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Abstract
This study presents a comprehensive numerical
investigation of the flow and heat transfer
characteristics of a second-grade nanofluid in a
converging/diverging channel, incorporating the
significant effects of multiple slip mechanisms. The
analysis considers velocity, thermal, and solutal
slip conditions at the channel walls, providing
a more realistic model of nanofluid behavior
in micro-environments or with specific surface
interactions. The governing equations, derived
from the principles of conservation of mass,
momentum, and energy, are formulated using
a non-Newtonian second-grade fluid model to
account for viscoelastic effects, combined with the
Buongiorno model to capture the Brownian motion
and thermophoresis mechanisms of nanoparticles.
The resulting system of highly non-linear, coupled
partial differential equations is transformed into
a set of ordinary differential equations using a
similarity transformation approach. The ensuing
boundary value problem is solved computationally
using the robust MATLAB bvp4c solver. The
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results are meticulously analyzed to elucidate
the intertwined influence of the second-grade
fluid parameter (viscoelasticity), the nanoparticle
volume fraction, the slip parameters, and the
channel geometry (converging/diverging angle)
on the velocity profile, temperature distribution,
and thermal performance. Key findings indicate
that velocity slip and thermal slip parameters
substantially reduce skin friction and enhance the
localNusselt number, respectively, thereby critically
optimizing the thermal performance of the system.
Furthermore, the converging channel geometry is
shown to synergize with the viscoelastic nature of
the second-grade fluid to significantly augment heat
transfer rates compared to the diverging case.

Keywords: second grade nanofluid, converging/diverging
channel, multiple slip, heat transfer enhancement,
viscoelastic fluid, numerical solution.

1 Introduction
It has been well-known that the demand for working
fluids in thermal processes is increasing day by day
due to their energy release to the system. However,
working fluids like oil, water and other similar
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Figure 1. Schematic diagram of the converging/diverging channel flow with multiple slip mechanisms.

fluids may be identified owing to their low thermal
properties vulnerable to the limitations of their energy
transport performance. To ameliorate the energy
transport properties of thermal liquids, which is to
enhance the rate of heat trans-mission by virtue of their
higher thermic conductivity than the working liquids.
In the ongoing search for new techniques to improve
heat transmission, metallic nanoparticles with higher
thermal conductivity were added to common working
liquids by Choi et al. [1], who called them nanofluids
(NFs). The improved performance of nanofluids
compared to working fluids, confirmed by both
computational and experimental investigations, has
propelled the researchers to explore this field of science
in recent decades. Several disciplines of heat transfer
have used nanofluids, including electronic devices,
food industry, biomedicine, liquid metal cooling, drug
delivery, solar panels, nuclear re- actors, etc. The
two-phase model, first proposed by Buongiorno [2], is
one of the typical methods used for heat transmission
in nanofluids. He looked at the slip mechanism and
considered the solid and fluid as interpenetrating
continua, each moving at its own speed but with
slip velocity. Later, Khan et al. [3] introduced the
innovative idea of laminar flow involving nanofluids
driven by a stretching surface. Makinde et al. [4]
extended this work by incorporating the effect of
convective heat transport for nanofluid flow past a
stretching surface. There is a substantial quantity of
literature on nanofluid in recent advancements, for
both Newtonian and non-Newtonian models, however
we only include a few current works [5–10].

The no-slip condition at the boundary was a problem
that was taken into consideration in the early stages of
fluid mechanics, and various experiments supported
its validity. The no-slip boundary criterion is
simply a model based on empirical data. Moreover,
nonslip boundary conditions are invalid in several
physical situations, including low-pressure flows
and flows at the micro- and nanoscale. Similarly,
hydrophobicity and roughness of the wall, which alter
the hydrodynamic conditions at the surface, may be
the cause of the slip at the wall. The wide-spread
applications of slip condition at the surface contain
polishing artificial heart valves, microfluidic devices,
lubrications, biological fluids, flow of non-Newtonian
fluids in industry, etc. The contact-line singularity
that would normally restrict the movement of a
half-submerged sphere normal to a planner free
surface enclosing a semi-infinite viscous fluid was
eliminated by O’Neill et al. [11] using a linear slip
boundary condition. Numerous studies in recent years
have revealed that fluid slippage may occur at the
surface of solid boundaries. For instance, Nadeem
et al. [12] explored the flow of non-Newtonian
fourth grade fluid subject to partial slip conditions
at the boundary. Later, Ashmawy [13] employed a
linear slip condition to investigate time-dependent
Couette flow of micropolar fluid through a channel.
Devakar et al. [14] presented the analytical solution
for couple stress fluid flow by using velocity slip
conditions. Hayat et al. [15] examined the impacts of
inclined magnetic field and partial slip-on peristaltic
flow tangent hyperbolic nanofluids through inclined
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channel. Khan et al. [16] computedmultiple numerical
solutions for slip flow of nanofluids with thermal
radiation impacts. Few recent studies on these aspects
can be found in [17–22].

