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Abstract
In this study, titanium dioxide nanoparticles
(TiO2-NPs) were synthesized via a green,
cost-effective method using Azadirachta indica
leaf extract as a natural capping and reducing agent.
Characterization techniques including UV-vis,
FTIR, XRD, SEM, EDX, and PL spectroscopy
confirmed successful synthesis. UV-vis and FTIR
confirmed surface functionalization by organic
residues, while XRD revealed a well-crystalline
anatase phase with average crystallite sizes of
42.2–54 nm. SEM analysis showed predominantly
spherical particles (70–90 nm), and EDX confirmed
high purity with only Ti and oxygen present. PL
spectra exhibited emission peaks at 420, 468, 493,
and 539 nm. The green TiO2-NPs demonstrated
multifunctional biomedical activities. In vitro
anti-inflammatory assays showed significant
human red blood cell membrane stabilization,
with maximum inhibition of 74.7% and 71.3%
in heat-induced hemolysis tests. Compared to
diclofenac sodium standard, TiO2-NPs achieved
87.3% and 76.3% inhibition at high concentrations.
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Anti-diabetic assays revealed up to 71.4% inhibition
of glucose uptake by yeast cells (vs. 86.6% for
standard drugs), while glucose adsorption ranged
from 0.45 to 7.3 mg/g. Antibacterial activity
against Gram-positive (Staphylococcus aureus)
and Gram-negative (Escherichia coli) strains
showed inhibition zones of 22.2 mm and 21.2 mm,
respectively, comparable to standard drugs (23.3
mm and 21.7 mm). These results highlight green
TiO2-NPs as promising candidates for biomedical
applications.
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1 Introduction
Nanotechnology is transformative in many industries,
from energy and electronic to agriculture, textiles
and food [1]. Its impact is especially significant in
medicine, where it enables advances in targeted drug
deliver, bio sensing, medical imaging, and wound
healing gene therapy anti-bacterial treatments. NP
features, such as their size, shape, biocompatibility,
surface chemistry, surface-to-volume ratio, stability,
reactivity, magnetic behavior, and low hazardous
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nature, can initiate the biomedical application [2–6].
Presently, huge amounts of NPs have been fabricated
from silver (Ag), copper (Cu), zinc (Zn), titanium
(Ti), alg (alginate), magnesium (Mg) and their
oxides, respectively, via chemical, physical, and green
synthesis techniques [7–13]. Metal and metal oxides
NPs have predominantly application in the health and
medicine sector, because they have approximately nil
toxicity when interacting with the cells of mammals.
Gold (Au)-NPs have the capability of damaging cancer
cells with the assistance of heat generated by the light
through a technique called photo thermal radiation
therapy [14]. Silver (Ag) and ZnO-NPs possessed the
strength to kill the bacterial cells, reduce inflammation,
and facilitate the regeneration of tissues [15, 16].
Out of all these materials, TiO2 has attracted great
attention from researchers currently because of its
unique characteristics, including high refractive index,
stability, versatility, and biocompatibility. TiO2 is a
well-known n-type, wide-bandgap semiconductor
with diverse applications, including as pigments, in
photocatalysis and solar cells, in supercapacitors and
coatings, and in medical products such as sunscreens
and cosmetics [17–20]. It is normally existed in three
fundamental forms like rutile, anatase and brookite.
The anatase form of TiO2 in the photocatalytic
and cytotoxic domain are more efficient than the
rutile form [21]. Existing research has reported
that the mixed crystalline form of TiO2 (rutile :
anatase) in 1:4 ratio demonstrated prominence
biomedical performance compared with the single
crystal phase [22, 23]. Recently, researchers have
reported the, anti-cancer, anti-skin infection, anti-viral,
anti-fungal, and anti-microbial pharmacological
potentials of TiO2-NPs [24–27]. TiO2-NPs produce
reactive oxygen species such as OH and O−

2 which
can effectively damage the cancer and microbial
cells [28]. The crystal structure and morphology TiO2

NPs is very important for their use in biomedical
applications and to achieve the desired functionality.
Therefore, TiO2-NPs can be achieved in different
shapes and morphologies depending the choice of
synthesis route. Various synthesis methods have
been reported in the literatures. Buraso et al. [29],
synthesized TiO2-NPs by co-precipitation method
and investigated their photocatalytic potential. Sadek
et al. [30] manufactured TiO2-NPs adopting the
method known as sol-gel. Arthi et al. [31], employed
the solvothermal technique for TiO2 nanostructures
and fabricated dye-sensitized solar cells from them.
Ansari et al. [32], used the biosynthesis method to
synthesized TiO2 NPs using A. calamus leaf extract

and investigated their anti-microbial and photolytic
activities. Aravind et al. [33], used the extract of
jasmine flowers in a green technique and efficiently
fabricated TiO2-NPs and studied their multifunctional
biomedical properties.

