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Abstract

The simulations for non-Fourier heat transfer model
has been performed for modified Eyring-Powell
fluid, comprising the vairbale visocity. The interia
outcomes for thermal problem are evaluated by
interpreating the Darcy-Forchheimer features. The
investigation for visualzing the heat transfer aspects
is subject to variable thermal conductivty. The
induction of flow is nonlinear moving surface. After
developing the governing expressions, analytical
treamtnet of problem is presented. The results are
graphically presented to endorse physical aspects of
current model.
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1 Introduction

Fourier heat conduction model is the basic key for
thermoelectric transport models [1]. However, a
fundamental drawback of the widely used Fourier’s
law is that it describes a parabolic energy equation,
which is valid for instantaneous propagation of
thermal disturbances and consequently, the energy
transport is anisotropic and assessment of unrealistics
infinite heat propagation speed. To address this
deficiency, a general structure known as Fourier’s law
with thermal relaxation was developed by Cattaneo [2]
where a thermal relaxation time, representing the finite
thermal conduction speed, was assigned. Exploiting
this idea, Christov [3] goes a step further and improves
the model by framing it in a frame-indifferent way
using Oldroyd’s theory of upper-convected derivatives,
so that compatibility with the tenets of rational
thermodynamics is achieved. The earlier work of
Christov [3] initiated a series of studies of heat transfer
with non-Fourier effects. Straughan [4] deduced
the variation in thermal results subect to natural
convective flow by improsing the non-tradtional
Fourier’s approach.
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At the same time, there is a great interest in
investigating different types of non-Newtonian
fluids, ranging from everyday products to industrial
liquids such as blood, ketchup, cheese, drilling
mud, and colloidal suspensions. Of a variety of
constitutive models, the 1944 Eyring-Powell fluid,
originally proposed by Powell and Eyring, has been
recognized for its ability to replicate Newtonian-like
behavior at both low and high shear rates. Its
empirical nature provides a more realistic description
of complex rheological behavior, particularly for
shear thickening and thinning phenomena. Several
studies, including those by [5-7], have validated
the versatility of the Eyring-Powell model in
diverse flow configurations. [8] further advanced
this field by incorporating ferromagnetic effects
into the Eyring-Powell model while utilizing the
Cattaneo-Christov (CC) heat flux theory. Their
work highlights the necessity of coupling advanced
heat conduction models with non-Newtonian flow
theory to achieve accurate predictions of coupled
heat and momentum transport. Recent progress
in non-Newtonian fluid mechanics has expanded
these insights: [9] investigated viscoelastic nanofluid
transport under temperature gradients, while [10]
analyzed Casson polymeric flows with radiative and
non-Fourier effects. For bioconvective applications,
[11] examined Eyring—Powell nanofluids over Riga
surfaces, and [12] explored hybrid nanofluids with
Hall current effects. Additionally, [13] developed
numerical methods for fractional advection-diffusion
systems, and [14, 15] addressed chemically reactive
flows and double-diffusion phenomena in micropolar
nanofluids.

Recent developments in fluid dynamics have
emphasized the importance of varying sheet thickness
on the behaviour of non-Newtonian fluids especially
in industrial processes involving calendering and
coating. Zahid et al. [16] studied the calendering of
non-isothermal visco-elastic materials and reported
that temperature dependent viscosity has a major
influence on the variable sheet thickness and final
properties of the material in the process. Similarly,
Anwar et al. [17] studied non-Newtonian flow of fluids
over stretching sheets in porous space and stressed
on the effect of thermal conductivity and magnetic
fields in changing the pattern of flow and heat transfer
rates. Abbas et al. [18] realized the curved surface
flow with chemical specieis for non-Newtonian fluids.
Nonlinear stretching surfaces play an important
impact in transport phenomenon, especially for
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complex materials. It is reported through some
investigative studies that magnetic field, buoyancy
and convective boundary conditions play a vital role in
flow features and heat transfer characteristics in such
systems [19-22]. These observations are also useful
for the industrial processes regarding the nonlinear
stretching surface. The Modified Eyring-Powell model
is particularly useful in replicating shear-thinning
behaviour without developing singularities at zero
shear rate as seen in models such as power-law or
Bingham. Modified Eyring—Powell model has recently
been utilized to consider many engineering problems,
such as temperature dependent viscosity in web
coating process, non-similar boundary layer flow and
heat transfer over a wedge, and chemically reacting
nanofluid flow over wedges. These applications
demonstrate the model’s practical applicability and
accuracy in describing the rheological response of
the non-Newtonian fluid in various engineering and
biomedical practices (see [23-25]).

Motivated by the above scenario, the present research
is pursued to address the impacts of non-Fourier
heat flux in Darcy-Forchheimer flow of a Modified
Eyring-Powell fluid towards a nonlinear stretching
surface with variable thickness. Thermal results
are claimed under the assumptions of temperature
dependent thermal conductivity. The problem is
simplified into dimensionless forms. The homotopy
analysis scheme, with excellent accuracy is followed
to entertain the simulations.

2 Mathematical Modeling

We investigate a two-dimensional Darcy—Forchheimer
flow of a modified Eyring-Powell fluid on a non-linear
stretching sheet with variable thickness. The stretching
surface starts with a slit placed at the origin with
x-axis placed along the sheet and y-axis perpendicular
to it.  The thermal conductivity is considered
as temperature-dependent, and heat diffusion is
described using a non-Fourier (Cattaneo—Christov)
heat flux model. The surface profileis y = A(z+b) 2

The boundary layer assumptions are introduced and
the equations of continuity, momentum, and energy
written out in the boundary layer coordinate system.

