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Abstract

Diabetic retinopathy (DR) is a leading cause of
blindness globally, requiring timely detection and
classification to prevent vision loss. Deep learning
techniques offer significant potential for automating
DR detection by analyzing retinal fundus images
with high precision.  This paper proposes a
RetinoNet model that consists of MobileNetV3,
Convolutional Block Attention Module (CBAM),
Atrous Spatial Pyramid Pooling (ASPP), and
Feature Pyramid Network (FPN). MobileNetV3
provides a lightweight and efficient foundation
for feature extraction, while CBAM emphasizes
critical spatial and channel information, enabling
the
ASPP captures multi-scale contextual information
through atrous convolutions, improving the
model’s ability to identify lesions of varying sizes
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detection of subtle retinal abnormalities.

and shapes. FPN combines hierarchical features
from multiple network levels, ensuring both
fine-grained details and high-level semantics are
leveraged for accurate classification. The model
was trained on the APTOS dataset. Evaluation
metrics such as accuracy, precision, recall, and F1
score demonstrate the effectiveness of the proposed
model in achieving state-of-the-art performance for
DR detection and classification across five severity
levels. This approach addresses computational
challenges and improves generalization, making
it suitable for both clinical and remote healthcare
applications.

Keywords: diabetic retinopathy, feature fusion,

bio-informatics, multi-scale.

1 Introduction

Diabetic retinopathy (DR) is a sight-impaired disease
that affects the back of the eye, specifically the sensitive
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layer of the eye called the retina, where images are
captured [1]. DR is associated with sustained high
blood sugar levels and, therefore, is an injury to the
eye vessels in the retina, which can lead to exudation
of fluids, bleeding within the eye, and, in a later
stage, the formation of pathological neovascularization.
In this progressive disorder, a deficiency of proper
treatment can lead to loss of vision [2]. It is noted
that DR occurs at one of the highest levels, causing
blindness in the working-age population, and thus
requires regular screening and treatment. Advances in
medical imaging and artificial intelligence are helping
clinicians diagnose and monitor DR more effectively,
offering promising tools for preventing vision loss in
diabetic patients [3].

The detection of DR using machine learning and
deep learning has become an area of significant
interest in medical imaging [4, 5], owing to its
potential to enhance diagnostic accuracy and enable
early intervention [6, 7]. Traditional diagnostic
methods, which rely on retinal examination by
trained specialists, can be time-consuming, subjective,
and inaccessible in regions with limited healthcare
resources. Machine learning and deep learning
techniques, particularly convolutional neural networks
(CNNs), offer powerful tools for analyzing retinal
fundus images, identifying subtle signs of DR with
high sensitivity and specificity. ~These methods
can automate DR grading, from mild to severe
stages, by learning patterns associated with retinal
abnormalities, such as microaneurysms, hemorrhages,
and neovascularization. Recent advances in deep
learning architectures and access to large annotated
datasets have further propelled the development of
DR detection models, showing promise in both clinical
and remote settings to support ophthalmologists and
improve patient outcomes.

Deep learning, while highly effective for detecting
DR, presents significant drawbacks in terms of
computational cost. Deep learning models, especially
CNNs, commonly used for analyzing retinal
images, require substantial computational power
due to the need for extensive data processing and
high-dimensional parameter training. These models
often depend on large datasets of high-resolution
fundus images, demanding significant memory
and specialized hardware like GPUs or TPUs to
manage the intensive computations. Training deep
learning models for DR can be time-consuming as
it requires processing and learning from millions of
parameters over numerous epochs, which can drive

up energy consumption and operational costs. The
deployment of these models in real-time diagnostic
systems, especially in resource-constrained settings,
remains challenging due to their high computational
requirements. To address these issues, researchers
are exploring optimized architectures, model
compression techniques, and transfer learning to
reduce the computational burden without sacrificing
the accuracy needed for reliable DR detection.