Diseases such as inflammation, bacterial infections,
and diabetes are highly prevalent and necessitate the
development of innovative and effective therapeutics.
Inflammation is the body’s immune system response to
external injurious stimuli, including toxic or chemical
irritants, pathogens, and cell damage, characterized
by redness, swelling, pain, warmth, and loss of
function [34, 35]. A small period of time of
inflammation is called acute, which basically extends
and converts into chronic inflammation [36]. Chronic
inflammation performs an important character in the
cellular remodeling and encourages a considerable
amount of reactive oxygen species production and
cell proliferation [36]. The enlargement of chronic
inflammation leads to diseases including obesity, sugar,
metabolic disorder ,cardiac diseases , rheumatoid
arthritis, and cancer [37].

A chronic disorder of carbohydrate breakdown that
includes insufficient production of insulin or inability
to respond appropriately to insulin, leading to higher
glucose levels in the blood (refer as diabetes). It is the
tenth leading cause of death worldwide [41]. Diabetes
has been divided into three primary types, including
gestational Diabetes, Type 1 Diabetes, and the most
common Type, type 2 Diabetes [38, 39]. Long-lasting
and untreated diabetes may cause microvascular
and macrovascular problems that cause death and
disability in diabetic humans [40]. International
estimates reports that around 638.6 million people
worldwide will live with suffering from diabetes
by the year 2045 [42]. Diabetes has such an
extremely dangerous consequence that researchers are
eager to work hard and produce safe, efficient, and
cost-effective medication to treat it precisely.

In this study, we present green synthesized TiO2-NPs
using Azadirachta indica leaf extract for biomedical
application. Azadirachta indica, which is also known
as neem, is the evergreen, fast-growing, approximately
20-25m tall plant of the Meliaceae family and is native
to the Indian subcontinent and Africa [43]. The Aza
plant has historically served a vital part in therapeutics
owing tomore than 60 bioactive ingredients discovered
in its leaves, seeds, flowers, and trunks, comprising
nimbin, nimbidin, azadirachtin, nimbolinin, and many
more [44].
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The synthesized green TiO2-NPs were characterized
by XRD, SEM, EDX, FTIR, UV-VIS and PL to study
their structural, morphological, elemental, Optical
and functional group composition. Biomedical
activities such in vitro anti-diabetic, anti-inflammatory
and antibacterial activities using TiO2-NPs were
performed. In vitro assays revealed strong
anti-inflammatory activity through effective
stabilization of human red blood cell (HRBC)
membranes, indicating their role in protecting cells
against lysis under stress conditions. Simultaneously,
anti-diabetic potential was validated via glucose
adsorption assays, where the NPs exhibited significant
glucose uptake efficiency. Moreover, TiO2-NPs
showed pronounced anti-bacterial effects against
both Gram-positive and Gram-negative (E-coli &
Staphylococcus aureus) strains, highlighting their
broad spectrum antimicrobial action.

2 Materials and Methods
2.1 Materials
The fresh, healthy Azadirachta indica (Neem) leaves
were obtained from M. Anis Nursery Farm, Guli Bagh,
Mardan KPK, Pakistan. The chemicals isopropoxide
(C12H28O4Ti), sodium hydroxide (NaOH), sodium
chloride (NaCl), and glassware were purchased
from Sigma Aldrich. The healthy blood for
anti-inflammation activitywas collected from a healthy
individual following the standard protocol. The
Department of Zoology, AWKUM provided the E.
coli bacterial strain (ATCC8739) for antibacterial
activity. The levofloxacin, metformin, and diclofenac

drugs were obtained from the Pharmacy Department,
AWKUM. Furthermore, two-way ANOVAmethod is
used for statistical analysis.

