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Abstract
The knowledge on understanding non-Newtonian
fluid dynamics influences and behaviors in
magnetic and nanoscale effects of transport is
also important to the advanced processes of
engineering. The current paper examines MHD
flow and heat transfer of a Williamson nanofluid
across a stretching cylindrical surface, taking
into consideration Hall current and chemical
reaction and non-Fourier heat and mass flux that
is described by the Cattaneo Christov theory.
The transport of Nanoparticles is explained in
terms of Buongiorno model of thermophoresis
and Brownian movement. Similarity variables
are used to transform the governing nonlinear
equations and then analytically solved via Optimal
Homotopy Analysis Method. The parametric study
of parameters like M = 0.5 − 2.0, γ = 0.1 − 5.0,
Nt = 0.1 − 0.5, Nb = 0.1 − 0.3, δt = δc = 0.1 − 0.5,
and Kr = 0.1 − 1.0 indicates that the values of

Submitted: 19 July 2025
Accepted: 30 August 2025
Published: 22 November 2025

Vol. 1, No. 2, 2025.
10.62762/IJTSSE.2025.383195

*Corresponding author:
�Muhammad Sohail
muhammad.sohail@kfueit.edu.pk

the magnetic field, relaxation times, Hall currents,
and diffusion of nanoparticles have a considerable
effect on the flow, thermal, and concentration
fields. The results have interesting applications in
polymer extrusion, thermal control of nano-devices,
magnetic drug delivery, and manufacturing smart
materials.
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1 Introduction
The study industrial thermal impacts and chemical
transformations in nanofluid fluxes has grown in
importance in the past few years, owing to their
practical significance in a wide range of technical and
biological industries. Dissipation, or the conversion of
energy from motion into the heat inside liquids that
are viscous, is critical in optimizing power systems
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such as solar collectors, thermodynamic storage
tanks, and maintenance technologies since it affects
thermal efficiency and lowers wear. Meanwhile,
chemical reactions in conjunction with fluid flow are
critical to processes such as wastewater treatment,
chemical manufacture, polymer synthesis, and
targeted medication delivery, where regulating
reaction kinetics improves performance and product
quality. Learning these effects in complex fluids
like Williamson nanofluids under magnetic and
thermal influences is very essential in enhancing
the present cooling mechanisms, biomedical
applications, and processing. A significant role of
magnetohydrodynamic (MHD) fluid flow involving
the interaction of electrically conducting fluid
with magnetic field is a subject of research, and
its numerous applications in engineering sector
especially in cooling systems study, dynamics of
plasma and generation processes of energy Das et al.
[1]. Non-Newtonian fluids—such as the Williamson
fluid—offer significant advantages for analyzing
the often intricate flow behaviors encountered
in biological, industrial, and material-processing
systems, as noted by Böhme [2]. Shear-thinning or
shear- thickening characterizes these fluids and thus
they better reflect real world applications than the
conventional Newtonian fluids. To include the effect of
viscous dissipation and also the Joule heating, Makkar
et al. [3] studied the effect of magnetohydrodynamics
(MHD) on bio convection nanofluid flow. The case
of Turkyilmazoglu et al. [4] to investigate analyses
flow and heat transfer in concentric annuli with an
inner annulus moving in a shrinking mode and an
outer annulus stationary. It offers an insight into
the development of a boundary layer and thermal
behavior of confined geometries with constricting
boundary. Hamid et al. [5] studied the behavior of
diffusion of nanoparticle in Williamson nanofluid
flow in MHD and they also investigate that whether
multiple solutions are present or not besides the
presence of slip mechanism at the boundary and
impact of slip and magnetic effects on both the flow
characteristic and thermal behavior. Harfouf et al. [6]
examined the literature of magnetohydrodynamic
(MHD) flow Williamson fluid (and considering the
effects of thermal radiation and Ohmic heating) on
an inclined channel. Khan et al. [7] examined the
bioconvective flow of a nanofluidmicropolar fluid over
a vibrating porous surface taking into consideration
a non-linear thermal radiation, viscous-dissipation,
and suction. It examines the impact of these on the
fluid flow, heat transfer, and dynamics of particles in

the biomedical practice. Ramzan et al. [8] to study
Free convection flows in saturated porous media with
time-varying surface heat flux with the flow being
solved exactly finding several solutions analytically.
The findings indicate non-uniqueness in the thermal
behavior indicating that there is the potential of
bifurcation in the heat flow case. Nadeem et al. [9]
examined entropy generation, as well as irreversibility,
in MHD channel flow of Williamson fluid, where
combined convective-radiative boundary conditions
were used. The test applies an insight into the entropy
generation through magnetic fields, thermal radiation,
and convective heat exchange and thus gives an idea
of the efficiency and irreversibility of the flow system.
Ahmad et al. [10] examined the transport of thermal
and solutal energy and the generation of entropy in
the rectilinear flow of hybrid nanofluid of a vertically
rotating cylinder. Turkyilmazoglu [11] to investigate
provides the direct solutions of the momentum and
the thermal boundary layers formed through a long
circular cylinder in a still fluid. It is analytically insight
into the coupling between viscous and thermal effects
of diffusion around cylindrical bodies.