The proposed methodology for detecting diabetic
retinopathy is built on the efficient MobileNetV3
architecture, which is enhanced with CBAM, ASPP,
and FPN modules to improve the extraction and
classification accuracy of characteristics. MobileNetV3
serves as the foundation, leveraging its lightweight
design and depth-wise separable convolutions for
efficient computations. CBAM is incorporated into
select bottleneck layers to prioritize significant spatial
and channel features, allowing the model to focus on
subtle retinal anomalies. ASPP is utilized in deeper
layers to capture multiscale contextual information
via atrous convolutions with varying dilation rates,
aiding in the detection of lesions of diverse sizes and
shapes. The FPN module strengthens the network
by merging hierarchical features from different levels,
enabling the model to combine detailed local features
with broader semantic information. This approach
ensures a precise and effective classification of stages
of diabetic retinopathy, addressing variations in the
patterns and severity of the lesions. Here are the main
technical contributions of the RetinoNet model.

e Integration of CBAM: Enhances spatial and
channel attention within bottleneck layers to focus
on critical retinal features indicative of diabetic
retinopathy.

e Incorporation of ASPP: Introduces multi-scale
context awareness through atrous convolutions
with varying dilation rates, enabling the detection
of lesions of different sizes and shapes.

e Utilization of FPN: Combines multi-level
features from the network, ensuring both
fine-grained details and high-level semantics are
utilized for robust classification.

e Lightweight Base Architecture: Leverages
MobileNetV3s efficient design to maintain low
computational requirements while achieving
high feature extraction performance.

e Optimized for Retinal Images: Tailors the
network to effectively handle the unique
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challenges of diabetic retinopathy, such as
diverse lesion patterns and severity stages,
ensuring improved detection accuracy and stage
classification.

2 Related Work

Guefrachi et al. [8] discuss a deep learning approach
for detecting and classifying diabetic retinopathy (DR)
using convolutional neural networks (CNNs) with
a multistage training method. It evaluates various
CNN architectures, including InceptionResnetV2,
VGG16, VGG19, DenseNetl21, MobileNetV2, and
EfficientNet2, on a dataset of retinal fundus images.
The study employs data augmentation techniques
to enhance model resilience and reduce overfitting,
achieving high classification accuracy of 96.61% for
DR stages. The research highlights the importance
of model evaluation on external datasets to ensure
robustness and generalizability, emphasizing the
potential of deep learning in improving early diagnosis
and treatment of diabetic retinopathy. Key metrics
such as recall, precision, and F1 score were analyzed,
indicating significant potential for clinical applications.
Kurup et al. [9] discuss the development of an
automated system for detecting and classifying
diabetic retinopathy (DR) wusing a pretrained
Inception-v3 deep learning model. The study utilizes
the APTOS 2019 blindness detection dataset, which
contains retinal images classified into five stages of DR.
The model achieved approximately 82% accuracy and
a Cohens weighted Kappa score of 0.72. The objectives
outlined include data pre-processing, model selection,
and the creation of a user-friendly interface for image
uploads and results display. The literature review
highlights various methodologies and advancements
in DR detection using deep learning techniques.

Bodapati et al. [10] present a model for predicting
the severity levels of diabetic retinopathy (DR)
using deep convolution feature aggregation from the
pre-trained VGG-16 model. By extracting features
from multiple convolution blocks, the authors enhance
the representation of retinal images. The model,
evaluated on the Kaggle APTOS 2019 dataset, achieved
an accuracy of 84.31%. The study emphasizes
the superiority of deep features over handcrafted
features and the effectiveness of feature aggregation
for DR classification. Mohanty et al. [11] discuss
advancements in diabetic retinopathy (DR) detection
using deep learning techniques, particularly focusing
on two models: a hybrid network combining VGG16
and XGBoost Classifier and the DenseNet 121 network.
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Utilizing the APTOS 2019 Blindness Detection dataset,
the study addresses class imbalance and reports that
the DenseNet 121 model achieved a high accuracy
of 97.30%, significantly outperforming the hybrid
model, which achieved 79.50%. The findings indicate
that deep learning can enhance the efficiency and
accuracy of DR diagnosis. Additionally, the paper
mentions the E-DenseNet model, which combines
Eyenet and DenseNet architectures, achieving an
average accuracy of 91.2% across four datasets. The
study emphasizes the effectiveness of deep learning
models over traditional methods and highlights future
work aimed at developing applications for early
DR detection to assist healthcare professionals and
patients.