2.2 Azadirachta indica leave extract collection
TheAzadirachta indica leaveswere first resirinsedwith
tap water, then with distilled water. A total of 20g of
leaveswas added to 100mLof distilledwater in a beaker
and heated on hot plate at 60°C, for half an hour with
continuous stirring. A yellowish Azadirachta indica
extract was obtained which was stored at 4°C until
further use in TiO2 synthesis.

2.3 Synthesis of TiO2-NPs
TiO2-NPs were synthesized with some modifications
using the standard synthesis procedures [45]. In the
very first step double-distilled water is used as solvent
to prepare 0.1 M titanium isopropoxide. Azadirachta
indica leaf extractwas addeddropwise to obtain a pH7.
The solutionwas stirred at a constant frequency at 50°C
for 4h. The dense yellowish solution was then resin
with distilled water and ethanol for 10 min at 3000rpm
three times using centrifugation. The obtained
precipitate was kept in oven at 60°C for 60 min to dry.
Finally, the samples were annealed at 450°C for 2h.
Figure 1 shows synthesis flowchart of green TiO2 –NPs.
The green TiO2 samples were synthesized by treating
it with two different concentrations of Azadirachta
indica extract (20mL & 30mL) respectively and pure
TiO2 sample was prepared by synthetic route.

Figure 1. Flowchart of synthesis of TiO2-NPs with the Azadirachta indica extract.
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3 In vitro anti-inflammatory activity
3.1 Suspension preparation for HRBC membrane

stabilization assay
The anti-inflammatory potential of TiO2-NPs were
examined implementing the HRBCs membrane
stabilization assay. The fresh and healthy blood was
obtained from an individual in good health in an
EDTA tube who had not taken any medicines for
14 days. The blood was centrifuged many times
for 20 min at ambient temperature at 4000rpm.
The supernatant was discarded, and the pellet
containing HRBCs was used. The normal saline
solution 0.9% (w/v) was employed for washing
the HRBCs. A 10% (v/v) suspension of RBCs has
been prepared in normal saline solution. Then
the 10% HRBC suspension in phosphate-buffered
saline was prepared and treated with different
concentrations (10µm/mL-70µm/mL) of TiO2-NPs,
such as pure-TiO2, TiO2-20mL, TiO2-30mLand
standard drug (diclofenac sodium). The HRBCs were
later exposed to hypotonic saline (0.25–0.5% NaCl) to
trigger hemolysis. The resultant mixture underwent
incubation at 37°C for half an hour and was then
centrifuged. The absorbance of the supernatant was
determined using spectrometer at the wavelength
(λ=540 nm), The percentage inhibition was calculated
by using equation (1) [12].

%inhibition = Control absorbance−Treated absorbance
Control absorbance × 100

(1)

3.2 Suspension preparation for heat-induced
hemolysis assay

To study the anti-inflammatory capability of pure-TiO2,
TiO2-20mL, and TiO2-30mL, diclofenac sodium was
tested in comparison with TiO2 samples. A 10%
HRBC suspension was prepared with TiO2-NPs
and diclofenac sodium at various concentrations
(10µg/mL–70µg/mL). To induce hemolysis, the
resulting mixture was incubated at 54 °C for
approximately 20min. At room temperature, the
reaction mixtures were allowed to cool down, and
then the samples were centrifuged at 4000 rpm
for 5min. The absorbance was measured using a
spectrometer at a wavelength λ = 540nm, and the
corresponding percentage inhibition was calculated
using equation (2).

% inhibition rate = Control Absorbance−Treated absorbance
Control absorbance × 100

(2)

3.3 Suspension preparation for Glucose adsorption
assay

To investigate the glucose adsorption potential of
TiO2-NPs, an in vitro anti-diabetic assay for glucose
adsorption was conducted. A 100mL glucose solution
(5–25mM glucose) was prepared and mixed with
the test samples, using 0.5 g of each TiO2 sample.
The resultant solution was then incubated at 37 °C
for 1 h. The supernatant was separated by repeated
centrifugation. Using a glucometer, the absorbance
values G1 (before the reaction, representing initial
glucose concentration) and G6 (after 6 h, representing
final glucose concentration) were determined. The
amount of adsorbed glucose was calculated using
equation (3).