At practical applications the flow of such fluids is
generally in the presence of the electromagnetic fields
and here the MHD, effect, over which Hall current
has significant effect on the fluids dynamics and the
heat transfer processes Shah et al. [12]. Pivotal
in changing the velocity profiles and temperature
distributions are the Hall currents that are produced
by the magnetic field, interacting with charged
particles within the fluid, essentiality in systems
when electrically conductive fluids are considered
such as plasmas or nanofluids. More so, the
comparison of heat and mass transfer in these systems
has been greatly enhanced through generalised flux
terms. Turkyilmazoglu [13] The investigated study
of nonlinear similarity solutions of flows due to
stretching or moving sheets applies to the case of
manual atomization and the process of electrospinning.
It illustrates the impact of the air resistance on the flow
dynamic, and it provides ideas on dynamics of fluid
stretching in industries. The latter ones, including
a heat and mass flux law proposed by Cattaneo
and Christov, permit the more precise description of
the energy and particles moment transfer processes,
especially in a non-instantaneous regime Cattaneo
[14] and Ván [15]. Generalized models are necessary
in describing the delayed reaction of temperature
and concentration gradients in fluids, particularly,
when there is presence of nanoparticles and chemical
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reactions. Ali et al. [16] studied the MHD flow
of hybrid nanofluid over an extended cylinder with
the following considerations, Cattaneo Christov heat
flux model and radiation effects. Khan et al. [17]
computed, using generalized Fourier and Fick laws,
movement of the two dimensional Carreau fluid under
normal surface condition. A numerical calculation on
heat and mass transport in Williamson material with
modified flux models is investigated by Sohail et al.
[18] and the solutions are performed by employing
an optimal homotopy analysis method (OHAM)
where the influence of modified heat and mass
fluxes, together with non-Newtonian fluid behavior
on the temperature and concentration. Nadeem
et al. [19] investigated the flow of fluid that was
viscoelastic along with heat flux model powered by
the Cattaneo-Christov theory and Newtonian heating.
To investigate the implication of Hall current, magnetic
field, geometry of a channel of theHall current they are
proposed by Li et al. [20] to study the effects. Shafiq et
al. [21] study investigates how the interplay of thermal
and solutal stratification, along with radiative heat
transfer, influences the flow dynamics, temperature
distribution, and mass transfer in the system. Khan
et al. [22] study analyzes how the inclusion of
this non-Fourier heat conduction model influences
temperature distribution, velocity profiles, and heat
transfer efficiency in the fluid system.

This research endeavors to apply Buongiorno model to
a Williamson fluid flow when MHD is accounted and
how convective boundary conditions together with
chemical reactions can be taken into account is pursued.
The fluid system also has chemical reactions that
complicate the transport processes. Chemical species
may interact in the flow and change the concentration
profiles affecting the general thermal behavior. It
has been depicted through studies that homogenous
and heterogeneous chemical processes may bring
massive transformation in flow and heat transfer
behaviors Ali et al. [23]. Khan et al. [24] covered
the impacts of Brownian motion and thermophoresis
on MHD mixed pertinent convective flow of a second
grade nanofluid over a stretching sheet including
the hall effect. Sohail et al. [25] examine mass
and heat transfer nature of non-Newtonian flow that
is characteristic to the Williamson nanofluid over a
stretched sheet by considering such effects as chemical
reactions, viscous dissipation, magnetic field and slip
velocity. In one type of non-Newtonian model a
study of thermal transportation in a ternary hybrid
nanofluid flowwas investigated by taking into account

homogenous and heterogenous chemical reactions by
a vertical cylinder by Hussain et al. [26]. In this
work Abbas et al. [27] Investigates the viscous flow
of a pipe with a porous wall situated in the magnetic
fields, the asymptotic magnetohydrodynamic effect
is studied. It provides analytical feedback to flow
alteration because of wall suction/injection and
electromagnetic interactions. Zaman et al. [28]
considered the Williamson MHD nanofluid flow
over a slender cylinder, in the consideration of the
effects of radiation. The experiment investigates
the effects of magnetic fields and heat radiations
on the flow behavior, heat transfer, and distribution
of nanoparticle within the system which can offer
information relating to enhancement of thermal
management systems. Rauf et al. [29] explores Hall
current and morphological effects of MHDmicropolar
non-Newtonian tri-hybrid nanofluid in between two
parallel surfaces. Rasheed et al. [30] discusses the
unsteady magnetohydrodynamic (MHD) motion of
Casson nanofluid supra a vertical cylinder together
with the effects of Brownian movement and viscous
dissipation.

Even despite many studies on non-Newtonian fluid
dynamics subjected to magnetic fields such as
Williamson fluid dynamics and magnetic fluid forces,
several of them have been on planes, and classical
Fourier and Fick laws of heat and mass transport.
The applicability of Cattaneo-Christov models, that
include effects of temperature relaxation and solutal
relaxation, in order to overcome the drawback of
limitless propagation speed of classical models, have
hardly been explored in this form. In addition,
current literature fails to examine the combined effects
of Hall currents, kinetics of chemical reactions and
stretched cylindrical flows which are critical in a
precise modeling of high temperature and or rotating
and electrically conducting fluids in the industrial
and geophysical environment. The current paper is
an attempt to fill this gap by examining the MHD
flow of a Williamson fluid over a radially stretched
cylinder in the presence of Hall effects as well as
Cattaneo-Christov heat and mass fluxes, and chemical
reactions. This rigorous formulation, to our knowledge
is a new contribution that entails a combination of
many complex physical phenomena within the same
coherent model giving a better understanding of
nonlinear behavior of viscoelastic MHD flows with
plausible thermal and mass diffusion properties.
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2 Mathematical formulation
Mathematically, the MHD Williamson fluid flow
over an extended cylinder can be modeled with the
help of Hall current, thermodynamics, chemistry,
and mass and heat flux Cattaneo-Christov models
using cylindrical coordinate (r, θ, z). Perhaps, the
2-dimensional laminar flow of nanoliquid with the
steady and incompressible flow against stretched
porous cylinders. The axial direction radius a is toward
the axial direction. Further, z − axis is parallel and
r − axis perpendicular to the cylinder respectively.
The grid of coordinates is in Figure 1. Additionally,
Uw(z) = Uo

l , Cw and Tw stand for the surface velocity
of a stretchy cylinder, surface thermal, and surface
solutal, respectively.