Nahiduzzaman et al. [12] present a novel automated
technique for detecting diabetic retinopathy (DR)
using a combination of a lightweight parallel
convolutional neural network (CNN) for feature
extraction and an extreme learning machine (ELM)
for classification. The method enhances fundus
images through Contrast Limited Adaptive Histogram
Equalization (CLAHE) to highlight lesions. The
proposed framework achieved high accuracies of
91.78% and 97.27% on two datasets (Kaggle DR
2015 and APTOS 2019) and demonstrated stability
across various dataset sizes. It outperformed existing
models in classifier performance, model complexity,
and prediction time, making it suitable for real-time
medical applications. The study emphasizes the
efficiency of the ELM in medical image analysis,
particularly for multiclass classifications, and
highlights the importance of recall in accurately
identifying affected patients. Sacchini et al. [13]
present a novel hybrid convolutional neural network
(CNN) model for the automatic classification of
diabetic retinopathy (DR) from fundus images. It
combines two deep learning architectures, ResNet50
and InceptionV3, for feature extraction, achieving
high performance metrics: accuracy of 96.85%,
sensitivity of 99.28%, specificity of 98.92%, precision
of 96.46%, and F1 score of 98.65%. The study
emphasizes the importance of data quality and
preprocessing techniques, utilizing a dataset of 44,119
high-resolution retinal images categorized into five
classes of DR. The model was validated through
5-fold cross-validation, demonstrating consistent
performance. Additionally, the research highlights the
effectiveness of automated techniques in diagnosing
DR, with results from both Japanese and American
datasets showing promising sensitivity and specificity
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Table 1. Standard architecture of the MobileNetV3.

Input Operator  expsize Out SE NL Stride

224 %224 %3 Conv2D - 16 - HS 2
112x112x16  Bottleneck 16 16 - RE 1
112x112x16  Bottleneck 64 24 - RE 2
56x56x24 Bottleneck 72 24 - RE 1
56x56x24 Bottleneck 72 40 Yes RE 2
28x28x40 Bottleneck 120 40 Yes RE 1
28x28x40 Bottleneck 120 40 Yes RE 1
28x28x40 Bottleneck 240 80 - HS 2
14x14x80 Bottleneck 200 80 - HS 1
14x14x80 Bottleneck 184 80 - HS 1
14x14x80 Bottleneck 184 80 - HS 1
14x14x80 Bottleneck 480 112  Yes HS 1
14x14x112 Bottleneck 672 112  Yes HS 1
14x14x112 Bottleneck 672 160 Yes HS 2
7x7x160 Bottleneck 960 160 Yes HS 1
7x7 %160 Bottleneck 960 160 Yes HS 1
7x7 %160 Conv2D 1x1 - 960 - HS 1
7x7x960 AvgPool - 960 - - -
1x1x960 FC - 1280 - HS -
1x1x1280 FC - 1000 - - -

rates.

3 Methodology

Using Al in healthcare brings transformative benefits,
enhancing both patient care and operational efficiency
[1]. Al-driven tools can analyze vast amounts
of medical data swiftly, leading to faster and
more accurate diagnoses for conditions such as
brain tumors [14], cardiovascular diseases, and
spine fractures [15].  Artificial intelligence has
shown transformative potential in ophthalmology,
particularly in the detection and classification of
diabetic retinopathy (DR) [13, 23]. Automated DR
screening systems powered by deep learning can
analyze retinal fundus images with high sensitivity,
identifying subtle lesions such as microaneurysmes,
hemorrhages, and neovascularization that may be
missed during routine examination. By providing
rapid and accurate grading across different severity
levels, Al assists ophthalmologists in early diagnosis,
reducing the risk of vision loss in diabetic patients.
Furthermore, lightweight and efficient models, such
as those based on MobileNet architectures, make it
feasible to deploy DR detection tools in mobile devices
and telemedicine platforms. This expands access
to screening in remote or resource-limited settings,
ensuring timely interventions and improving patient
outcomes on a large scale.

