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Abstract
Electromyography (EMG) signals provide critical
insights into neuromuscular function, yet their
analysis remains challenging due to inherent
noise, inter-subject variability, and non-stationary
characteristics. Bio-inspired artificial intelligence
(AI) models, drawing computational principles
from biological neural systems, offer promising
solutions to these challenges. This mini-review
synthesizes recent advances in bio-inspired AI
approaches for EMG signal processing, including
spiking neural networks, hierarchical deep
learning, attention mechanisms, and neuromorphic
computing. We evaluate state-of-the-art methods,
comparing their performance across key metrics
including classification accuracy, computational
efficiency, and real-world applicability. Our
analysis reveals that hybrid architectures
combining convolutional neural networks
with transformer-based attention mechanisms
achieve superior performance while maintaining
computational efficiency. We identify emerging
trends in multimodal integration, self-supervised
learning, and edge computing implementations.
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This paper provides researchers and practitioners
with a comprehensive framework for selecting
appropriate bio-inspired AI methods for specific
EMG applications in prosthetics, clinical diagnosis,
rehabilitation, and human-computer interaction.
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1 Introduction
Electromyography (EMG) has emerged as
a fundamental biosignal for understanding
neuromuscular function, with applications spanning
clinical diagnosis, prosthetic control, rehabilitation
engineering, and human-computer interaction [1, 2].
Surface EMG (sEMG), captured non-invasively
through skin electrodes, has become particularly
widespread due to its ease of use and patient
comfort. However, robust EMG signal analysis
remains fundamentally challenging due to several
critical factors [4]. EMG signals exhibit substantial
inter-subject variability due to anatomical differences
in muscle structure, subcutaneous tissue thickness,
and electrode-skin interface properties [5]. This
variability severely limits model transferability across
users. Second, multiple noise sources contaminate
EMG recordings, including motion artifacts,
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Figure 1. Block diagram of conventional machine learning and deep learning approaches for EMG signal analysis.

electromagnetic interference, ECG contamination, and
cross-talk from adjacent muscles. Third, signals are
inherently non-stationary, with time-varying spectral
characteristics influenced by muscle fatigue, age [18],
sex [25], and dynamic movements [7].

Traditional signal processing approaches
rely on handcrafted features (time-domain,
frequency-domain, time-frequency) that require
extensive domain expertise and often fail to
capture complex spatiotemporal patterns [2, 3],
as shown in Figure 1. While conventional deep
learning methods (CNN, RNN) demonstrate
impressive performance, they typically demand
large labeled datasets, lack interpretability, consume
substantial computational resources, and exhibit poor
generalization under domain shift [4]. Biological
neural systems, particularly the human visual
cortex, have evolved highly efficient mechanisms
for processing complex, noisy sensory data through
hierarchical organization, multi-scale temporal
processing, sparse coding, and adaptive feature
extraction [8]. These principles offer compelling
inspiration for EMG analysis: the visual system
extracts edges at multiple scales, integrates them into
higher-level representations, and achieves robust
object recognition despite variations—analogous
requirements for detecting local muscle activations,
integrating them into coordinated synergies, and
classifying movements despite anatomical variations
[9].

This paper synthesizes state-of-the-art bio-inspired
machine learning approaches for EMG signal
processing. It evaluates recent methods across four
main categories: (1) hierarchical deep learning

architectures, (2) attention mechanisms and
transformers, (3) spiking neural networks and
neuromorphic computing, and (4) multimodal
integration strategies. This comparative analysis
identifies performance benchmarks, computational
trade-offs, and practical implementation
considerations. It concludes by highlighting emerging
trends and future research directions that will shape
the next generation of intelligent EMG processing
systems.

2 Bio-Inspired Deep Learning Architectures
Deep learning architectures inspired by visual cortex
hierarchies have revolutionized EMG processing.
CNN implement hierarchical feature extraction
analogous to cortical processing, where early
layers detect local temporal patterns (similar to
V1 edge detectors) and deeper layers abstract
these into high-level movement representations [4].
Recent hybrid CNN-RNN architectures combine
convolutional feature extraction with recurrent
temporal modeling. Xiong et al. [4] proposed
a multi-scale CNN-LSTM framework achieving
94.8% accuracy on the Ninapro DB5 dataset. Their
architecture uses parallel convolutional branches with
different kernel sizes (capturing multi-scale temporal
features) followed by bidirectional LSTM layers for
long-range temporal dependencies. Song et al. [10]
introduced a lightweight CNN-GRU model optimized
for embedded systems, achieving 97.6% accuracy
on Ninapro DB2 while maintaining lower inference
latency in edge devices.