2 Problem Formulation
The present work deals with the incompressible,
two-dimensional flow of a second-grade fluid flowing
between two inclined nonparallel walls that are at an
angle of 2α. A source or sink at the intersection of two
non-parallel walls causes the flow to occur. About
the centerlines θ = 0, the symmetric character of
flow is considered. The radial direction is set parallel
and axial direction perpendicular to the flow. Slip
boundary conditions are taken on the channel walls.
The schematic diagram of the physical problem is
depicted in Figure 1.

The basic governing equations (continuity,
momentum, energy & concentration) using
Buongiorno’s model of nanofluids are given below:

Mass balance equation:
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Concentration balance equation:
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(5)

where α1 refers to the second-grade fluid material
parameter, ρ denotes the fluid density and µ means
the dynamic viscosity.

Physical boundary conditions that govern the problem
are as follows:

At the middle line symmetry (θ = 0):
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(7)

where, (ρcp)f , DB , DT represents heat capacity of
fluid, Brownian motion coefficient, thermophoresis
coefficient respectively.

The radial velocity of the form is well illustrated by the
continuity equation, as follows:

f(θ) = ru(r, θ). (8)
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Utilizing the above equation into momentum
equations (2) and (3), we get
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Eliminating the pressure term from Eqs. (11) and
(12), we arrive at a single flow equation governing the
converging/diverging flow of second-grade fluid:
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Dimensionless transformations

The modelled problem is transformed using the
following additional transformations to produce its
dimensionless form:
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Equations for fluid velocity (13), temperature (4), and
concentration (5) are changed as follows by applying
the subsequent transformation (8) and (14):
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The above system undergoes the following boundary
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where α1, α2, α3 are the velocity, thermal and
concentration slip parameters. Here,
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3 Emerging Parameters
Skin-friction coefficient and Nusselt number are the
physical quantities of interest in this investigation,
written as follows:
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With the use of similarity transformation, the
dimensionless form of Skin friction and Nusselt
number are:
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,
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where Re = rαU

ν
signifies the local Reynolds number

and the Deborah number De = −α1U

µr
.

4 Numerical Method
A powerful and widely used numerical approach for
solving boundary value problems (BVPs) involving
ordinary differential equations (ODEs) is the finite
difference method with a collocation technique. For
the purposes of this study, the set of non-linear
ODEs governing the flow problem, along with
their associated boundary conditions, were solved
numerically using the built-in MATLAB function
bvp4c. This solver employs a finite difference scheme
on an adaptive mesh, which allows for efficient
and accurate computation of solutions, particularly
for complex, non-linear systems. To facilitate this
process, the higher-order non-linear ODEs were first

Figure 2. Variation of velocity profile F (η)with Reynolds
number Re in (a) diverging and (b) converging channels.

reduced to a system of first-order ODEs by introducing
new variables. This transformation is a necessary
step for implementation with the bvp4c procedure.
The numerical results were then used to analyze
the velocity profile, temperature distribution, heat
transfer rate, and skin friction coefficient, providing
a comprehensive understanding of the influence of
velocity, thermal, and solutal slip conditions on the
flow fields. To use this technique, higher order
non-linear ODEs (15), (16), and (17) as well as the
boundary conditions 18 and (19) must be reduced
to first order by choosing the appropriate variables.

Figure 3. Effect of velocity slip parameter α1 on velocity
profile F (η) in (a) diverging and (b) converging channels.
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Therefore, we introduce the following new variables,

F = y1,

F ′ = y2,

F ′′ = y3,

β = y4,

β′ = y5,

ϕ = y6,

ϕ′ = y7.

Figure 4. Effect of wall inclination angle α on velocity
profile F (η) in (a) diverging and (b) converging channels.

Consequently, the obtained set of first order ODEs is:

y′1 = y2,

y′2 = y3,

y′3 = yy1 =
−4α2y2 − 2αRey1y2 − 16De · α2y1y2

1 + 4De · y1
,

y′4 = y5,

y′5 = yy2 = −EcPr(4α2y21 + y22)

− 2DePrEc(y1y
2
2 + 4α2y31)

− Pr(Nb · y7y5 +Nt · y25),
y′6 = y7,

y′7 = ϕ′′ = yy3 =
−Nt
Nb

yy2.

The boundary conditions become:

y1(0) = 1,

y2(0) = 0,

y1(1) + α1[y2(1) + 4Dey1(1) · y2(1)] = 0,

y5(0) = 0,

y4(1) + α2y5(1) = 1,

y7(0) = 0,

y6(1) + α3y7(1) = 1.