Bounded Glucose = G1−G6
Control absorbance × Volume of sample

(3)

3.4 Suspension preparation for Glucose uptake by
yeast cells

The aim of this experiment was to investigate the
anti-diabetic potential of TiO2-NPs using an in vitro
antidiabetic assay based on glucose uptake by yeast
cells. Metformin was used as a standard drug for
comparison with the tested samples.
Yeast cells were separated from the yeast solution
through repeated centrifugation, and a colloidal
suspension of yeast cells in distilled water was
prepared. Test samples (TiO2-NPs) were dissolved
in ethanol, and a glucose solution (5mM, 1mL)
was also prepared. A mixture containing all three
solutions was prepared and incubated for 30min
at 37 °C. Various concentrations (20–80µg/mL) of
TiO2-NPs and metformin were incubated under the
same conditions.
Glucose uptake was measured before and after the
experiment using a spectrometer at a wavelength of
520 nm. The percentage increase in glucose uptakewas
calculated using equation (4).

% increase in glucose uptake =
Abs(control)−Abs(sample)

Abs(control) × 100

(4)

3.5 In vitro antibacterial activity
The antibacterial activity of TiO2 nanoparticles
(TiO2-NPs) was evaluated using the agar well
diffusion method against Gram-negative E. coli and
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Figure 2. (a-c) shows UV-vis profiles of TiO2-NPs, (d-f) shows bandgap profile of each sample, (g) shows FTIR spectra of
TiO2-NPs, (h) XRD pattern and (I) photoluminescence spectrum of TiO2-NPs.

Gram-positive S. aureus bacterial strains, following the
procedure described by Buraso et al. [29].
Sterile Mueller Hinton Agar (MHA) plates were
prepared and inoculated with bacterial suspensions
standardized to 0.5 McFarland. Approximately 100µL
of each suspension was evenly spread over the agar
surface. A sterile cork borer was then used to punch
five wells, each 6mm in diameter, into the agar.
For E. coli, three wells were filled with 50µL of TiO2

suspensions (pure TiO2, TiO2-20mL, and TiO2-30mL),
one with the standard antibiotic levofloxacin (positive
control), and one with 10% sterile DMSO (negative
control). For S. aureus, separate plates were prepared,
and two concentrations (30 µL and 60µL) of each TiO2

suspension (pure TiO2, TiO2-20mL, and TiO2-30mL)
were tested.
The plates were incubated at 37 °C for 24 h. After
incubation, the inhibition zone diameter of each well
was measured in triplicate using a Vernier caliper to
ensure precise and accurate results.

4 Results and discussions
The optical, structural and spectroscopic analysis
of pure and green TiO2-NPs samples provided
a comprehensive insight into the extract induced
modifications in the physiochemical behavior of the
samples. UV-Vis absorption spectra as shown in
Figure 2(a-c), which revealed a distinct redshift from
317 nm, 320 nm and 324 nm for pure, 20mL and 30mL
samples respectively. It indicates enhanced visible
light absorption and defect formation due to extract
mediated surfacemodification in green and chemically
synthesized TiO2-NPs. This shift signifies improved
photon harvesting ability and narrowed particle size
distribution, which promote charge excitation and
reactive oxygen species generation (ROS), crucial
for anti-bacterial, anti-diabetic and anti-inflammatory
mechanism [46, 47].

The corresponding Tauc’s plots given in Figure 2(d-f),
estimated optical bandgaps of 2.53 eV for pure,
increasing to 3.17 and 3.22 eV for the 20mL and
30mL samples, suggesting extract assisted crystalline
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refinement and organic functionalization that alter
electronic transition [48].
FTIR spectra given in Figure 2(g) further confirmed
the successful incorporation of phytochemicals from
the extract showing characteristic O-H stretching
around 3370 cm−1, C=O and C-O vibrations at
1630 and 1020 cm−1 and C-N at 2141 cm−1 [49].
These functional groups attached due to bioactive
compounds such as phenols, terpenoids and
alkoids etc, which enhanced surface hydrophilicity
and biocompatibility, enabling better bimolecular
interactions of TiO2-NPs in biomedical assays.
Furthermore, Figure 2(h) presents the XRD patterns
of green-synthesized and chemically synthesized
TiO2-NPs. The XRD of TiO2 reported the reflective
planes at Miller indices (101), (004), (200), (105),
(211), (204), (116), (220), and (215) corresponding
to the 2θ angle at 25.2°, 37.6°, 47.9°, 54.0°, 54.9°, 62.6°,
68.7°, 70.2°, and 75.0°, respectively. The existence of
sharp and intense peaks in the XRD of TiO2 revealed
their well crystalline nature. The intensive peak (101)
at 25.2° 2θ value represents the TiO2 characteristic peak.
The XRD of TiO2-NPs matches well with JCPDS card
no. (01-084-1285) and confirmed the anatase phase of
TiO2-NPs with tetragonal arrangement of atoms.
The average crystalline size was measured from XRD
by Debye Scherer formula,