Figure 1. Geometry problem.

In this T∞ and C∞ indicate the general temperature
and quantity, correspondingly. Here a radial magnetic
field of the intensity B0R

r is applied to the radial
direction. In this mathematical description, (B0R

r , 0, 0)
is the magnitude of the magnetic field and the velocity
is given by V = (u, 0, w).

Assumptions of the current research are explained
below:

- The time and angular dependence are eliminated,
as well as incompressible conditions using steady,
incompressible and axisymmetric flow, which
simplifies governing equations.

- The electromagnetic fluid that is conducting with a
robust magnetic field (including the Hall effect) alters
the Lorentz force in the momentum equation.

- Minor magnetic Reynolds number would permit
the ignored magnetic field stemming at the applied
magnetic field the same.

- Thermal conductivity is temperature dependent,

thus making the heat conduction term in the energy
equation to change.

- Zero thermoelectric effects correspond to zero electric
field and no effect on the flow.

- Cattaneo-Christov heat and mass flux models
incorporate a thermal and solutal relaxation time into
energy and solute transport equations.

The modified Ohm’s law, which accounts to Hall’s
currents, is represented as follows [31, 32].

J +
m

B0
(J ×B) = σ(V ×B) (1)

Where V is fluid velocity, J is current density, B is the
inductionmagnetic vector is a term andm = ωeτe is the
Hall parameter. We analyzed the equation (1) utilizing
the velocity and field magnetic vectors to obtain the
Hall flow terms shown below.

J×B = (0)er+

(
σB2

0mR
3w

r (m2R2 + r2)

)
eθ−

(
σB2

0R
2w

(m2R2 + r2)

)
ez (2)

In which er, eθ, and ez are the dimensions of
the standard vectors throughout (r, θ, z) orders,
correspondingly.

The governing boundary layer equations of mass
conservation, momentum, energy and species
transport can be derived as mentioned above with the
Williamson fluid using assumptions as listed above
and including the Hall current factor (Equation 2), as
follow [33–36].

∂(rw)

∂z
+
∂(ru)

∂r
= 0, (3)

w
∂w

∂z
+ u

∂w

∂r
=

v

[
∂2w

∂r2 +
1

r

∂w
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+
√

2Γ
∂w

∂r

∂2w

∂r2 +
Γ√
2r

(
∂w
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)2
]

− σB2
0R

2
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(4)

w
∂T

∂z
+ u

∂T
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+ ε1ΩT =

∂

∂r

(
αr
∂T

∂r

)
1

r
+

(T − T∞)

ρCp
Q− ∂

∂r
(rqr)

1

ρCp
+

τ

[
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∂r

∂C
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+
DT
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(
∂T

∂r

)2
]
,

(5)
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w
∂C

∂z
+ u

∂C

∂r
+ ε2ΩC =

DB.
1

r

∂

∂r

(
r
∂C

∂r

)
+
DT

T∞

1

r

∂

∂r

(
r
∂T

∂r

)
−Kr (C − C∞) ,

(6)

For the model under consideration, the related
boundary conditions

w = W (z) = Uoz
l , u = 0,−KT

∂T
∂r = hT (Tf − T ) ,

−DB
∂C
∂r = Km (Cf − C) at r = R,

w → 0, C → C∞, T → T∞, as r →∞


(7)

By reducing the quantity of variables and converting
the equations to ODEs, we simplified the analysis,
making it easier to find solutions and get a deeper
knowledge of the problem.

η =
√

U0
vl

(
r2−R2

2R

)
, ψ = f(η)

√
vU0
l Rz,

φ(η) = C−C∞
Cf−C∞ , u = −f(η)

√
vU0
l
R
r ,

θ(η) = T−T∞
Tf−T∞ , w = U0

l f
′(η)z.

(8)

In equation (5), the variant thermal conductivity of
the fluid is depicted as α. Rosseland approximation
to radiation effects is used to get the expression of the
temperature-dependent thermal conductivity.

α = α∞ (1 + εθ(η)) ,

qr = − 4σ∗

3K∗
∂T 4

∂r
.

(9)

It can also be expanded as a Taylor series around the
reference point T 4 around T∞with the assumption that
there exist a temperature gradient in the flow. When
we keep only lower-order terms we are left with T∞.

T 4 = 4T 3
∞T − T 4

∞ (10)

Additionally, the following is the formula for the term
ΩT in Equation (5) that is derived using the CCEF
model:

ΩT =w2∂
2T

∂z2 + u2∂
2T

∂r2 + 2uw
∂2T

∂z∂r
+ w
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∂r

(11)

We obtain the following expression by replacing
Equation (5) with Eqs. (9)–(10).
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,

(12)

The formula for the term ΩC in Equation (6), which is
derived from the Cattaneo-Christov mass flux model,
is

ΩC = w2∂
2C

∂z2 + u2∂
2C

∂r2 + 2uw
∂2C

∂z∂r
+ w

∂w

∂z
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The updated concentration equation that results from
applying Equation (13) to Equation (6) is as follows:

w
∂C

∂z
+ u

∂C

∂r
+ ε2

(
w2∂
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∂z2 + u2∂
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∂
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(
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)
+
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1

r

∂
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(
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)
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(14)

Under the applied similarity transformations,
the continuity equation is maintained. These
transformations convert Eqs. (4), (12), and (14) to the
following ODEs.

