoparticle magnetic properties under momentum
slip in aqueous media. Nayak et al. [17] and
Sharma et al. [18] examined MHD slip flow with
porous media and heat transfer. Ahmad et al. [19]
noticed that the solid volume fraction diminutions the
velocity and enhances the temperature distribution.
Three dimensional couple stress casson liquid motion
via bidirectional surface was created Tarakaramu et
al. [20]. Noor et al. [21] finding that wall shear stress
and fluid velocity increase as the plates approaching
each other.

The word NFs is created Choi [22, 23] which define
the size of base fluids (“like water, oil kerosene
and ethylene glycol”). These fluids have addition
of NPs, the properties of the fluids can be rapidly
enhanced. It has a lot of demand placed upon
them in terms of growing or declining energy
release to systems and their effects depend on
thermal conductivity, heat capacity and other physical
properties in manufacturing presses [24-26]. The
heat and mass transfer on 3D (“Three-Dimensional”)
MHD (“Magnetohydrodynamic”) motion of Maxwell
NFs via stretching sheet was discover Sreedevi and
Sudarsana Reddy [27]. Eid et al. [28] found that the
increase of Fe3O, (“nanoparticle”) NPs concentration
enhances heat transfer rate of hybrid NFs in a
shrinkable case and opposite happens in a stretchable
state. Satya Narayana et al. [29] finding reviled that
the thermal and species boundary layer thickness is
enhanced due to rising values of thermal radiation.

Moreover, the boundary layer flow through a
shrinking/stretching sheet has a motivate work in fluid
dynamic. Some of the practical situations of shrinking
sheets (“like shrinking spring, shrinking balloon,
and shrinking plastic”). Which is very useful in
packaging of bulk products. The shrinking/stretching
sheet has many tremendous applications (“crystal
growing, extraction of polymer and rubber sheet, like
glass-fibre production, paper production, annealing
and tinning of copper wires, wire drawing, metal
and polymer processing and many others”) in
manufacturing industries and technological process.
Jat et al. [30] developed the 3D boundary layer

flow due to shrining sheet. Recently, some of
the scientists [31-34] working on stagnation point
flow towards a shrinking/stretching sheet. The
2D (“Two Dimensional”) stagnation point flow of
NFs via stretching sheet was presented Najib et
al. [35]. Khan et al. [36] discussed analytical and
numerical analysis for the viscous and heat transfer
flow over a nonlinear stretching sheet. Murtaza et
al. [37] explored the biomagnetic fluid flow and heat
transfer in 3D unsteady shrinking/stretching sheet.
Jusoh et al. [38] analysed the 3D rotating and heat
transfer flow of ferrofluid over exponential permeable
shrinking/stretching sheet with suction effect. 3D flow
of nanofluid passing through an exponential stretching
sheet. Further, the boundary layer flow via stretching
or shrinking sheet was examined [39-46].

2 Mathematical Analysis

The nonlinear effect on 3D NFs motion over a shrinking
or stretching sheet with velocity slip in the presence
of magnetohydrodynamic is considered. The physical
model of the coordinate system is explored in Figure 1.
It is considered that the surface is stretched or shrink
in the z*y* surface with velocity slip. The z* direction
is orthogonally to stretching b; > 0 or shrinking
surface by < 0. The nanofluid flow occupies the
region z* > 0. The velocity components of the surface
trough z* and y* directions are u} (z) = a4z* and
vl (y*) = biy*, respectively. The liquid is electrically
conducting under the effect of uniform magnetic field
By. Moreover, the velocity mass flux is w; = wg, where
wg < 0 then it is called suction and wy > 0 then it is
known as injection. Under these considerations, the
basic governing equations are:

ou]  Ovl = Owj
= 1
oz* = Oy*  0z* 0 (1)
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Figure 1. Physical model of the problem.