D =
kλ

β cos θ
(5)

where λ is the wavelength of the X-ray, β represents the
full width at half themaximum (FWHM) intensity, θ is
assigned for Bragg’s angle, and k is called the Scherer
constant. Equation (5) gives an average crystallite
size of 27.5 nm of TiO2-NPs calculated from XRD
peaks. The XRD of TiO2-NPs did not show any shift
or secondary peak.
Photoluminescence characterization was employed at
room temperature, with 350nm exciton wavelength for
the study of electronic structure and optical properties
of prepared TiO2-NPs. Figure 2(i) shows that the
TiO2-NPs exhibited several peaks in the PL spectra,
showing an identical profile with only variation in the
intensity levels. The visible peak at awavelength of 420
nm describes blue-violet emission observed in all three
samples, indicating the self-trapped-electron-hole pair
in the TiO2 nanostructures [50]. The emission peak
located at 468 nm corresponds to the emission of blue
light might be associatedwith the transition of charged

entities at a higher level [51, 52]. The less intense and
broad peaks at 493nm (blue-green region) and 539
nm (green region) are assigned to the transition of
electrons in the states that are formeddue to the oxygen
vacancies at the time of synthesis of TiO2 [53, 54]. The
higher PL intensity in green synthesized TiO2-NPs
describes the greater electron-hole recombination rate
as compared to chemically synthesized ones [40].
the phytochemicals (tannins, phenols, terpenoids,
alkaloids and flavonoids etc) remains with TiO2

after treating with green extract play an active role
in shaping its electronic structure. These organic
compound act as stabilizing and reducing agents,
which partially reduce Ti4+ to Ti3+ and create oxygen
vacancies in the TiO2 lattice. Such defects are well
known to serve as radiative recombination centers,
where electrons and holes recombine with photon
emission, giving rise to PL intensity. Additionally
these organic residues from Azadirachta indica often
bound to the TiO2 surface, introducing shallow surface
states, that favor radiative over non radiative transition,
this phenomena helps in smaller particle sizes and
larger surface areas further confirming defect related
and surface state emission [55–57]. Overall the
enhanced PL intensity reflects the direct influence of
phytochemicals, present in the extract treated samples
which tailors optical properties.

The SEM micrographs of TiO2-NPs given in
Figure 3(a-c) exhibit highly agglomerated, roughly
spherical NPs. The elemental compositions of
TiO2-NPs were revealed by EDX analysis. EDX
reported exclusively the constituent elements of
the prepared product such as Ti and Oxygen (O2)
with no extra peaks of any other elements. The EDX
profiles along with atomic and weight percentages of
Ti and O2 are given Figure 3(e-f), The narrow and
intense EDX peaks are defining the well-crystalline
and highly pure nature of the prepared product. The
EDX confirms a significant increase in the amount of
oxygen in the resulting product, which may be due
to the organic compounds present in the Aza extract
mediating the increase. Moreover, The average particle
size was calculated using the ImageJ software. The
estimated particle sizes for pure, 20mL-TiO2, and
30mL-TiO2 samples are 91.8nm, 84.1nm, and 72.4nm,
respectively. The corresponding histograms given
in Figure 4(a-c) highlight the numerical details on
the distribution of TiO2-NPs. The particle sizes of
the synthesized NPs are significantly decreased with
the incorporation of extract, which is evidence of the
capping and reducing capability of phytochemicals in
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Figure 3. SEM micrographs of TiO2-NPs and corresponding nanoparticles particles distributions histograms & EDX
profiles of TiO2-NPs.

the Aza leaves extract.