Orzu~+ Oyv =0 (1)
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with conditions

u=Uy(x)=Up(x+b)", v=0,
T =T, atyzA(x+b)%, (4)
u—0, T—>T,xasy— o0

The thermal conductivity is assumed to be k(T") =
koo(1l + €©), where k is the thermal conductivity
of the ambient fluid, e symbolizes a small coefficient
for thermal conductivity, and © is dimensionless
temperature. The constants (b, ¢, d) have no
dimension, and p is the dynamic viscosity and p
the fluid density. The factors B, C, and q are
related to the Modified Eyring-Powell (MEP) fluid
model. Where ¢, is the specific heat, T" is the fluid
temperature, 75, the ambient temperature, and u, v

are the velocity components in the z, y direction,

respectively. Following quantities are adopted for
simplification:
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By the use of Eq. (5) into the Eqs.(2-4), we get
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the fluid parameters,

fr <: 2¢p(z+b) >

k*(n+1)

15} <: k*(n+1)5(’)’(x+b)n,1) , 7 the thermal relaxation
parameter and Pr (= %) . The wall drag force is:

2Ty

= — 12
In which
Dyt —— Dy (Dyu)? at y— A(axtb)'"

e =T R N Y- Tor A A S

(13)
The dimensionless form is

Re,C 1 1K46

S\ (e - P ) 10)

(14)
where Re, = M the local Reynolds number.

3 Homotopic Procedure

The convergent solutions of Eqs. (10) and (11) are
solved using the HAM, in the presence of the boundary
conditions (5)-(7), (12). The solutions are given in
series, consistent with the nature of the problem. The
initial guesses and associated linear operators are given
by:
Joln) =1—¢"",
Lf _ f/// . f/7

Oo(n) =e™",

15
Lo=0"—¢ (15)

Such that
Lf [Cl + Coe + 036_77] =0,

1
Ly [04677 + 056_7’] =0. (16)
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in which C; (i = 1-5) elucidate the arbitrary constants.
An important part of the HAM method is the H-curve,
which presents the convergence of the Egs. (10) and
(11) subject to Egs. (12). The optimal ranges for the
convergence-control parameters are —1.85 < h f <
—0.15and —1.6 < hy < —0.4. The H-curve derived is
shown in Figure 1. Table 1 presents accuracy of HAM
simulations. The illustration of residual error for HAM

has been plotted in Figure 2.
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Figure 1. H-Curve for hy and hy.

Table 1. The Homotopic solutions for convergence when
K=e=01,0=fr=02,y=p=0.3,¢g=2.0and

Pr=0.9.
Approximation "

Order —1"(0) —6(0)
1 0.7182 0.7264
6 0.7223 0.5678
12 0.7223 0.5691
18 0.7223 0.5710
24 0.7223 0.5705
30 0.7223 0.5705

0.66 1

0.64 - ° 019

T T T T
5 10 15 20
Recursive Steps

T T
25 30

Figure 2. Residual error for HAM.
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Figure 4. 0 via f.
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Figure 5. 5 via f’.
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Figure 6. fr via f'.

4 Analysis of results

In this section an investigation is made regarding the
effects of various parameters on skin friction, velocity
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Figure 8. v via 6.
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Figure 9. Pr via 0.

and temperature in Figures 3, 4, 5, 6, 7, 8, 9 and 10.
Figure 3 shows that when the material parameter K
becomes larger, the velocity f’ gets increased and the
momentum boundary layer thickness becomes thick
due to reduction in effective viscosity. In contrast,
Figure 4, an increase in the sheet thickness parameter
0 causes a decrease in velocity and the boundary layer
thickness. From Figure 5, it can be observed that, with
an ascent rate of the porosity parameter 3, the velocity
decreases because of higher resistance in the porous
medium. Similarly, Figure 6 demonstrates that at a
higher Forchheimer number fr, inertial effects become
more pronounced, which leads to slower flow velocity.
Notice from Figure 7 that, temperature  increases with

increasing thermal conductivity parameter ¢ because
the higher the value of the thermal conductivity, the
more heat is moved from the sheet to the fluid. In
Figure 8, the temperature ¢ decreases as v increases
with the maximum heat transfer performance when
v = 0. It is evident from Figure 9 that, Pr inhibits
the thermal boundary layer and temperature profile
considerably because of smaller thermal diffusivity.
Finally, Figure 10 indicates that skin friction gets
enhanced with respect to both K and § showing
stronger shearing effect with the surface as compared
to the high value of both these parameters. The
homotopic solutions for exhibiting convergence can
be seen in Table 1 and the stability of these solutions is
shown in Figure 2. A comparison of the skin friction
coefficient is given in Table 2, which shows good
agreement with available data.

€=01,fr=02,y=F=03,q=2.0,Pr=09
i . ; : . : .
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—1.15f 1
e K =02
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K =04
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

é
Figure 10. Skin Friction on K and 4.

Table 2. The comparative analysis of skin friction coefficient.

_f//(o) _f/l/(o)
B Turkyilmazoglu [26]  Present
0.0  1.00000 1.00000
0.5  1.22474487 1.01980
1.0 1.41421356 1.11803

5 Conclusion

This work aims to provide a comprehensive analysis
of the Darcy-Forchheimer flow of a Modified
Eyring-Powell material. Updated heat flux approach
is followed to model the problem. The noteworthy
observations are:

e The velocity decreases as the porosity parameter
and Forchheimer number are increased.

e Larger material parameter lead to increasing the
fluid velocity.

e The velocity and corresponding layer thickness
decrease with increasing 6.
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Peak variation in temperature rate is assessed due
to variable thermal conductivity.

A decrement in wal shear force is observed due
to sheet thickness parameter.
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