(1 + 2ηγ)f
′′′

+ ff
′′ −

(
f ′
)2

+ 2γf
′′

+
3

2
(1 + 2ηγ)

1
2γλ

(
f
′′
)2

+ λ(1 + 2ηγ)
3
2 f
′′
f
′′′ −

(
M2

m2 + (1 + 2ηγ)

)
f ′ = 0,

(15)
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(1 + 2ηγ)

(
(1 + εθ)

4

3
Rd

)
θ
′′

+
(
θ′
)2

(1 + 2ηγ)ε

+

(
Prf + 2γ + 2εγθ +

8

3
Rdγ

)
θ′

− Prλt
(

(f)2θ
′′

+ ff ′θ′
)

+ Prβθ

+ (1 + 2ηγ) Pr
(
Nbθ′φ′ +Ntθ

′2
)

= 0,

(16)

(1 + 2ηγ)

(
φ
′′

+
Nt

Nb
θ′′
)

+ 2γ

(
φ′ +

Nt

Nb
θ′
)

− Scλc
(

(f)2φ
′′

+ ff ′φ′
)

+ Scfφ′ − ScKφ = 0.

(17)

In Non-dimensional parameters are: where Pr =
ν
α∞

, is the Prandtl number α∞ = k
ρCp

, thermal

conductivity γ =
√

νl
U0R2 is the Curvature parameter,

Rd = 4 σ∗

K∗
T 3
∞
k is the thermal radiation, Nb =

τDB(Cf−C∞)
ν Brownian motion, K = Krl

U0
represent

chemical reaction parameter, Nt =
τDT (Tf−T∞)

νT∞
is the

thermophoresis parameter, and λ =
√

2ΓU
3
2
0 z

ν
1
2 l

3
2

is the
Weissenberg number The parameters for the magnetic
field M2 =

σB2
0 l

U0ρ
, heat generation are β = Ql

ρCpU0
,

Lewis number is Le = α∞
DB

and the Schmidt number is
Sc = PrLe.

Boundary condition given as follow Jakhar et al. [40].

f ′(0) = 1, f(0) = 0,
θ′(0) + (Bi)1 (1− θ(0)) = φ′(0) + (Bi)2 (1− φ(0)) = 0,

θ( η)→ 0, φ( η)→ 0, f ′( η)→ 0 as η →∞


(18)

While (Bi)1 and (Bi)2 are actually the temperature &
concentrations Biot numbers, respectively.

Skin friction, locally Nusselt number, and Sherwood
number are physical properties. There will be bodily
expression:

Cf =
τw
ρU2

,

Nu =
rqr

k (Ts − T∞)
,

Sh =
rjr

DB (Cs − C∞)
.

(19)

where,

τw = µ

(
∂w

∂r
+ Γ

∂w

∂r

∂w

∂r

)
,

qr = −k∂T
∂r
,

jr = −DB
∂C

∂r
at r = R

(20)

Dimensionless versions of the preceding statements
are expressed as follows.

√
ReCf

2 = λ
2f
′′
(0)2 + f

′′
(0),√

Re Nu = −
(
1 + 4

3Rd
)

Θ′(0),√
Re Sh = −ϕ′(0).

(21)

3 Methodology
The nonlinear model problem (15)-(17) involving
modeling boundary condition (18) was solved
using the Optimal Homotopy Analysis Method
(OHAM) [41–46]. The solution procedure follows
the computational algorithm depicted in Figure 2.
Suppose η = $. These initial beliefs were originally
specified:

Figure 2. Flow chart for optimal homotopy analysis method.

fo ($) = 1− e−$,

θo($) =

(
Bi1

1 +Bi1

)
e−$,

φ0($) =

(
Bi2

1 +Bi2

)
e−$.

(22)

The Lf ,Lθ and Lφ are linear operators, which are
perceived as

Lf (f) = f
′′′−f ′,Lθ(θ) = θ

′′−θ,Lφ(φ) = φ
′′−φ, (23)

Which possess following attributes:
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Lf (α1 + α2e
−$ + α3e

$) = 0,
Lθ (α4e

−$ + α5e
$) = 0, Lφ (α6e

−$ + α7e
$) = 0.

(24)

where α are constant coefficient.

The ℵf ,ℵθ and ℵφare Nonlinear operator expressed by
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2φ (R;$)

∂$2
+ f (R;$)

∂f (R;$)

∂$

∂φ (R;$)

∂$

]
+ (Sc)f (R;$)

∂φ (R;$)

∂$
− (KSc)φ (R;$) .

(27)

Zeroth-order problems are defined as:

(1−R) Lf [f (R;v)− fo($)]

= R}fℵf [f (R;$) , g (R;$)] ,
(28)

(1−R) Lθ [θ (R;$)− θo($)]

= R}θℵθ [θ (R;$) , φ (R;$)] ,
(29)

(1−R) Lφ [φ (R;$)− φo($)]

= R}φℵφ [θ (R;$) , φ (R;$)] .
(30)

The corresponding B.C are

∂f(R;$)
∂$

∣∣∣
$→∞

= 0, ∂f(R;$)
∂$

∣∣∣
$=0

= 0, f (R;$) |$=0 = 0,

θ (R;$) |$→∞ = 0, ∂θ(R;$)
∂$

∣∣∣
$=0

= −Bi1(1− θ),
φ (R;$) |$→∞ = 0, φ (R;$) |$=0 = −Bi2(1− φ).