Corresponding B.Cs are Eq. (4) is transfer by utilizing above Eq. (6), we get

ou \ L ox+ ! oy* Yoz — "m\ 9272
. 1
uy = uy,(z) = Up(z) + N17o L N 1 1601 0O 7+ or*
* o (0O, 3K 925 \© 92 ©)
v1 = vy, () = Vi(x) + Novo 5, " 2
. *82 at 2" =0 n D oCc* oT* n Dy [0T*
w1 = Wo, T = Tw7 T B 0z* 0z* Tgo 0z*
fkaac* =Ty —T7)
i . L . The following dimensionless functions and the
up = 0,01 = 0,T" =T, = O, as 2" — 00(6) similarity variables are:
According to the Roseland’s approximation [47] the - ax . “F(n) )
non-linear radiative heat flux ¢, as given by n=z vy’ U= amE A,
v = aly*g’(n)
!
S + ,
B —404 OT*4 B —160’1T*3 oT* (7> w1 C;i*yf_(;*(n) 9(71)) (10)
(n) = %
A= e = J

Differentiate above the heat flux equation, we get Utilizing the above dimensions, Eq. (1) is identically

satisfied and translate Eqs. (2)-(4) and Eq. (9)
becomes:

o o (8)

dq.  —1601 O T*36T*
0z  3k* 0z

" ff(f ) = () =Mf+1=0  (11)
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Figure 2. Effect of M on fluid motion and skin friction coefficient.

— t{n) ¢ln)

06

A=0.02, 0, A=0.2, Bi=-1.0, Le= 0.2
M=0.8, Nb=D.3, Nt=D.2, Pr=6.2, R ﬂ=2

With subject to the boundary conditions are:

£(0) = S,9(0) =0, f(0) = 1 + Af"(0),4'(0) = A + Bg"(0)

©(0) =1,0(0) + Bi(1 — 6(0)) =0

f'n) = 0,9'(n) = 0,0(n) = 0,¢(n) 0 asn— o0 a9
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The physical quantities of practical interest are the
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Figure 4. Influence of A on ¢'(n).
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Figure 5. Influence R}, of on 6(n),¢(n).

local skin friction coefficient C', and C/,, and Nusselt
number Nu,; it is defined as

Ty
Ny, — — 4z
TR T (o)
2
Defines the skin friction or shear stresses along x*, y*
direction, heat flux ¢,, and mass flux g, from surface
of the sheet are
(12) L [OT*
w = —k 17
q o ) ., (17)
(13)
Substituting the u;, vy, T* from the Eq. (7) onto Eq.
(15) and using Eq. (14), we getting
(14)

NugRe;Y? = —¢'(0) (18)
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* *
where Re, = Y22 and Re, = U’f” are the local

Reynolds number.

3 Results and Discussion

The physical effect of M ("Magnetic Parameter") on
fluid motion component ¢'(n) for the cases of sheet

is stretching (A > 0) and shrink (A < 0), Regl/2C'f
(coefficient of skin friction) for the cases of suction
(S > 0) and injection (S < 0) is predicted on
Figures 2 (a)-2(b). It is clear that the nanofluid
flow velocity is slowing down along y-direction when
the sheet is stretching (A > 0) while opposite
motion displays when sheet is shrink (A < 0) with
various growth numerical values of M as illustrated
in Figure 2(a). Moreover, the coefficient of skin
friction along z*-direction for both cases of suction
(S > 0) and injection (S < 0) as explored in
Figure 2(b). Physically, a drag force like resistive type
force (Lorentz force) is created disturbance by the fluid
particles of the vertical magnetic field to the electrically
conducting fluid. This force has to reduce the motion
of the fluid over a stretching surface.

Figures 3 and 4 presented the S ("Mass Flux
Parameter") on base fluid flow component ¢'(n),
y*-direction for the cases of sheet is stretching (A >
0), shrink (A < 0) and 6(n), ¢(n). It is clear
the fluid velocity motion, ¢(n) is slow reduction
through a stretching and shrinking sheet while reverse
behaviour shows temperature various enlarge values
of S. Physically, the larger values of mass flux effect in
fluid particles and the fluid resistance slow down then
its fluid flow boundary layer thickness is reducing.

The impact of A ("Stretching/shrinking Parameter") on
velocity component ¢’ (7) along y*-direction is explored
through in Figure 5 for the cases of suction (S > 0)

34

and injection (S < 0). It is clear the fluid motion is
monotonically decrease over a stretching surface with
various enlarge values of \. Because, the fluid flow
convergent to surface area very fast then the surface is
injection case.
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Figure 8. Influence Pr of on Regl/zNw.

The significant effect of R; ("Nonlinear thermal
radiation") on 6(n), ¢(n) as discussed in Figure 6. It is
noticed that fluid 6(n) flow enhances, while opposite
direction of ¢(n) with higher enlarge values of R;.
Physically, nonlinear thermal radiation is inversely
proportional to the thermal conductivity. In this fact
the weaker thermal conductivity of the nanofluid flow
and large values of R, than that it has produce more
heat on surface.