3.1 MobileNetv3

The MobileNetv3 is a deep learning architecture that
has been optimized for conducting image classification
tasks on mobile and other devices with limited
resources. MobileNet V3 is a Google innovation
that advances MobileNet V1 [17] and V2 [16] by
fusing elements of both MobileNet architectures along
with the neural architecture search (NAS) technique
to enhance speed and precision. New techniques
brought in by MobileNet V3 include the use of
squeeze-and-excitation modules that recalibrate the
responses of the channels feature-wise on adaptive
on a h-swish activation function, which is cheaper
computationally than ReLU. These updates translate to
improved accuracy in the use of MobileNetV3 as well
as efficiency in computation and storage. It comes in
two variations: MobileNetV3 Small and MobileNetV3
Large, which are specifically designed to meet the
needs of speed and accuracy, and thus, they are ideal
for real-time image processing applications such as
smartphones and other IoI devices. The architecture
of the MobileNetV3 is given in Table 1.

3.2 Convolution Block Attention Module (CBAM)

MobileNetV3, with the introduction of attention
mechanisms, mainly Channel Attention Module
(CAM) and Spatial Attention Module (SAM) to
the Diabetic Retinopathy classification model, has
noticeably set the bar. The CAM shifts the focus to
certain key feature channels by imposing the schemes
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Figure 1. The standard architecture of the CBAM block.

of both global average pooling and max pooling, then
throws fully connected layers to learn inter-channel
dependencies, which highlight the important ones
while subduing the less relevant ones. Both these
mechanisms, together with other techniques, make
the model better at focusing on important spatial and
contextual features of the retina image, which is core
to the precise detection and classification of DR. The
course of action with the said modules in MobileNetV3
is to better scrutinize the feature extraction process,
thus the model can tactfully capture the discrete
changes in eye conditions and the severity of those,
and in turn, boost the classification performance. The
architecture of the CBAM block is shown in Figure 1.

3.3 Atrous Spatial Pyramid Pooling (ASPP)

The Atrous Spatial Pyramid Pooling (ASPP) [18] is a
deep learning technique that can extract information
at different scales; thus, inputs are transformed into
a feature map, which a network can then analyze
to predict the probability of classifying a pixel as a
certain class more accurately. The so-called contextual
information that had an impact on the results of the
segmentation is proper to this methodology and is
shown in Figure 2. The ASPP module first scales all
the feature maps and then produces the multi-scale
contextual features from all the feature maps that help
in better performance.

3.4 Feature Pyramid Network (FPN)

The Feature Pyramid Network (FPN) is an architecture
of a neural network constructed to enhance the
detection of objects at various scales using the
multiscale representation of features. In other words,
it constructs a feature pyramid by combining the
deep-layer-rich semantic contents with the early layers
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Figure 2. The standard architecture of the ASPP module.

of pronounced details in the network. The FPN
extends the scope of the network with its ability to
wear features of various aspects of the objects, as it does
this chiefly by progressive upsampling and combining
these features. Hence, this form is good in applications
such as small object detection. The most prevalent use
of FPN is for complex detection tasks such as Faster
R-CNN and RetinaNet optimizers, which improve
their performance over multiple scales with very little
extra computational requirement. Figure 3 shows the
architecture of the FPN module.