(31)

The variables which are used to govern the method’s
stability are }f , }θ and }φ whileR ∈ [0, 1] acts as the
placing factor.

f($; 0) = fo($), f($; 1) = f($)
θ($; 0) = θo($), θ($; 1) = θ($)
φ($; 0) = φo($), φ($; 1) = φ($)

(32)

Taylor’s serial extension includes:

f (R;$) = fo($) +
∑∞

n=1 fn($)Rn,
θ (R;$) = θo($) +

∑∞
n=1 θn($)Rn,

φ (R;$) = φo($) +
∑∞

n=1 φn($)Rn,
(33)

where,

fn($) =
1

n!

∂f (R;$)

∂$

∣∣∣∣
R=0′

,

θn($) =
1

n!

∂θ (R;$)

∂$

∣∣∣∣
R=0

,

φn($) =
1

n!

∂φ (R;$)

∂$

∣∣∣∣
R=0

(34)

The secondary restrictions }f , }θ , }φ are labelled.
After changingR = 1 in (33), we get

f($) = fo($) +
∑∞

n=1 fn($),
θ($) = θo($) +

∑∞
n=1 θn($),

φ ($) = φo($) +
∑∞

n=1 φn($),
(35)

nth order problem state the following

Lf
[
fn($)− {nfn−1($)

]
= }fX fn ($),

Lθ
[
θn($)− {nθn−1($)

]
= }θX θn($),

Lφ
[
φn($)− {nφn−1($)

]
= }φX φn ($).

(36)
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Boundary condition are

f ′(∞) = f ′(0) + 1 = f(0) = 0,
θ′(0) +Bi1 (1− θ(0)) = θ(∞) = 0,
φ′(0) +Bi2 (1− φ(0)) = φ(∞) = 0.

(37)

here,

X fn ($) = (1 + 2ηγ)f
′′′
n−1 + ff

′′
n−1 −

(
f ′n−1

)2
+ 2γf

′′
n−1 +

3

2
(1 + 2ηγ)

1
2γλ(

f
′′
n−1

)2
+ λ(1 + 2ηγ)

3
2

(
n−1∑
m=0

f
′′
n−1f

′′′
m

)

−
(

M2

m2 + (1 + 2ηγ)

)
f ′n−1 = 0

(38)

X θn($) =

(
(1 + εθ)

4

3
Rd

)
θ
′′
n−1(1 + 2ηγ)

+

(
Prf + 2γ + 2εγθ +

8

3
Rdγ

)
θ′n−1

+
(
θ′n−1

)2
ε(1 + 2ηγ)− Prλt

(
f2θ

′′
n−1 + ff ′θ′n−1

)
+ (Prβ)θ + (1 + 2ηγ) Pr[
Nb

(
n−1∑
m=0

θ′n−1−mφ
′
m

)
+Nt

(
θ′n−1

)2]
= 0,

(39)

X φn ($) = 2γ

(
φ′n−1 +

Nt

Nb
θ′n−1

)
+ (1 + 2ηγ)

(
φ
′′
n−1 +

Nt

Nb
θ
′′
n−1

)
− Scλc(

f2φ
′′
n−1 + f

(
n−1∑
m=0

φ′n−1−mf
′
m

))
+ Scfφ′n−1 −KScφ = 0.

(40)

where,

{n =

{
0 if R ≤1
1 if R >1

(41)

4 Results and Discussion
In this analysis carried on the flow of a Williamson
fluid flowing over a stretched cylindrical surface due to

an externally applied magnetic field. The paper takes
into account combined effects of Curvature parameter,
Weissenberg number, Time relaxation Parameter,
Hall current, Magnetic field, Thermal conductivity,
Prandtl number, Radiation Parameter, Heat generation,
and Schmidt number, Thermophoresis parameter,
Brownian motion, chemical reactions and Biot number
all of which have substantial influence in the flow
profile. The influence of the existence of a magnetic
field and non-Newtonian fluid properties implements
a complicated interaction, but this fact influences no
velocity, temperature, and concentration distributions.
The profile shown in the graph below is generatedwith
Mathematica software along the cylinder and shows
how the effect of themagnetic forces, thermal gradients
and chemical processes affect the overall performance
of the flow. The visualization is an important insight on
how physical effects interact inmagnetohydrodynamic
systems with non-Newtonian fluids. For the analysis,
key physical parameters are chosen as follows [39, 40]:
γ(0.0 ≤ 1.0), λ(0.0 ≤ 1.0), λt(0.0 ≤ 2.0), λc(0.0 ≤ 4),
m(0.4 ≤ 0.5), M(0.0 ≤ 1.0), ε(0.0 ≤ 1.5), Pr(1.0 ≤
4.0), Rd(1.0 ≤ 4.0), β(0.1 ≤ 0.3), Sc(0.1 ≤ 1.0),
Nt(1.0 ≤ 4.0), Nb(1.0 ≤ 4.0), K(0.0 ≤ 0.1) and
Bi(0.0 ≤ 1.0).

Figure 3. Plot the graph of curvature parameter γ on f ′(η).