4.1 In vitro anti-inflammatory Activity
4.1.1 HRBC membrane stabilization assay
The anti-inflammatory potential of TiO2-NPs and the
standard drug was tested in seven concentrations
from 10µg/mL to 70µg/mL. The activity has reported
a dose-dependent behavior of the tested sample,
as shown in Figure 5(a). At a concentration of
70µg/mL, the four samples (pure, 20mL, 30mL, and
standard) displayed the maximum inhibition and

the lowest at 10µg/mL. The maximum inhibition
percentage shown by pure, 20mL, 30mLand standard
are 54.6%, 69.7%, 74.7% and 87.3% respectively,
where the minimum inhibition for each tested
sample is 5.6%1 10.9%, 15%, and 20.2%. The
green synthesized TiO2-NPs showed a significant
anti-inflammatory potential in contrast to the standard
drug used in this study. Notably, TiO2-30mL suggests
that increased extract volume during synthesis
enhances bioactivity of TiO2-NPs, likely due to
improved surface functionalization and phytochemical
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Figure 4. Histograms of TiO2-NPs, particle size calculated from SEM micrographs using ImageJ software.

capping. Specifically, phenolics and flavonoids
stabilize lysosomal and RBC membranes, suppressing
the leakage of inflammatory mediators. They
also downregulate lipoxygenase and cyclooxygenase
enzymes, reducing the production of leukotrienes and
prostaglandins [58]. The high amount of these organic
residues might be the reason why the 30mL sample
closely followed the standard drug result in each
concentration and shows effective anti-inflammatory
behavior. These findings align with the prior studies
reported on green synthesized TiO2-NPs using as an
anti-inflammation agent [59, 60].

4.1.2 HRBC heat induced hemolysis
The high temperature treatment caused the hemolysis
in human red blood cells. To inhibit the lysis
of the cell membrane, TiO2-NPs and a standard
drug were used. In this activity, seven different
concentrations from 10µg/mL to 70µg/mL of each
sample were tested. The hemoglobin amount was
measured with a spectrometer. The maximum
inhibition% demonstrated by 70 concentrations in
a standard, 30mL, 20mL, and pure samples are
76.3%, 71.3%, 62.3%, 58.3% respectively and the
minimum inhibition% reported in 10 concentrations
are 18.1%,14.2%, 7.55%, and 3.6%. The TiO2-30mL
sample effectively stabilized the HRBC membrane
in contrast with the other two samples and closely
followed the standard drug in each concentration, as
shown in Figure 5(b). Additionally, a dose-dependent
anti-inflammatory potential was noticed by each
sample, dominated by 30mL-TiO2, confirming the
role of high amount of organic residues present on
the surface of the TiO2 framework. In conclusion,
the green synthesized TiO2-NPs reported dominant
anti-inflammatory activity over pure ones, which
signifies the anti-inflammatory nature of the extract
used as a capping and stabilizing solvent for the
synthesis of TiO2 [61].

4.2 In vitro Anti-diabetic activity
4.2.1 Glucose adsorption assay
To study the Glucose adsorption capability of
TiO2-NPs, Various concentrations from (5-30mM) of
TiO2 NPs (30mL-TiO2, 20mL-TiO2, and pure-TiO2)
were tested in the glucose adsorption assay. The
activity demonstrated a maximum glucose adoption
percentage at 30mM concentration are 7.5, 6.55,
and 5 for 30mL-TiO2, 20mL-TiO2 and pure-
TiO2-NPs respectively, where in comparison the
minimum adsorption percentages exhibited by
TiO2 samples at 5mM concentration, numerically
equal to 1.8,1.3 and 0.4 respectively as displayed
in Figure 6(a). Furthermore, the findings of the
activity showcased a dose-dependent increase, as
glucose amount effectively influenced the adsorption
percentage. Similar trends have been reported in
prior studies, where phytochemically functionalized
metal oxide-NPs, demonstrated improved glucose
uptake due to enhanced surface activity and affinity
for glucose molecules [62, 63].

4.2.2 Glucose uptake by yeast cells
The anti-diabetic properties of TiO2-NPs were
investigated with the assay of glucose uptake by
yeast cells. The assay registered a dose-dependent
increase in uptake efficiency in all tested samples
with significant findings. Moreover, numerically,
the maximum inhibition was demonstrated by each
sample at the maximum concentration 70µg/mL
and the minimum was reported in the minimum
10µg/mL concentration, as shown in Figure 6(b).
The standard drug, 30mL-TiO2, 20mL-TiO2, and
pure-TiO2 displayed the maximum inhibition of
86.6%, 71.4%, 59.7%, and 52.65%, respectively, and
the minimum inhibition of 17.6%, 12.5%, 8.67%,
and 5.54%. The findings of the activity revealed
that TiO2-NPs and standard drug efficiently control
the rate of glucose transport in the yeast cells in a

17



Journal of Advanced Biomaterials

Figure 5. Anti-inflammatory activities. (a) HRBC membrane stabilization and (b) Heat induced haemolysis assay) of
TiO2-NPs.

