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Abstract

This research contains the Hartmann boundary
layer effectiveness in peristaltic flow of
non-Newtonian  viscoelastic  fluids through
asymmetric channel walls. Due to the Hartmann
boundary layer, Hartmann number is considered
very large. Porosity effects are included in view
of modified Darcy’s principle. Energy equation is
modelled in the presence of viscous dissipation
and Joule heating features. No slip condition for

fluid velocity is considered at both channel walls.

Large wavelength and dominating viscous forces
implementation reduce the PDEs into ODEs. The
resulting system of ODEs approximate solution
is attained through perturbation and matching
techniques for large magnetic field effects. Lastly
the obtained approximate analytic solution is
utilized to study the varying behaviour of velocity
and temperature profiles against involved sundry
parameters through graphs.
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compliant wall properties.

1 Introduction

The consideration of magnetohydrodynamic (MHD)
in moving fluids grabs the attention of researchers due
to its attractive and significant usages in physiology
and technical industry. Externally applied magnetic
field play an important role in drug delivery to targeted
points. Flow due to periodic waves propagations
becomes more significant in bio medical industry
when magnetic field is applied. It is important
during bleeding preventions, hyperthermia, ulcer,
inflammation etc. treatment. The above mentioned
usages of MHD, researchers consider it in peristaltic
motion with various aspects. Peristaltically driven flow
in the presence of magnetic field and heat transfer of
tiny particles is managed by Bhatti et al. [1]. Peristaltic
motion of different shape sized nanoparticle with
MHD is introduced by Khan et al. [2]. Nanofluid
peristaltic movement through an asymmetric channel
with entropy generation and MHD is discussed by
Ali et al. [3]. Magnetic field is applied in the cilia
motion through curved propagating channel with heat
exchange is presented by Sadaf and Nadeem [4]. Ali
et al. [5] incorporates the Hartmann boundary layer
existence in viscoelastic fluid peristaltic movement.

Various clinical and engineering procedures operate

Citation

Farooq, S., & Sana, A. (2025). Heat Transfer and Modified Darcy’s
Principle in Peristaltic Motion with Hartmann Boundary Layer. ICCK
Journal of Applied Mathematics, 1(1), 32-40.

© 2025 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.62762/JAM.2025.463651
http://crossmark.crossref.org/dialog/?doi=10.62762/JAM.2025.463651&domain=pdf
https://orcid.org/0000-0003-2028-5739
http://dx.doi.org/10.62762/JAM.2025.463651
mailto:farooq.fmg89@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ICJK

ICCK Journal of Applied Mathematics

via peristaltic mechanisms. It is an inherent property
of various physiological organs due to sinusoidal
movements of waves e.g. intestine, ureter, lungs,
digestive tract, fallopian tube, bile ducts, arteries.
Earthworms loco movement is also obeys the
peristaltic mechanism.  Ceramics and sanitary
liquid transport are the industrial applications
of peristalsis. Various bio-medical gadgets such
as dialysis, heart-lung, blood pressure, nebulizer
machines and different clinical injections, coronary
bypass, hose pumps are working through mechanism
of peristalsis. In light of these applications Latham [6]
and Shapiro et al. [7] model and investigates the
peristalsis firstly for large wavelength numerically
and theoretically. Further Yin and Fung [8, 9] discuss
the peristaltic movement through cylindrical ducts.
Subsequent studies have advanced peristaltic flow
analysis through diverse approaches: Hussain et
al. [10] developed a shooting technique for curved
radiative flows, while Ranjit et al. [11] quantified
entropy generation in electroosmotic microchannels.
Numerical innovations include Priam’s [12]
Casson fluid simulations and Mallick’s [13]
electromagnetic Eyring-Powell model, complemented
by Yasmeen’s [14] quantitative/qualitative Jeffrey
fluid analysis and Rafiq’s [15] Hall/ion-slip nanofluid
applications.