As the plots in Figures 3, 4 and 5 indicate, the curvature
parameter γ has significant effect on the velocity,
concentration and temperature profiles of the fluid.
As γ, corresponding to a curvier cylinder surface,
increases, there is higher velocity, concentration and
a drop in temperature. The increase of the velocity
can be explained by less resistance in the flow path,
enabling easier movement of the fluid and transfer
of momentum. This increases in its turn mass
transport, raising the concentration of fluid close to
the surface. This cooling effect comes due to the fact
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Figure 4. Plot the graph curvature parameter γ on
temperature.

Figure 5. Plot the graph curvature parameter γ on
concentration.

Figure 6. Plot the graph Weissenberg number λ on f ′(η).

that a much larger curvature increases the surface
area between the cylinder and the fluid it is exposed
to. This enhances improved thermal conduction and
convective heat transfer and the boundary layer is
cooled. In general, the curvature parameter, is essential

in dynamically, diffusively and thermally configuring
the fluid, providing useful control of transports along
curved forms.

Figure 7. Plot the graph Thermal relaxation parameter λt on
temperature.

Figure 8. Plot the graph Soultal relaxation parameter λc on
temperature.

Figure 6 shows that as the Weissenberg number λ
fluid increases, it will enhance fluid velocity. Greater
values imply longer relaxation periods, in that the fluid
acts more elastically. In Williamson fluids, increased
elasticity enables the fluid to resist deformation, to
flow more rapidly. This flexibility also enhances
the process of overcoming magnetic resistive forces
in a system to more velocity in the MHD systems.
Therefore, an advanced value of Weissenberg numbers
enhances fluid flow and better flow pattern. Figures 7
and 8 show the thermal and concentration relaxation
parameters (λt and λc), which represent heat and
mass transfer rates, respectively. Increased λt causes
the system to take longer to react to thermal changes,
resulting in better heat dissipation with a slower
temperature decrease. Higher λc slows the changing
to the concentration field, causing mass accumulation
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and increasing concentration. In summary, higher λt
values lower temperature and increase concentration.
Understanding these mechanisms provides more
information on the system’s thermal as well as mass
transport behavior.

Figure 9. Plot the graph Hall currentm on f ′(η).

Figure 10. Plot the graph Magnetic fieldM on f ′(η).

Figure 11. Plot the graph thermal conductivity ε on
temperature.

Figure 12. Plot the graph Prandtl number Pr on
temperature.

Figure 9 shows that a reduction in Hall parameterm
reduces the effect of the magnetic field on the fluid.
This decreases the contact of the magnetic field to
the fluid particles causing a decrease in velocity. In a
lower Hall effect, there is a reduced strength capability
to oppose or aid the movement of the fluid; hence
movement is slower. An awareness of these physical
impacts can aid in interpretation of the behavior of
the system in different magnetic impact. Figure 10
shows that the magnetic field exerts more resistance
on the flow of fluid as the strength of the magnetic
field parameter, M increases. This is because of
higher Lorentz force which resists the motion causing
the reduction of the velocity. In understanding this
mechanism, it figuratively gives more insight into the
nature of magnetic effect on fluid behavior. Figure 11
exhibits that increasing the thermal conducting
parameter ε results in lower fluid temperature due
to greater dissipation of heat. This improved thermal
conduction causes heat to move away from the liquid
more quickly. Understanding this tendency helps to
explain the system’s thermal response under different
conductivity circumstances. The Prandtl number (Pr)
in Figure 12 is a dimensionless quantity which is an
infrahed ofmomentumdiffusion (viscosity) to thermal
diffusion. The more Pr gets, the thicker the fluid is
as compared to its capability to transfer heat. This
combined with the fact that it causes the fluid to have a
thinner thermal boundary layer resulting in increase in
heat transfer between the fluid and the surroundings.
As a result, there is an increased amount of heat that
is held in the fluid, thus elevating the temperature.
Therefore, thick fluids have a higher Prandtl number
which means that they are more heated because they
are less efficiently diffusing thermally.
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Figure 13. Plot the graph Thermal Radiation Rd on
temperature.

Figure 14. Plot the graph heat generation β on temperature.

Figure 15. Plot the graph Schmidt number Sc on
concentration.

In Figure 13, the radiation parameter Rd influences
temperature by determining when the fluid takes
and emits thermal radiation. A greater Rd enhances
absorption, which causes the fluid to heat up more
quickly. At the exact time, emissivity regulates heat

loss; more emissivity results in faster cooling, whereas
low emissivity induces heat retention. In order the
radiation parameter affects either the cooling and
heating processes, influencing overall temperature
behavior. Figure 14 shows the heat generation
parameter β, which governs the quantity of heat
produced by the system. Higher β values cause a
quicker increase in temperature through increased
heat generation, assuming minor cooling effects.
Understanding this helps to explain how energy
sources influence the system’s thermal behavior. As
shown in Figure 15, Schmidt number Sc (which is a
ratio of momentum diffusivity to mass diffusivity) has
an influence on the concentration profile. An increase
in Sc will lead to higher concentration gradient
and more concentrated at a few locations, whereas
the decrease in Sc will lead to a flattening out of
concentration and increase in mass diffusion. The
knowledge of this can explain the effects of diffusion
rates on the pattern of concentrations.

Figure 16. Plot the graph thermophoresis Nt on
temperature.

Figure 17. Plot the graph thermophoresis Nt on
concentration.
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Table 1. Calculated values for Skin friction onM = 0, m = 0 and γ = 0 with respect to λ.