Figure 5. Variation in β(η) for converging channel with
different Pr.

5 Result and discussion
The focus of this section is on how emerging
parameters affect velocity, temperature and
concentration profiles F (η), β(η) and ϕ(η) respectively.
In Figures 2–12, the field quantities are plotted against
the similarity variable, η, for various values of existing
parameters.

The behavior of velocity for different emerging
parameters is presented in Figures 2, 3 and 4.
Figure 2(a, b) represents the variation in Reynolds
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Figure 6. Variation in β(η) for converging channel with
different α2.

Figure 7. Variation in β(η) for converging channel with
different Ec.

Figure 8. Variation in φ(η) for converging channel with
different Re.

number for converging and diverging channels. One
can see that an increase in Reynolds number results in

Figure 9. Variation in φ(η) for converging channel with
different Nb.

Figure 10. Variation in φ(η) for converging channel with
different Nt.

Figure 11. Variation in φ(η) for converging channel with
different α3.

an increase in the velocity F (η) in convergent channel
while for stretching case, we can observe that with
the increase in the Reynolds number, F (η) decreases.
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Figure 12. Effect of Reynolds number Re on skin friction
coefficient in (a) divergent and (b) convergent channels.

Figure 3(a, b) makes it evident that in both cases,
the velocity F (η) increases for increasing values of
velocity slip parameter, α1. It is also investigated how
variations in the inclination between the channel walls
affect F shown by Figure 4 and it is found that velocity
decreases as the inclination between the channel walls
of a diverging channel increase. In contrast, F (η) rises
in a convergent channel as α rises.

In Figure 5, it is possible to see how variation in Pr
affect the temperature distribution for both converging
and diverging flows. With an increase in Pr in each
case, the temperature profile increases. Like this,
temperature profile rises with an increase in thermal
slip parameter (α2) and Eckert number (Ec), shown
in Figures 6 and 7.

For various values of Re, Nb, Nt, and α3, the
profiles for mass fraction are graphed in Figures 8,
9, 10 and 11. Figure 8 shows that an increase in

Figure 13. Effect of Deborah number De on skin friction
coefficient in (a) divergent and (b) convergent channels.

Figure 14. Effect of Pr on Nusselt number for divergent
channel.

the values of the Reynolds number, ϕ(η) increases.
Figure 9 depicts the effects of Brownian motion on
concentration and increasing behavior is found for
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Figure 15. Effect of Pr on Nusselt number for convergent
channel.

Figure 16. Effect of De on Nusselt number for convergent
channel.

both channels. Figure 10 shows the increasing values
of the thermophoresis parameter and how they affect
concentration and it is noticed that an increase in the
value of Nt decreases concentration. Figure 11 shows
the increasing values of α3, decreases concentration.
Figures 12 and 13 demonstrate how changes in various
parameters affect the skin friction coefficient. The effect
of Reynolds number on skin friction is depicted in
Figure 12(a, b). The effect of Re on skin friction is
reported to be growing for higher values of αwhile the
behavior is seen to be decreasing forα < 0. Figure 13(a,
b) depicts the influence of Deborah number. As
Deborah number rises, skin friction decreases in
convergent channel, whereas on divergent channel,
the results are opposite. The effects of different factors
on Nusselt number are depicted in Figures 14, 15, 16
and 17. Growing behavior is displayed by Prandtl,

Figure 17. Effect of Ec on Nusselt number for convergent
channel.

Reynolds, Deborah and Eckert number on Nusselt
number.

6 Conclusion
The study focuses on the observation of multi-slips
mechanism to converging and diverging flow of a
non-Newtonian fluid with heat transfer on nanofluids.
Basic governing equations of flow are reduced
into a system of non-linear ODE’s which are then
translated into PDE’s via a similarity transformation.
Additionally, a built-in MATLAB code is employed
to derive solutions and generate graphs for Nusselt
number, skin friction, temperature profile and velocity
against different parameters. Hence, following are the
major conclusions from our analysis:

1. In both divergent & convergent channels, Re and
α have the same effect on the velocity profile; that
is, as these parameters are increased, the velocity
profile increases in convergent case and decreases
in divergent case.

2. The dimensionless temperature β(η) is an
increasing function of Re,De, Pr,Ec in
convergent and divergent channel.

3. Increased velocity at the wall is the result of fluid
slip at the wall.

4. In convergent and divergent channels, Re and
De have the opposite effects on the skin friction
coefficient.

5. With respect to both converging and diverging
channels, the prandlt number behaves in a way
that increases for temperature profiles while
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decreases for concentration profiles. The fluid
concentration for both channels was improved by
the Brownian motion parameter as well.
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