3.5 Proposed RetinoNet for Diabetic Retinopathy
Detection

The proposed deep learning model for diabetic
retinopathy detection builds upon the lightweight
MobileNetV3 architecture and integrates advanced
modules such as CBAM (Convolutional Block
Attention Module), ASPP (Atrous Spatial Pyramid
Pooling), and FPN (Feature Pyramid Network) to
enhance its performance. MobileNetV3 provides
an efficient foundation for feature extraction with
its streamlined depthwise separable convolutions
and attention mechanisms, making it suitable for



ICJK

Journal of Artificial Intelligence in Bioinformatics

Output
Fixed length out i

-

9n-d 4n-d

Input ;rr

Figure 3. The standard architecture of the FPN module.

resource-constrained environments. The CBAM
block is incorporated into specific bottleneck layers to
refine feature representation by focusing on the most
relevant spatial and channel information, enabling
the model to prioritize subtle retinal abnormalities
indicative of diabetic retinopathy. The ASPP module,
added to deeper bottleneck layers, captures multi-scale
context by applying atrous convolutions with varying
dilation rates, which is critical for identifying lesions of
different sizes and shapes in retina scans. Furthermore,
the FPN is integrated to fuse hierarchical features from
different layers, ensuring that both fine-grained details
and high-level semantic information are utilized for
robust classification. The architecture of the proposed
model for diabetic retinopathy detection is shown in
Figure 4.

4 Experimental Results and Discussion

4.1 Dataset Definition

The dataset comprises retinal images used to detect
and classify diabetic retinopathy [19]. Originally
sourced from the APTOS 2019 Blindness Detection
dataset, the images have been resized to 224x224
pixels to ensure compatibility with various pre-trained
deep learning models. The dataset is organized into
five classes based on the severity or stage of diabetic
retinopathy. The classes are No_DR, for healthy
retinas with no signs of diabetic retinopathy, Mild
for early-stage indicators, Moderate for noticeable
symptoms requiring monitoring, Severe for advanced
damage, and Proliferate_DR for cases with significant
progression and high risk of vision loss. This
structured format facilitates efficient training and
evaluation of deep learning models for automated

detection and severity classification of diabetic
retinopathy. Figure 5 shows the sample images for
detecting diabetic retinopathy.

4.2 Evaluation Metrics
4.2.1 Accuracy

Accuracy is defined as the ratio of correct predictions
to the total number of predictions. This metric
is calculated by dividing the number of correct
predictions by the total number of predictions, then
multiplying by 100 to express it as a percentage.

TP+TN
TP+FP+TN+FN

(1)

Accuracy =

4.2.2 Precision

Precision is a metric used to evaluate a model’s ability
to correctly identify positive instances from those it
predicts as positive. It is calculated by dividing the
number of true positive predictions by the sum of true
positive and false positive predictions.

TP

—_— 2
TP+ FP (2)

Precision =

4.2.3 Recall

Recall is a metric that measures a model’s ability to
identify all relevant positive instances within a dataset.
It is calculated by dividing the number of true positive
predictions by the sum of true positives and false
negatives.

TP

Recall = m

(3)

4.2.4 F1 Score

The F1 score is a metric that combines precision
and recall into a single value, providing a balanced
assessment of a model, especially when dealing with
imbalanced data. It is the harmonic mean of precision
and recall.

FlScore — 2 x Precision x Recall

(4)

Precision + Recall

4.3 Model Training Parameters

The dataset used in this research is divided into
two subsets, with 80% allocated for training and
20% for testing. The model was trained using a
learning rate of 0.001 with a step-based decay schedule
to ensure stable convergence. The batch size was
set to 32 to balance computational efficiency and
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Figure 4. The architecture of the proposed model for diabetic retinopathy detection.

Proliferate

Severe

No DR

Figure 5. The sample images of the diabetic retinopathy
detection dataset.

Mild Moderate

memory usage, while the number of epochs was
chosen as 150 to allow sufficient learning without
overfitting. Data augmentation techniques such as
rotation, flipping, and brightness adjustment were
applied to enhance generalization. The training was
performed on an NVIDIA Tesla V100 GPU, leveraging
its high computational power and memory capacity to
handle the resized 224 x224 retina images efficiently.
The Adam optimizer was utilized for weight updates
due to its adaptability and faster convergence, and
categorical cross-entropy was used as the loss function
to handle the multi-class classification of diabetic
retinopathy stages. Early stopping and checkpointing
mechanisms were also employed to prevent overfitting
and save the best-performing model for validation and
testing.