Temporal Convolutional Networks (TCNs) offer an
alternative to RNN, using dilated causal convolutions
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to exponentially expand receptive fields without
recurrent connections [11]. Chen et al. [12]
demonstrated that TCNs outperform LSTMs for
gesture recognition (71.6% vs 66%) while being 3×
faster during inference. The key advantage lies in
parallel processing capabilities and stable gradient
flow during training.
Transformer architectures, inspired by attention
mechanisms in biological vision, have recently been
adapted for EMG analysis. Unlike CNN with local
receptive fields, transformers compute self-attention
across all time steps, capturing arbitrary long-range
dependencies [13]. Montazerin et al. [13]
pioneered transformer application to EMG gesture
recognition, achieving 91.98% accuracy on 65 gestures.
Their multi-head self-attention mechanism learns
complementary temporal relationships in parallel.
However, transformers struggle with small datasets
due to their large parameter count.
In addition to pure transformers, hybrid architectures
that combine CNNs and transformers have shown
promise for EMG analysis. For instance, Liu et
al. [6] proposed a CNN-transformer hybrid model
specifically for dynamic gesture prediction from
sEMG signals, effectively leveraging both local feature
extraction and global dependency modeling.
Spatial-temporal attention modules selectively
emphasize informative channels and time segments
[14]. Lin et al. [14] introduced channel-wise
attention gates that dynamically weight EMG
channels based on their contribution to classification,
improving robustness to electrode displacement
(94.2% accuracy with 10mm shifts vs 92% for baseline
CNN). Recent work explores Graph Neural Networks
(GNN) to model anatomical relationships between
muscles. Vijayvargiya et al. [19] constructed muscle
connectivity graphs where nodes represent muscles
and edges encode biomechanical coupling. Their
GNN-based classifier achieved 93.8% accuracy while
providing interpretable muscle synergy patterns,
offering insights into coordinated motor control.
SpikingNeuralNetworks (SNN) represent a paradigm
shift toward brain-like computing, where neurons
communicate through discrete spikes rather than
continuous activations [8]. SNN offer inherent
temporal processing, event-driven computation
(sparse activity patterns leading to energy efficiency),
and biological plausibility [15]. Sun et al. [15]
presents a spiking neural network (SNN) for
9-gesture EMG pattern recognition using data from

8 subjects. It employs adaptive threshold encoding
and an improved leaky-integrate-and-fire (LIF)
neuron to enhance robustness to electrode shifts and
individual differences. Compared to CNN, LSTM,
and LDA, the SNN achieves higher accuracy (up to
18.95% improvement) while requiring fewer training
repetitions and consuming 1–2 orders of magnitude
less power. Surrogate gradient methods address
this limitation by approximating discontinuous
spike functions with smooth surrogates during
backpropagation [16].
Neuromorphic chips (Intel Loihi, IBM TrueNorth)
implement SNN in dedicated hardware, achieving
unprecedented energy efficiency. Donati et al. [17]
deployed an SNNon Intel Loihi for gesture recognition,
consuming only 30 mW while maintaining 87.2%
accuracy—enabling always-on wearable applications.
The event-driven architecture processes spikes
asynchronously, eliminating clock-driven power
consumption. Despite promising results, SNN face
challenges: 2-5% accuracy gap compared to ANN
on complex tasks, limited software tooling, and
difficulty achieving high accuracy on non-temporal
data. Hybrid approaches combining ANN for feature
extraction with SNN for temporal integration show
promise.

3 Advanced Integration Strategies
3.1 Multimodal Fusion
Integrating EMG with complementary biosignals
(accelerometry, gyroscopy, force) enhances robustness
and context awareness [20]. Wang et al. [21]
combined EMG with Convolutional Neural Networks
(CNN), Gated Recurrent Units (GRU), and Mobile
Vision Transformers (MobileViT), achieving 86.57%
accuracy for activity recognition. Their cross-modal
attention mechanism learns correlations between
muscle activation and limb motion. Duan et al.
[22] introduced cross-modal contrastive learning
for sEMG-Accelerometer fusion. By maximizing
agreement between sEMG and Accelerometer
representations of the same movement, their approach
reduces labeled data requirements while maintaining
95.28% accuracy. This addresses a critical challenge in
clinical applications where labeled data is scarce.