λ

Cf
Nadeem
et al.
[37]

Cf
Malik et
al. [38]

Cf Bilal
et al.
[39]

Cf
Jakhar
et al.
[40]

Cf
present
results

0.0 1 1.005 1.0053 1.002 1.00000000
0.1 0.976558 0.965285 0.965283 0.9811 0.99950198
0.2 0.939517 0.927877 0.927874 0.9606 0.97924993

Table 2. Computational values for Skin friction at ε = 0.3, (Bi)1 = 0.2, (Bi)2 = 0.2, Rd = 0.4,
K = 0.2, Sc = 3, P r = 3, Nt = 0.2, Nb = 0.2.

γ λ M m
Cf Jakhar
et al. [40]

Cf Present
Results

0.1 0.4 0.3 0.2 0.9973 0.99636214
0.5 - - - 1.0745 1.0550189
1.0 - - - 1.1901 1.1349401
0.3 0.1 - - 1.1183 1.1156701
- 0.3 - - 1.0600 1.0802283
- 0.5 - - 0.9799 0.9487434
- - 0.3 - 1.0246 1.0579687
- - 0.5 - 1.0719 1.0590739
- - 0.7 - 1.1374 1.1572667
- - - 0.1 1.0253 1.0590658
- - - 0.5 1.0208 1.0590853

Figures 16 and 17 allow temperature-directed
movement of particle flow by using a thermophoresis

parameter Nt. Increasing levels of Nt increases the
mobility of the particles towards cooler areas which

Table 3. Numerical values for Nu atm = 0.2,M = 0.3, λ = 0.4, γ = 0.3, (Bi)1 = 0.2, (Bi)2 = 0.2, K = 0.2, Sc = 3.

ε Rd Pr β γ Nb Nt Nu Jakhar et al. [40] Nu present result

0.0 0.4 0.2 0.1 0.3 0.2 0.5 0.2194 0.2148009
0.5 - - - - - - 0.2146 0.230410
1.0 - - - - - - 0.2094 0.2303418
0.5 0.0 - - - - - 0.1519 0.1971689
- 0.3 - - - - - 0.1999 0.2172685
- 1.0 - - - - - 0.2956 0.2869087
- - 0.71 - - - - 0.1710 0.1836760
- - 7.0 - - - - 0.2570 0.2690744
- - - 0.15 - - - 0.1478 0.1337890
- - - 0.20 - - - 0.2837 0.2978369
- - - - 1.0 - - 0.2162 0.2292780
- - - - 0.5 - - 0.2248 0.2367901
- - - - 1.0 - - 0.2388 0.2317825
- - - - - 0.5 - 0.2119 0.2145402
- - - - - 1.0 - 0.2074 0.2098388
- - - - - 1.5 - 0.2028 0.2098374
- - - - - - 0.2 0.2191 0.21309419
- - - - - - 0.1 0.2057 0.29090422
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Table 4. Calculated values for Sh at γ = 0.3,M = 0.3,m = 0.2, (Bi)1 = 0.2, (Bi)2 = 0.2, λ = 0.4.

K Sc γ Nt Nb Sh Jakhar et al. [40] Sh Present results

0.1 3.0 0.3 0.2 0.2 0.1697 0.1658207
0.5 - - - - 0.1785 0.1738265
1.6 - - - - 0.1829 0.1883175
0.2 0.78 - - - 0.1478 0.1442373
- 0.96 - - - 0.1525 0.1559409
- 2.0 - - - 0.1668 0.1658243
- - 0.1 - - 0.1706 0.1772171
- - 0.5 - - 0.1747 0.1734302
- - 1.0 - - 1.777 0.1736992
- - - 0.2 - 0.1730 0.1753228
- - - 0.1 - 0.1684 0.1686163
- - - - 0.5 0.1740 0.1792743
- - - - 1.0 0.1754 0.1705923
- - - - 1.5 0.1759 0.1710364

Figure 18. Plot the graph Brownian motion Nb on
temperature.

Figure 19. Plot the graph Brownian motion Nb on
concentration.

further increases the particle concentration in that area
and even then, lessens the profile of the temperature.

Figure 20. Plot the graph chemical reactionK on
concentration.

Figure 21. Plot the graph Biot number on temperature.

Knowing this, it is easy to understand the way the
temperature differences affect particle distribution
and thermal behavior. As shown in Figures 18 and 19,
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Figure 22. Plot the graph Biot number on concentration.

the Brownian motion parameter Nb enhances random
movement of the particles to make them more equally
distributed in the fluid. This diffusion minimizes
the concentration of particles in nearby small
regions. Brownian motion leads to greater random
movement and causes a more equal distribution
of particles and extends local concentrations. The
effect that the chemical reaction parameter K has
on temperature in Figure 20 differs in the sense
that the reaction itself does not change temperature,
but it aids in the dispersal of heat more uniformly
across a system rather than concentrating specific
regions to high temperatures. It also accelerates the
rate of reaction with a subsequent increase in the
concentration of product and a subsequent decrease in
the concentration of a reactant. Figures 21 and 22 show
that increasing Biot numbers (Bi1, Bi2) causes greater
temperature differences within the object, inducing
smaller rates of temperature change on the inside.
They also develop a smaller scale concentration profile
close to the surface in heat and mass transfer systems.