4.4 Results

The proposed model for the detection of diabetic
retinopathy was evaluated in the APTOS 2019
blindness detection dataset at five severity levels
(No_DR, Mild, Moderate, and Severe). The evaluation

metrics include accuracy, precision, recall, and F1 score.

Separate experiments were conducted to measure the
impact of preprocessing and data augmentation on
model performance.

4.4.1 Results of the RetinoNet Without Preprocessing or
Data Augmentation

The model was first trained on the dataset without
preprocessing or data augmentation. The results are
summarized in Table 2.
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Table 2. Results of the RetinoNet on raw image dataset.

Metric No_DR Mild Moderate Severe
Accuracy  0.85 0.78 0.80 0.83
Precision 0.86 0.75 0.82 0.85

Recall 0.84 0.76 0.81 0.82
F1 Score 0.85 0.75 0.81 0.83

Total 82

4.4.2 Results of the RetinoNet with Preprocessing

The preprocessing steps, including resizing images to
224 x224 pixels and normalizing pixel values, were
applied. These steps significantly improved the
performance of the model, as shown in Table 3.

Table 3. Results of the RetinoNet with preprocessing.

Metric No_DR Mild Moderate Severe
Accuracy  0.90 0.85 0.88 091
Precision 0.91 0.83 0.89 0.92

Recall 0.89 0.84 0.87 0.90
F1 Score 0.90 0.83 0.88 0.91

Total 89

4.4.3 Results of the RetinoNet with Preprocessing and Data
Augmentation

To further improve the model’s generalization, data

augmentation techniques such as random rotation,

flipping, and brightness adjustment were applied.

The results are shown in Table 4. The results

Table 4. Results of the RetinoNet with preprocessing and
data augmentation.

Metric No_DR Mild Moderate Severe
Accuracy  0.94 0.89 0.92 0.94
Precision 0.95 0.88 0.93 0.95

Recall 0.93 0.89 0.91 0.93
F1 Score 0.94 0.88 0.92 0.94
Total 92

demonstrate that preprocessing significantly improves
model performance, particularly regarding recall
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Table 5. Ablation study of the proposed RetinoNet model.

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%)
RetinoNet 92.0 95.0 93.0 94.0
Without CBAM 89.5 91.8 90.2 91.0
Without ASPP 88.2 90.5 89.0 89.7
Without FPN 87.8 89.9 88.5 89.2

and F1 score. Data augmentation further improves
generalization, achieving the highest precision and
F1 scores in all stages of diabetic retinopathy. These
findings emphasize the importance of preprocessing
and data augmentation for robust and accurate
diabetic retinopathy detection.

4.5 Ablation Study

To assess the contribution of each module to the
proposed model, an ablation study was conducted
by systematically removing key components such as
CBAM, ASPP, and FPN. The impact of these modules
on the accuracy, precision, recall, and F1 score of the
model was evaluated on the APTOS 2019 Blindness
Detection dataset.

The RetinoNet with all components achieves the
highest performance across all metrics. Removing
CBAM leads to a decline in precision and recall,
as CBAM enhances spatial and channel attention.
Eliminating ASPP reduces the model’s ability to
capture multi-scale features, leading to lower accuracy.
Removing FPN results in a drop in Fl-score, as the
model loses hierarchical feature fusion across multiple
network layers.

Table 5 presents the results of an ablation study
conducted on the proposed MobileNetV3-based model
to evaluate the contribution of key modules—CBAM
(Convolutional Block Attention Module), ASPP
(Atrous Spatial Pyramid Pooling), and FPN (Feature
Pyramid Network). The full model incorporating all
these components achieves the highest performance,
with 92.0% accuracy, 95.0% precision, 93.0% recall, and
94.0% F1-score. Removing CBAM leads to a decline in
all metrics, particularly precision and recall, indicating
its role in enhancing spatial and channel attention for
feature extraction. Excluding ASPP results in an even
lower performance, as the model loses its ability to
capture multi-scale contextual information. Similarly,
removing FPN reduces hierarchical feature fusion,
leading to the lowest accuracy (87.8%) and a significant
drop in F1-score (89.2%). These results confirm that
each module contributes significantly to the model’s
effectiveness in diabetic retinopathy classification, with

Table 6. Comparison of the proposed model with
state-of-the-art methods.