Figure 7 depicts the physical parameter NV
("Thermophoresis Parameter") on 60(n), ¢(n). It
is noticed that 6(n) of the nanofluid flow enhances
over the surface while opposite motion of fluid ¢(7)
with higher values of N;. Physically, when huge
amount of temperature variance exists, then the
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Table 1. Evaluation of Skin friction coefficient — f”(0) for
A=B=Bi=Ry=0.

Nadeem
nM  Present Sarah et Guptaetal. Ahmad etal.
study al. [48] al. [49] [50] [51]
0.0  1.000000 1.00000  1.0004 1.0003181 1.0042
10 3.316624 3.31662  3.3165 3.3165824 3.3165
100 10.04987 10.04987  10.049 10.049864 10.049

Table 2. Comparison of Skin friction coefficient — " (o) for
A=B=DBi=R;=0.
M Present study Nadeem et al. [49]
0.0 1.173719 -
10  3.367222224 3.3667
100  10.06646642 10.066

suspended particles tends to move more closer to the
surface to reduce the concentration and subsequently
enhances the heat somewhere, far from the cold
area surface. This force produces the effect called
"thermophoresis force".

Figure 8 displays the heat transfer of Pr ("Prandtl
Number") for both stretching and shrinking sheet. It

is observed that the Re, / N, ("Heat Transfer rate")
boundary layer decreases for both present and absents
of suction and injection cases. Here, the boundary
layer of heat transfer rate is weaker when absents of
suction case while comparing to injection case, because
of the higher thermal conductivity of nanofluid flow
with enlarge values of Pr and associate boundary layer
thickness is very less.

Table 1 shows the evaluation of the skin friction
coefficient —f”(0) for A = B = Bi = Rq = 0,
comparing the results from the present study with
those of Sarah et al. [48], Nadeem et al. [49], Gupta
and Sharma [50], and Ahmad et al. [51].

Table 2 presents a comparison of the skin friction
coefficient — f”(c0) for A = B = Bi = R; = 0,
comparing the results from the present study with
those of Nadeem et al. [49].

4 Conclusion

A numerical analysis has been executed for the
nonlinear thermal radiation effect on 3D MHD
(“Magnetohydrodynamic”) nanofluid flow via
stretching/shrinking sheet with slip velocity. The
main out comes of the present study are mentioned
below:

e The nanofluid temperature enhances with enlarge
values of nonlinear thermal radiation while

opposite trend in concentration of the fluid flow.

e The heat transfer rate decline with increasing
values of for both suction and injection cases
because of higher thermal conduction in the flow

of nanofluid on stretching/shirking surfaces.

Nomenclature

(z*,y*) Cartesian coordinate’s
u1,v1,wp velocity components along z*, y*, z*-axis
A Velocity slip along x-axes ,/a70N1

B Velocity slip along y-axes /a70N2

C* Concentration

C7 Skin friction coefficient

C, Specific heat

C% Uniform ambient concentration

D g Brownian diffusion

D Thermophoresis diffusion

f Dimensionless stream function

/" Dimensionless velocity

S Constant mass flux parameter wy//a170
k* Thermal conductivity

Le Lewis number = %—’;

. . _ JlBg

M Magnetic field parameter = apy
. * 7T*
N; Thermophoresis parameter = 7 Dp -4

mT o
N}, Brownian motion coefficient = D BT%
Pr Prandtl number = %
m

¢ Radiative heat flux
Re, Reynolds number

160*T*3

3ak, kk*

T* Temperature of the fluid

T, fluid temperature far away from the surface
T, Constant fluid temperature of the wall

U, Stretching velocity

U Free stream velocity

R, Radiation parameter =

Greek symbols

p Density
¢ Dimensionless concentration
o1 Boltzmann constant

A Constant stretching/shrinking parameter %

7 Ratio of the nanoparticle to the fluid Eﬁ

pc
pe) g
v1 Kinematic viscosity of the fluid

o* Electrical conductivity

6 Dimensionless temperature

o, Thermal diffusivity = ( pclz)) ;

(pcp) r Heat capacity of the fluid

(pcp)p Heat capacity of the nanoparticle to the fluid

py Fluid density

Subscripts

oo condition at free stream
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