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Abstract

The porosity parameter serves as a pivotal
factor in determining the resistance exerted by
a porous medium on fluid motion, especially
in magnetohydrodynamic (MHD) flows. This
study presents a novel numerical investigation
of the coupled influence of porosity, viscous
dissipation, and Joule heating on both momentum
and thermal boundary layers over a porous surface.
The results demonstrate that increasing porosity
enhances medium permeability, thereby reducing
hydrodynamic drag and intensifying the velocity
gradient near the stagnation region. Conversely,
lower porosity impedes fluid penetration, resulting
in diminished velocity and a compressed boundary
layer structure. While the direct impact of
porosity on thermal transport is minimal, its
interaction with dissipative effects leads to subtle
modifications in temperature distribution. The
graphical and quantitative findings underscore the
importance of fine-tuning the porosity parameter
to regulate flow resistance and thermal behaviour
in advanced MHD systems. The methodology
employed based on robust numerical simulations
offers a comprehensive framework for analysing
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porous flow dynamics in engineering and energy
applications, highlighting the novelty of integrating
complex interdependencies between porosity and
thermophysical mechanisms.
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(MHD) flows, viscous dissipation, joule heating, numerical
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1 Introduction

In addition, understanding boundary-layer behavior
over a stretched sheet has become increasingly
important in the design and optimization of modern
thermal systems. The interaction between heat
transfer, viscous effects, and electromagnetic forces
in such flows provides vital insights into improving
energy efficiency and product quality. For example,
in polymer extrusion and metal forming processes,
precise thermal control is necessary to ensure
uniformity and material strength. Similarly, in
biomedical applications such as targeted drug delivery
and tissue engineering, the manipulation of fluid flow
at micro- and nano-scales often mimics boundary-layer
phenomena. Therefore, exploring the combined effects
of thermal radiation, magnetic fields, and porous
structures contributes to advancing both theoretical
models and industrial practices.
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Crane’s [1] study focuses on viscous, electrically
conducting fluid transfers heat over stretched layer
of the fluid. Carragher et al. [2] is addressed about
Heat which is transferred from the stretched sheet
to a stationary medium as it passes the slit. Zhu
et al. [3] studied Brownian effects, thermophoresis,
and on a stretching/shrinking surface, Williamson’s
non-Newtonian unstable fluid is present. Siddheshwar
etal. [4] analyzed the radiation that impacts the flow of
viscoelastic liquid’s, MHD and the heat transfer across
stretched sheet. The heat transfers during melting as
nonlinear thermal radiation from a nanofluid moving
at a stationary point in the direction of stretched
surface was studied by Hayat et al. [5].

Makinde et al. [6] addressed the MHD-free convective
boundary layer in two dimensions. While
considering into account that electrical conductivity,
and chemical reaction and also heat source/sink,
electrically conducting nanofluid flow steadily
across a nonlinear stretched sheet. Abel et al. [7]
addressed about the features of a viscous liquid
moving hydromagnetically across the stretching sheet,
as well as fluid’s capabilities for momentum and
the heat transmission. Damala et al. [8] addressed
on semi-infinite vertical plate created by radiation,
free convective magnetohydrodynamic movement of
fluid, and viscous dissipation. Salahuddin et al. [9]
addressed the flow’s response to viscosity and thermal
conductivity through the stretched cylinder in the
direction of the MHD stagnation point. Khader [10]
introduced Using Boundary Value Solving Numerical
issue: a liquid film moving on a stretched sheet while
being affected by the magnetic field, along with heat.

Farooq et al. [11] investigated the variety of
applications for cooling systems for tiny heat-density
devices, and heat exchangers are made possible
by thermal methods that use nanomaterials.
Vijayaragavan et al. [12] investigated a Casson
fluid that, enables mass and transferring heat via a
continuous vertically porous plate when a chemical
reaction and thermal radiation are present. Seth et
al. [13] studied the exponentially stretched sheets
subjected to the 2-D, Viscous dissipation, radiation,
and a viscous, incompressible, electrically conducting
fluid producing internal heat in laminar flow.