Figure 6. In vitro anti-diabetic activities of TiO2, including (a) Glucose adsorption assay and (b) Glucose uptake by yeasts
cells.

dose-dependent pattern (especially 30mL extract).
These enhanced results are attributed to the hydroxyl,
carbonyl and phenolic groups which form hydrogen
binds with glucose molecules, facilitating adsorption
on the nanoparticle surface, moreover terpenoids
and flavonoids are reported to enhance glucose
uptake (cellular) by stimulating glucose transporter
pathways and enhancing insulin mimetic activity [64].
Overall green-synthesized TiO2-NPs demonstrated
relatively good results as compared to pure ones
synthesized through chemical route because of the
organic residues (phytochemicals)in the green extract
treated samples.

4.3 Anti-bacterial activity
The antibacterial activity of TiO2-Samples was
evaluated against gram positive S. aureus bacterial
Strain using the agar well diffusion method, with
test concentrations of 30 µL and 60 µL of each TiO2

sample alongside a standard drug (levofloxacin). All
samples exhibited distinct inhibition zones, confirming
their antibacterial efficacy against S. aureus. Pure
TiO2, TiO2-20mL, and TiO2-30mL effectively inhibited
bacterial growth within their respective zones. At
60 µL, Pure TiO2 showed an inhibition zone of 17.84
mm, TiO2-20 mL exhibited 19.33 mm, and TiO2-30
mL demonstrated the highest activity with 22 mm,
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Figure 7. The well diffusion activity of TiO2-NPs against both gram positive bacteria, S. aureaus (a-c) anti-bacterial
response of each sample TiO2-pure, TiO2-20mL and TiO2-30mL at two different concentrations 30mL and 60 mL with

standard levofloxacin and (d) shows inhibition zones of TiO2 samples against gram negative E.coli.

whereas the standard drug shown a zone of 23.33 mm,
given in Figure 8(b), Measurements were recorded
using a Vernier caliper. The results highlight the
dose-dependent antibacterial potential of TiO2-NPs,
with TiO2-30 mL displaying comparable or superior
activity to the reference drug, suggesting that TiO2

may serve as a promising antibacterial candidate
antibacterial efficacy of TiO2-NPs and the standard
drug was studied employing the Furthermore, against
gram negative bacteria E. coli, a 50µL dose of each
TiO2 sample and reference drug is used in the test.
The activity showed clear inhibition zones, confirming
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Figure 8. Zone diameter calculated using Vernier caliper (a) against E.coli at 50 µl concentration, (b) shows the zone
diameter against S.aureus bacteria at two different concentration 30 and 60 µl.

Table 1. Comparative analysis of anti-bacterial activities of TiO2-NPs.
TiO2 Synthesis routes NP’s Size (nm) Tested bacteria Volume

(µl)
Inhibited
Zone (mm)

Antimicrobial method Medium used Ref.

Electromagnetic
synthesis (Pure TiO2)

25-30 (TEM) E. coli 50 10.5 Well-diffusion method Nutrient agar [68]

Solution casting
(Chitosan-TiO2 composite)

30 E. coli 100 9.86 Well-diffusion method Nutrient agar [69]

Sol gel (Pure TiO2) 68 (SEM) S. aureus 100 16 Disc- diffusion method Muller-Hin-ton Agar [70]
Sol gel(Pure TiO2) 68 (SEM) E. coli 100 14 Disc- diffusion method Muller-Hin-ton Agar -
Green NPs (Azadirachta
indica)

15-50 (TEM) S. aureus 66 18 Well-diffusion method Muller-Hin-ton Agar [71]

Green
synthesis (Psidium
guajava)

33 (FESEM) S. aureus 20 25 Disc- diffusion method Muller-Hin-ton Agar [72]

TiO2 (Ledebouria
revolute)

47 B. cereus 60 4 Well-diffusion method Nutrient Agar [73]

Sol-gel (Pure TiO2) 78 (FESEM) E.coli &S. aureaus 50 30-60 17.413-17 Well-diffusion method Nutrient Agar This-work
Sol-gel_ Azadirachta
indica- 20mL-TiO2