3.2 Domain Adaptation and Transfer Learning
Inter-subject variability necessitates subject-specific
calibration, limiting practical deployment. Domain
adaptation techniques enable model transfer across
subjects with minimal recalibration [5]. Côté-Allard
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et al. [5] proposed adaptive batch normalization
that adjusts feature distributions during inference,
improving cross-subject accuracy from 73.8% to
89.2% with just 5 calibration trials. Meta-learning
approaches learn to quickly adapt to new subjects
from few examples [23]. Tam et al. [23] applied
Evidential Convolutional Neural Network (ECNN) to
EMG classification, achieving 82.89% accuracy on new
subjects after only 10 labeled samples—compared
to 79.48% for Siamese Deep Convolutional Neural
Network (SDCNN). Self-supervised learning
leverages unlabeled EMG data through pretext tasks.
Lai et al. [24] used temporal jittering and amplitude
scaling as augmentations for contrastive learning.
Their pretrained encoder, fine-tuned with limited
labels, achieved 99% accuracy demonstrating effective
representation learning from raw EMG.

4 Discussion
Table 1 presents a comprehensive comparison
of state-of-the-art bio-inspired AI methods for
EMG analysis. Several key insights emerge
from this analysis. SNN and neuromorphic
implementations offer superior energy efficiency
(30-100× improvement) [15, 17] with acceptable
accuracy, making them ideal for always-on
wearable devices. TCNs provide an optimal balance:
competitive accuracy (93.5%) with fast inference
(18ms) and high efficiency [12]. The performance
varies significantly with dataset complexity. Ninapro
DB2 (50 movements) represents a challenging
benchmark; methods achieving >90% accuracy
demonstrate strong generalization [12, 24]. Simpler
custom datasets (6-12 gestures) yield higher accuracy
but may not reflect real-world complexity [15, 17].
Combining EMG with IMU data substantially
improves accuracy (97.1% vs 92.3% for EMG-only)
[20]. Cross-modal learning provides robustness
to sensor failures and motion artifacts. However,
multimodal systems increase hardware complexity
and cost. Cross-subject generalization remains
challenging. Standard models exhibit severe
performance degradation (accuracy drops from 94%
to 74%) [5]. Adaptive techniques (domain adaptation,
meta-learning) significantly improve cross-subject
performance (82-89%) [5, 23], but still lag behind
subject-specific models. Few-shot meta-learning
shows particular promise, achieving 82.89% accuracy
with only 10 labeled samples per new subject [23].
Contrastive learning from unlabeled data reduces
annotation burden by 50% while maintaining
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competitive accuracy (98.4) [24]. This addresses a
critical bottleneck in clinical applications where expert
labeling is expensive and time-consuming. Graph
neural networks, also, provide interpretable muscle
synergy patterns [19], while attention mechanisms
highlight discriminative channels and time windows
[14]. This interpretability is crucial for clinical
acceptance and regulatory approval.

Despite these results, real-world deployment
faces challenges: (1) Robustness to electrode
displacement—only channel attention methods
explicitly address this [14]; (2) Long-term
stability—muscle fatigue and learning effects
degrade performance over hours. Some promising
directions emerge: Neuro-symbolic integration
combining neural networks with symbolic reasoning
for interpretable, data-efficient learning; Continual
learning enabling models to adapt to changing EMG
characteristics without catastrophic forgetting; and the
use of foundation models pretrained on large-scale
EMG corpora, then fine-tuned for specific applications
with minimal data.

5 Conclusion
This paper reviewed recent advances in bio-inspired
artificial intelligence for EMG signal analysis,
comparing state-of-the-art methods in terms of
accuracy, efficiency, and practical deployment. It
highlighted that hybrid CNN-Transformer models
provide superior accuracy by combining local
and global temporal modeling, while spiking
neural networks and neuromorphic hardware
dramatically enhance energy efficiency for wearable
use. Multimodal fusion improves robustness,
and domain adaptation, meta-learning, and
self-supervised approaches enhance generalization
and reduce annotation needs. Future work should
focus on standardized robustness benchmarks, large
and diverse datasets, co-design of algorithms with
neuromorphic hardware, integration of multimodal
biosignals for holistic monitoring, and interpretable
AI models that yield clinically meaningful insights,
paving the way for real-world applications in
prosthetic control, disease detection, and personalized
rehabilitation.
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