Thiagarajan et al. [14] investigated the porous
exponentially stretched sheet heated by heat
generation/absorption, Ohmic heating, and the
influence of the nanofluid’s hydromagnetic boundary
layer movement. Shateyi et al. [15] investigated
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an iterative computational methodology, is used to
explore the influence of the thermal radiation, heat
source/sink, and flow of magnetohydrodynamics
on the distribution of heat across an unstable
stretched porous surface. Krishnaiah [16] studied
an exponentially streaching sheet experiences an
MHD flow of Casson nanofluid until stagnation
point as result of the influence of a non-uniform heat
source on mass and transfer mechanisms. Mishra et
al. [17] investigated on retching a sheet through a
saturated porous substance causes the fluid to flow
according to a power law. Kumar et al. [18] Analysed
hydromagnetic system numerical simulation 3-D
flow through the stretched sheet inside of a porous
material, including the Soret effect, heat source and
sink, and chemical reaction. The optimal homotopy
analysis approach (OHAM) is applied to study the
laminar magneto hydrodynamic UCM fluid flow
across a stretchy isothermal porous surface by Guled
etal. [19]. Benal et al. [20] discussed the effects of the
Jeffery fluid flowing through the porous material over
the boundary layer that is contracting and expanding
are discussed. Mahabaleshwar et al. [21] examined
the outcomes of a mathematical model that depicts
the process as previously indicated and takes the
ambient nanofluid into account. Suction/injection
and a magnetic field are both active at the same time
conditions.

Unlike many existing studies that treat porous
media effects using simplified Darcy or modified
Darcy formulations, the present model incorporates
a nonlinear porous resistance term directly into
the momentum equations to capture the intricate
flow-retarding mechanisms of the medium [22, 23].
Specifically, the momentum equation includes a
sink term of the form or its generalized form
denotes the permeability and FFF is the Forchheimer
constant, representing inertial resistance.  This
approach goes beyond linear approximations and
accounts for non-Darcian effects, which are critical
at higher Reynolds numbers [24-26] or when
fluid—porous interactions are strong. Furthermore,
the coupling of this term with viscous dissipation
and Joule heating within a magnetohydrodynamic
(MHD) [27] framework offers a more realistic
and thermodynamically consistent model.  This
distinguishes the current work from prior studies
that either neglected porous resistance altogether or
considered it independently from electromagnetic and
thermal effects.
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2 Mathematical Formulation

Consider a hydro magnetic viscous incompressible 2-D
laminar constant flow that transfers electricity over a
stretched sheet. The beginning of the process is the slit
where the sheet is drawn. Together with path of the
continuously growing plane, the axis frame is obtained
at this coordinate.

Uw(X) = bz is the velocity of a stretching sheet,
while Uy, = ax is the velocity of a free stream flow,
where a and b stand for positive constants and z is the
coordinate along the stretching plane.

Let Tyy represents temperature of the Nano-fluid above
the stretching layer and 7', represents the temperature
of the surrounding air.

ou Ov
3e Ty = (1)
ou  Ou Pu v oB? U
U TVay Ve T RYT p VTV, @
AT 0T BT 1 g
Ox oy 0y pC, dy 3)
Q ,u (8u>2 oB?
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o0, T =Tt 0e \ay) T,

where velocity u and v are along the coordinate axes,
T is the Temperature, kinematic viscosity v, and
thermal diffusivity a. Apply Roseland approximation
to radiation. The ¢, is radiative heat flux, that is,

—40* OT*
=3 oy (4)
where k* is the absorption coefficient and o* is
the Stefan-Boltzmann constant.  To apply this
approximation, it is assumed that the temperature
difference T' — T, within the flow is small. Thus, the
expression T* is expanded about T, using a Taylor

series, and neglecting higher-order terms, we obtain:
T~ 4T3 T — 3T
hence we get
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the following boundary conditions are suitable:

T = Ty;
T="T;

u=>bx; aty=0: v=0;

(6)
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Thus, similarity transformations must fulfil the
continuity equation.

_ _ W
U= 99 and v = e (7)
Such that
u=>baf'(n), v=-vVobf(n);
_ \F - ®
U TS T

By Substituting Eqs 6 and 8 in Eqs 2-3. Following
are the coupled nonlinear differential equations that
resulted.