The mechanism of heat transfer from lower to higher
temperature places is most important and has crucial
utilizations in the procedure of haemodialysis and
oxygenation. Heat conduction in biological tissues,
environmental heat exchangers, cooling system of
industrial and mechanical devices, hyperthermia
etc. are few more significant examples of heat
transfer. Several researchers analyse the characteristics
of heat transfer in various physiological liquids
transportation. Peristaltic motion with heat transfer
was initially investigated by Vajravelu et al. [16]
through perpendicular porous tube. Riaz et al. [17]
examined fluids irregular motion which is supportive
and supply of liquids in a uniform pattern to control
temperature fluctuation in the flow field. The
complaint properties at wall and transfer of heat
under large wavelength and low Reynolds number
approximations was studied by Hayat et al. [18].
Another important impulsive resistive situation based
on the production of heat transfer when electric current
passes through electrically conductive liquid is Joule
heating. Hayat et al. [18] examine the transport
of liquid through peristaltic principle in a curved
configuration with Joule heating, thermal radiation

and dissipation features. Magneto Carneau liquid
peristaltic flow through curved channel is theoretically
examined by Hayat et al. [20]. Shamsuddin et al. [21]
incorporates the Joule heating aspects in power-law
liquid with slip constraints. Recent advances in
peristaltic flows with Joule heating have significantly
expanded the theoretical and computational frontiers:
Hayat et al. [22] established fundamental slip
condition frameworks for nanofluids, while Gireesha
et al. [23] quantified entropy generation in inclined
microchannels. Geometric innovations emerged
through Sucharitha et al.’s [24] flexible wall analyses
and Abbasi et al’s [25] tapered channel radiation
models, complemented by Usman et al. [26] and Kodi
et al’s [27] advanced numerical treatments of Riga
surfaces and 3D rotational flows. Fractional calculus
approaches were advanced by Rubbab et al. [28] using
Caputo-Fabrizio operators, synergizing with Rehman
et al.’s [29] Jeffery fluid benchmarks and Li et al.’s
[30] breakthroughs in activation energy coupling for
micropolar nanofluids.

2 Formulation

Here peristalsis on an incompressible and highly
electrically conducting Jeffery material through
asymmetric configuration. Fluid is flowing because of
asymmetric propagation of waves with speed ¢ (see
Figure 1). Channel is of width d; + d2. Rectangular
coordinates X and Y are respectively taken along and
normal to the asymmetric walls. Magnetic field of large
intensity is executed normal to the flow. Permeability
effects are encountered through modified Darcy’s
principle and energy equation comprises the viscous
dissipation and Joule heating features.

Y

ay

da

A
Figure 1. Flow mechanism.

Asymmetric channel walls mathematically are
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expressed as given below:

H1(X,t) = dy + aj cos [2; (Y— ct)} (1)

HQ(Y, E) = —dy — by cos |:2)7\T (Y - Cf) + go] (2)

Equations which govern the Jeffery fluid flow in
compact form are:

divV =0 (3)

p% = —gradP + divS — UB%V — (1%\1)]{1 (1 + Ag%) A
- (4)

pde =kV* T +tr(S-L)+J-J (5)

where V = (U(X,Y,?),V(X,Y,%),0), 4 P, p, and
By, J,L, K1, C, denote the velocity field, the material
time derivative, the pressure, the fluid density, and
the magnetic field strength, current density, velocity
gradient, the permeability, and the specific heat
capacity respectively. The extra stress tensor S for
Jeffrey fluid is given as follows:

1 dA,
A A
( 1+ A—— 7l >

(6)

Egs. (3) - (5) in expanded form yields:

oUu oV
0X * oy @)
[aTU&Iqu_jW 95xx | OSxy
ot 0X )4 0X 0X oy

_ d\ —
— oB? —2 K (1 —
o OU ( )\1) 1 < —|—)\2dt> U
(8)

(T
ot 0X oY oY 0X oY
— d
5717 — T VA |
720 (1+)\1)K1< + 2dt>
) ) 9)
dT o°T 0T ou — oV
C,— = S~ Sv+—
PCr = <6X2+6Y2>+ )(X@X+ VY oy
ou oV 2
S =4 B2U
(10)

Conditions at boundaries are taken in the form at

U=0, T-Ty at Y =H; (11)
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U=0, T-Ty, at Y =H, (12)

Stress components are

24 0 0 0 oU

XX 1+>\1[ <8t+ 8X+ 8Y)+ ]OX
(13)

24 0 0 0 ov

YY T 14N [Q(aﬁ ay © 6Y+)]8Y
(14)

2 9,70 .V ou 4 9V
Sxv = 1+;i1 [)‘2 (ai tUx + Vay) - 1} (a? T aY)
(15)

To transform the system (7-15), the following relation
between fixed and moving frames are utilized.