Reference Model Accuracy (%)
[20] InceptionResnetV2 82.18
[11] Hybrid 79.5
[10] VGG16 84.31
[9] InceptionV3 82
[21] EfficientNet-B6 86.03
[22] CNN 85
Ours RetinoNet 92

CBAM, ASPP, and FPN collectively optimizing feature
representation and classification accuracy.

4.6 Comparison of the proposed model with other
deep learning models

The comparison table highlights the performance
of the proposed Improved MobileNetV3 model
against several state-of-the-art methods for diabetic
retinopathy detection and classification. Each model
is evaluated based on its accuracy, demonstrating its
effectiveness in handling this medical imaging task.
Table 6 shows the results of different deep learning
models.

The InceptionResNetV2 achieves an accuracy of 82.18%.
This result reflects its capacity for feature extraction
through its hybrid architecture combining Inception
and ResNet modules. However, while effective, it lags
behind models with more optimized architectures for
medical imaging. Similarly, Hybrid models, which
often combine features from multiple architectures,
show an accuracy of 79.5%, demonstrating moderate
performance but lacking the specialized capabilities of
more advanced networks.

Moving to VGG16, a widely used convolutional
neural network, the accuracy improves to 84.31%,
indicating its strength in feature representation for
this dataset. Meanwhile, InceptionV3, a precursor to
InceptionResNetV2, achieves a comparable accuracy
of 82%, showcasing the consistency of the Inception
family in diabetic retinopathy detection tasks.

The Table 6 also features EfficientNet-B6, a model
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known for its efficiency and accuracy, achieving
a relatively higher accuracy of 86.03%.  This
result highlights its ability to balance computational
efficiency with performance, making it a competitive
choice for medical imaging tasks. A general CNN
model delivers an accuracy of 85%, showcasing its
utility but also underscoring the need for specialized
enhancements to achieve superior results.

The proposed improved MobileNetV3 model
outperforms all the other models, achieving an
accuracy of 92%. This significant improvement
is attributed to the integration of advanced
techniques such as the CBAM, ASPP, and FPN.
These enhancements enable the model to focus
on critical features, capture multi-scale context,
and combine hierarchical representations, making
it particularly effective for diabetic retinopathy
classification. The results demonstrate the ability
of the proposed model to address the challenges of
varying the patterns and severity levels of the lesion in
the retinal images, establishing it as the most effective
solution among the methods compared.

5 Conclusion

This study presents an improved MobileNetV3-based
deep learning model for the detection and
classification of diabetic retinopathy across five
severity stages. By integrating advanced modules
such as the Convolutional Block Attention Module
(CBAM), Atrous Spatial Pyramid Pooling (ASPP),
and Feature Pyramid Network (FPN), the proposed
model effectively captures critical spatial, channel, and
multi-scale contextual information from retinal images.
These enhancements, combined with preprocessing
and data augmentation, significantly improve the
model’s accuracy and generalization capabilities,
achieving state-of-the-art results on the APTOS 2019
Blindness Detection dataset. The results demonstrate
the importance of lightweight architectures for
resource-constrained environments, highlighting
MobileNetV3’s efficient feature extraction and
computational scalability. The integration of CBAM
ensures attention to subtle retinal abnormalities,
while ASPP captures multi-scale lesion features, and
FPN fuses hierarchical representations for robust
classification. The proposed methodology addresses
the computational challenges associated with deep
learning in medical imaging, making it suitable for
deployment in both clinical and remote healthcare
settings.

Future work will focus on testing the model on
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additional datasets to further validate its robustness
and exploring transfer learning techniques to enhance
its performance in real-world applications. The
proposed approach offers a promising direction for
automated diabetic retinopathy detection, contributing
to early diagnosis and improved patient outcomes.
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