72 (FESEM) E.coli &S. aureaus 50 30-60 21.216-19 Well-diffusion method Nutrient Agar This-work

Sol-gel_ Azadirachta
indica -30mL-TiO2

63 (FESEM) E.coli &S. aureaus 50 30-60 21.720-22 Well-diffusion method Nutrient Agar This-work

dose independent but extract enhanced antibacterial
efficacy against E. coli, of the TiO2-NPs. They
have effectively reduced or inhibited the growth of
the E. coli bacterial strain in their corresponding
zones. The affected zone diameter of the standard
drug was measured using Vernier caliper, is to
be 21.7mm; closely followed by 30mL sample at
21.2 mm, as shown in Figure 8(a), indicating
comparable antibacterial activity. Hence such a close
characteristic with the standard drug(levofloxacin)
makes TiO2 a potential anti-bacterial candidate in
the field of biomedicine. Additionally, TiO2-20mL
and the pure samples showed 17.4 mm and 13.3
mm inhibited zone diameters, respectively, as shown
in Figure 7(d). the surface-bound phytochemicals,
not only stabilize NPs but also impart additional
bioactivity. These compounds enhances membrane

interaction, reactive oxygen species generation, and
bacterial membrane disruption [65, 66]. The strong
anti-bacterial response in this work is resulted from
the synergism of phytochemicals mainly (terpenoids,
tannins) and TiO2 generated ROS. ROS directly
damages microbial membranes while phytochemicals
disrupt cell wall integrity, induce protein leakage
and inhibit enzyme activity. This dual mechanism
explains strong bacterial inhibition zones in the
tested samples. Similar findings were reported on
green synthesized TiO2-NPs which exhibited effective
bactericidal effects due to ROS-mediated membrane
damage. Another study emphasized the role of
biological agents, which enhance their affinity in
anti-bacterial effects [67].Thus, the near-equivalent
inhibition by the 30mL sample to that of the standard
drug underscores the potential of green-synthesized

20



Journal of Advanced Biomaterials

TiO2-NPs as an effective and sustainable anti-bacterial
agent, particularly in biomedical and health care
applications. Table 1 shows the comparative analysis
of TiO2-NPs synthesis with different route and with
different particle sizes.

5 Conclusion
In this study, TiO2-NPs were successfully synthesized
via a green synthesis approach using the Azadirachta
indica leaf extract, as a reducing agent. The elemental,
structural, morphological, and optical properties of the
synthesized green TiO2-NPs were characterized using
UV, FTIR, XRD, EDX, SEM, and PL techniques. XRD
confirmed the well-crystalline anatase phase, with
average crystallite size ranging from 42nm to 55nm.
SEM shows the spherically shaped agglomerated
particles with average size of 70nm to 90nm. EDX
confirm the Ti and oxygen at different ratios, with
no other impurities. Optically visible light emission
green TiO2-NPs observed at 420nm, 468nm, 493nm,
and 539 nm. The biomedical activities, such as
anti-inflammatory, anti-diabetic, and anti-bacterial
activities, of the prepared green TiO2-NPs were
conducted. In vitro anti-inflammatory investigation
(HRBC membrane stabilization and heat-induced
hemolysis) of TiO2-NPs reported a maximum of 74.7%
and 71.3% inhibition in comparison with 87.3% and
76.3% inhibition of the standard drug, respectively.
Furthermore, TiO2-NPs demonstrated 71.4% glucose
uptake in yeast cells, in contrast to the standard drug,
which displayed 86.6% in the in vitro anti-diabetic
activity. The TiO2-NPs (30mL) showed a maximum of
6.55 glucose adsorption and aminimum of 0.45 in pure
TiO2. The anti-bacterial activity using well diffusion
methods, displayed a well-matched, well-aligned
result with the reference drug. Compared to reference
drug (an inhibition of 21.7 mm), the green TiO2-NPs
(30mL) showed a slightly larger inhibition zone of 21.2
mm, indicating their comparable antibacterial efficacy.
These findings validate the potential of the green
TiO2-NPs as a multifunctional biomedical agent to
treat diabetes, inflammation, and bacterial infections,
providing a sustainable alternative to chemically
produced Nano medicine.
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