P4 ff + Gme+Gro— (f1)? <;+M— 1) +A*=0
(9)

(1+4R) 0"+ Pr [Ec [(f”)2 FM(f - 1)2} + 50+ fe’] ~0
(10)

3 Numerical Solution

Equation No. (09) -(10) are non-linear ODE'’s along
with the Equation No. (11). That is, boundary
conditions are solved by using Mathematica, R-K
Fourth Order Shooting Techniques. The first-order
ODEs that result from the aforementioned equations
are as follows:

f=f r@=r f@=r
0(1) =0, 0(2)=¢ (1)
"= —fQ) * f(2) — Gmp — Gro + (£(2))* (£ + M — 1) — N2
(12)

//_i 2 ¢ N 2
"= T ((F3)) Be+ M (f(2) ~1)?] 3

+.50(1) +6(2)f(1)
The boundary conditions are,

f0)=0, f(1)=1,
0(0) =1, 6(1) — 0™

f(2) = A%

By suitably assuming the missing slopes f/(0) and 6(0),
this boundary value problem is converted into the
initial value problem. The suitable shooting approach
is used to solve the ensuing initial value issue for the set
of the parameters that appear in governing equations
and have acknowledged the values for f/(0) and 6(0).
The shooting technique’s initial circumstances must
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be estimated rather accurately for the convergence
criterion to work. After the difference between most
recent iterative value of f’(0) and prior iterative value
of f/(0) is equal, the iterative process is terminated.
Once convergence is attained, the needed solution is
obtained by integrating the resulting ODE with the
usual R-K method of IV-order with a supplied set of
parameters.

4 Results and Discussion

Coupled PDEs are effected by a number of parameters,
including Source Parameter, Velocity Ratio, Magnetic,
and Radiation Parameters, Prandtl and Eckert
Numbers. The governing coupled, nonlinear PDEs of
the heat transport and flow problems are transformed
into coupled, nonlinear equations via similarity
transformation. These, ODEs are numerically solved
using R-K fourth order method, provided certain
boundary conditions are satisfied. After that,
MATHEMATICA is used to display the graphs.

Velocity Profile for Different Magnetic Parameters
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Figure 1. The velocity is impacted by the velocity ratio
parameter ().

Figure 1 demonstrates the impact of the velocity ratio
parameter v/s similarity variables on velocity profile.
It has been seen the velocity ratio parameter’s value
increases, so does the temperature. This means that
when the It is seen that as the velocity ratio parameter
becomes more significant, fluid’s velocity drops.

Velocity Profile for Different Radiation Parameters
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Figure 2. Impact of velocity on the magnetic parameter (M).
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Figure 2 illustrates the influence of magnetic parameter
(M) v/s similarity variables on velocity profile. It
is discovered that when magnetic parameter’s value
increases, so does the velocity. In other words,
magnetic parameter increases as the fluid’s velocity
falls.

Temperature Profile for Different Prandtl Numbers
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Figure 3. Effect of magnetic parameter (M) on temperature.

Figure 3 demonstrates the effect of magnetic
parameters v/s similarity variables on the temperature
profile. Temperature profiles show how to increase a
magnetic parameter’s value and decrease it, to increase
in the value of a magnetic parameter and reduce it
with corresponding temperature value.
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Figure 4. Temperature effect of radiation (R).

Figure 4 demonstrates the influence of radiation
parameter v/s similarity variables on temperature
profile. The radiation parameter is increased, with
increases in the thermal and momentum boundary
layer thickness.

Figure 5 demonstrates how changes in temperature
impact the temperature profile by the Eckert Number
v/s similarity factors. It is possible to demonstrate
how the variation in the Eckert number (Ec) affects
the distribution of temperatures and how temperature
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Ec=051,15225

Figure 5. Eckert number’s impact on temperature.

rises as Ec rises. Ec is characterized as having a linear
relationship with velocity squared. Because of this, the
fluid’s temperature can rise more quickly, especially in
the vicinity of the sheet, with higher Ec values and a
proportionally greater enhancement due to the motion
of particles close to the surface.

5 Conclusion

This study presents a comprehensive analysis of
magnetohydrodynamic flow and heat transfer over
a porous surface, incorporating a detailed porous
resistance term within the momentum equations. The
numerical results reveal that increasing the porosity
parameter significantly enhances fluid penetration,
reduces hydrodynamic drag, and elevates the velocity
near the stagnation region. In contrast, reduced
porosity suppresses fluid motion and intensifies
boundary layer compression. Although the influence
of porosity on thermal transport is indirect, its
coupling with viscous dissipation and Joule heating
introduces notable modifications to the temperature
distribution. The incorporation of a nonlinear porous
resistance term, as opposed to traditional linear
Darcy models, marks a significant advancement over
previous studies. This allows for a more accurate
representation of flow dynamics in complex porous
structures under electromagnetic effects. The findings
underscore the critical role of porosity in regulating
both momentum and thermal behavior, offering
valuable insights for optimizing design in engineering
systems involving porous media, such as thermal
insulation, cooling technologies, and MHD-based
devices.
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