A numerical approach to the flow problem demands
verifying the accuracy of the results as designated by
these numbers. We provide a table of a comparison
of our results with those of Nadeem et al. [37], Malik
et al. [38], Bilal et al. [39], and Jakhar et al. [40], but
focusing on values of

√
ReCf

2 values of our problem.
The quality of our scoring is well evidenced by our
results, which fall in excellent accordance with those
of previous studies. The validation technique serves to
illustrate that our method of simulating the problem
of the flow is reliable, and it has a different level of
agreement with other studies. Table 1 compares values
of −

(
λ
2f
′′
(0)2 + f

′′
(0)
)

with previously published
work to validate the precision of the numerical
approach used.

This section presents the numerical values of key
physical characteristics—skin friction, Nusselt number,
and Sherwood number—as listed in Tables 2–4, with
selected flow parameters held constant. Table 2
shows that increasing the curvature parameter γ and
magnetic field parameter M enhances skin friction
through elevated shear stress, whereas a higher
Weissenberg number λ reduces it by strengthening
elastic effects that weaken velocity gradients; the
Hall current parameter m has negligible impact.
Tables 3 and 4 illustrate the sensitivity of the local
Nusselt and Sherwood numbers to variations in
thermal conductivity, radiation, Prandtl number,
heat generation, Brownian motion, thermophoresis,
Schmidt number, and chemical reaction. The
Nusselt number rises with larger radiation parameter
Rd, thermal conductivity parameter ε, Prandtl
number Pr, and heat generation parameter β due
to enhanced radiative and conductive heat transfer,
but decreases with increasing thermophoresis Nt,
Brownian motion Nb, and slightly with curvature
parameter γ. The Sherwood number increases
with higher thermophoresis Nt, chemical reaction
parameter K, and Schmidt number Sc owing to
strengthened mass diffusion and reaction rates, while
it decreases with larger Brownian motion Nb and
curvature parameter γ because of intensified particle
dispersion. Overall, this analysis highlights how these
parameters collectively govern fluid dynamics, heat,
and mass transfer. Furthermore, Tables 1–4 confirm
that the OHAM method achieves higher accuracy
with fewer computations than BVP4C, exhibiting
faster convergence and effective handling of nonlinear
problems.

5 Conclusion
This paper focused on the flow of Williamson
nanofluid on a stretched cylinder, taking into
consideration the magnetic fields, the Hall current,
chemical reaction, non-Fourier heat and mass
transportation with the help of Cattaneo-Christov
model. The gelling dynamics in the form of nonlinear
governing equations were solved in an analytical
mode wherein Optimal Homotopy Analysis Method
(OHAM) yields viable and computationally flexible
solutions.

- The parameter associated with the magnetic field
M slowed down fluid velocity through the Lorentz
resistance, and could be utilized in the flow control of
the applications dealing with MHD;

- Hall parameter m changed the direction of a flow,
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which means it enhanced radial velocity and, at the
same time, decreased the axial one; it is significant in
electromagnetic and plasma-based systems;

- Chemical reaction parameter (K) dimished
nanoparticle concentration in the vicinity of the
surface meaning that it is involved in the reactive
transport processes such as drug delivery and
catalysis;

- Thermal relaxation λt reduced heat transfer rate, and
demonstrated the relevance of non-Fourier models in
transient thermal systems where fluctuations play a
prominent role in the mission;

- Higher thermophoresis parameter Nt increased
the temperature profiles and thicker thermal layers,
which enhanced the heat transport in nanofluid driven
devices;

The advanced transport models coupled with the
OHAM solution technique gave realistic results in
non-Newtonian nanofluid behavior. The results
may be used in the design of thermal engineering
systems, materials processing systems and biomedical
systems. Future work can involve time dependent
flows, property dependence, experimental validation.
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Nomenclature

u,w Velocity components
(r, θ, z) Cylindrical coordinate
Bo Magnetic field strength
α Variable caloric diffusivity
r Radius of cylinder
DB Brownian motion coefficient
DT Thermophoretic coefficient
Uo Reference velocity
R Radius of cylinder
Km Mass exchange coefficient
hT Heat exchange coefficient
Q Heat Source
qr Radiative heat flux
Cp Specific heat
τ Local skin friction
σ∗ Steffan–Boltzman constant
K∗ Mean absorption coefficients
T Fluid temperature
Tw Surface thermal
T∞ Ambient temperature
C Fluid concentration
Cw Surface solutal
C∞ Ambient Concentration
β Heat generation
m Hall parameter
M Magnetic field
Pr Prandtl number
Rd Thermal radiation
Sc Schmidt number
Nt Thermophoresis parameter
Nb Brownian motion
K Chemical reaction parameter
λt Thermal relaxation parameters
λc Concentration relaxation parameters
Bi Biot number
Re Reynolds number
Cf Skin friction
Nu Nusselt number
Sh Sherwood number

Symbols

v Kinematic viscosity
Γ Williamson parameter
ρ Density of fluid
J ×B Lorentz force
ε1 Heat relaxation time
ε2 Mass relaxation time
Ψ Stream function
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η Similarity variable
θ dimensionless fluid temperature
φ dimensionless fluid concentration
α∞ Thermal conductivity
λ Weissenberg number
σ Electrical conductivity
γ Curvature parameter
ε Thermal conductivity parameter

Subscripts

w Evaluated at the wall/surface
∞ Ambient condition
0 Base state (e.g., µ0 base viscosity)

Abbreviations

MHD Magnetohydrodynamic
OHAM Optimal Homotopy Analysis Method
PDEs Partial Differential Equations
ODEs Ordinary Differential Equations
CCHF Cattaneo Christov heat flux
CCMF Cattaneo Christov mass flux
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