16)
Variables in dimensionless are defined as
27k Y U v
= y:d—l, u=-_, v=-, .
o LT 5 _ g w7
=Ty Y oep

Relation between dimensionless velocity component
and stream function is

oY
= =—0—. 1
oy ' Cow (18)
Using fixed to wave frame transformations (16),
dimensionless variables (17) and velocities in terms of
stream suction (18) Egs. (7) satisfied identically and
the other expressions takes the following form:

ORe (ay 0z or ay> (m)] Tor =0
o L
M= 41 ik
(8y+> DK11+/\1 (a )
0% 0% 0
2 (620 520 )|
0y? Ox 0z? Oy
(19)
oy o oo o dp 0S5z
53 vz _ 72 et _ 52 Y
0"Re <8y8x 8x8y> (835)] +8y 0 Ox
0Syy 9 0V 0 oy
0y M T bk | e
*m(éawyéwz
(20)
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oY 00 Oy 00 1 %0 9% 1 629 Ou 9 Gw
2 (30)
+ 6ECSM881§, —6Echygw 4 M2 (‘Zw + 1) 4 5@ 1 (0 (o o
5 Ty 5 5 Y 1+ M \ 9y \ 9y
v u v
587 + EeSay <6y 56) where S, is given in Eq. (31). After using the cross
(21) differentiation technique, Egs. (28 and 29) yields.
25 oYy o oY o ﬂ
+ A — — | M*(1+ A —| =5 =0 32
éw Oy 0x  Ox dy (22) oy [ (1+ 1)+D(z 352 (32)
* o <6y) In this chapter we use the similar methodology
1 op 9 P o (i.e asymptotic analysis) to evaluate Eq. (32) with
Szy = i [1 +0A2 (88:}: - 8.%’8)] respective boundary conditions. Using this solution
! 9 5 Y 9 Y (23) Eq. (30) with respective boundary condition is
% ( < T,Z)) _B3 L <7/))> solved numerically through ND Solve command in
9y \ Oy Oz \ Oz Mathematica 9.0.
—20
w= T {1 + A20 (?’Z); - ?’Z);)} 3.1 Asymptotic approximation for large magnetic
+ ) yor owoyl o4 field(M)
o ( é;ﬁ) . For large M approximate solution is obtained away and
y\ow adjacent to the channel boundaries and then match it
Dimensionless numbers arises in Eqs. (19-24) are with solution at the edges of boundaries. After thata
defined as - uniform composite solution is obtained.
9 d% Iy I b ord, 3.2 The outer solution
pP= Ap hy = d;’ hy = dy’ 0= N Express Eq.(32) in terms of Eq.(33) to evaluate
o _ P8 d; e o B2d? | asymptotic solution for very large M.
I I Y(y) = o + €er (33)
o b b1 d— d2 E. = 02
T dy di’ ¢ (Ty = Tp)e,” Where M = ¢ Land &+ = ! where ¢ < 1. Then the
e &2 leading order equat10n of Eq (32) and its solution is:
P="F Dy=—.
r K 9 a Kl 82w0
Boundary conditions becomes Yo(y) = aoy + bo (35)
) = q W=-1, 0=1, at y=mn (26) Similarly, the first order equation and its solution is:
2 Y 9 Y *
ot 9?
g dff — (24 \) w; =0 (36)
wz—g, Y =—-1, #=0, at y=ho (27) Jy Jy
Y1(y) = a1y + b (37)

3 The solution methodology

Egs. (19-24) yields after employing dominating large
viscous forces (i.e., Re < 1) and wavelength (i.e., § <
1) conditions:

Op _ 0Szy 2 1 oY

oz~ oy (M +Da(1+/\1)> (a H) (28)
c')p_
=0 (29)

Combining Egs. (34 and 36), the asymptotic solution
up to order ¢ is:

V" (y) = agy + by + € (a1y + b) (38)
where ag, by, a1 and by can be calculated through
comparing the higher order term of inner and outer
solutions. Here we evaluate two inner solutions to
attain a valid and uniform solution at two boundaries
because outer solution is not valid at o(e).
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3.3 The inner solutions

(i) For inner solution at y = hy, Eq. (32), the solution
near to the boundary at y = hi(z), the stretched

variable is in the form 1 = "7 yields:
84wm 62,¢m 82wm
2—4p —(1 —2p _—2p —
€ o (1+XA)e an? o 0 (39)

Taking p = 1 in view of least degeneracy condition
to balance the solution of Eq. (39) because viscosity
effects must be present in inner solution.

a4win B ka?wzn B
on? on?

0 (40)

in which Eq. (40), K = 2+ A;. The condition aty = h
boundary becomes:

in B g a¢zn _ B
¥™(n) =7 and on (n) =€ at n=0 (41)
The two term solution of Eq.(40) is assumed as
V™) = i) + et (n) (42)

where Zeroth order system and its solution is of the
form:

841%)” 82w6n _
i~ F g =0 (43)
PO =5 Go@=0 (44)

in :%ﬂ)0 (—1+ \/%Jre*M) (45)

The two term inner solution aty = hllis obtained by
putting Egs. (45 and 48) in ¢""(n) = ¥ (n) + et (n),
we get:

%”:%—FD()(—I—F\/%—F(M)

+e [77+ Dy (—1 +Vkn+ e*\/ﬁ)] (46)

(ii) In similar manner the two term inner solution is
found at y = hy by using ¢ = @ in Eq. (39).

~d o Hy (<14 VR + eV

+e [—( + Hy (—1 +VEC + e_‘/EC>]

5(¢) =
(47)

The values of all constants appearing in Egs.(49 and
50) is found by comparing inner and outer solutions
at both walls.
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3.4 The higher order mode matching

To employ higher order mode of matching procedure
use an intermediate variable ¢ given in Eq. (50) at
y = hy in the intermediate location o(e®). Two terms
inner and outer solution in the form of variable ¢ at
y = hy by neglecting the terms higher than ¢! and
greater after converting the outer and inner solutions
into intermediate parameter ¢ at lower plate yields:

(wout)int = aphy +bo —agt(€)*+€ (arhy + by)+o(e*™)

A (51)
(™)™ = & + Dy (=1 + kt()>~) + t(e)* (1 + kDy) — Dye
(48)

implies:
aoh +bo = 5 = Do, Dy =0, )

1+ VkDy = —ag, ajhy +b = —Dy

Similarly at upper plate y = ha(x), matching of outer

and inner solutions is:
q

aphg +by = —5 — Ho, Ho =0,

2 (50)

— 1+ VkHy = ag, aths +bi =—H

Eq.(53) and Eq.(54) are evaluated simultaneously to

obtain the unknown constants:

__q

hi — ha

ao

a]p =

2 q
1+
Vk(h1 — hy) < hy — h2)
oo 4 h1 + ha
07 72 \ g — hy
1 h1+h2>< q >

b= —— 1+
! \/E(hl_hZ hi — hs

1 q )
Hi=—(1+
! \/E< hy — ho

The composite solution can be expressed as:
Yeompsite = ¥+ () = () 44 = ()
(52)

Now, using Eq.(49), Eq. (50) and Egs. (51,52) into Eq.
(56), the composite solution is finally given by:

(51)

" o ay g (hthe
composite hl — hg 2 hl — hg
€ q
+—11+ X
vk ( hy — hz)
2y hi+hy ghi-v _VRY=h2
[hl—hQ hi— ha' T
(53)
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The composite solution presented in Eq. (57) is
completely valid for all independent variable values
which fulfills the accounted boundary conditions.

4 Discussion

The goal of this section is to study the graphical
behaviour of velocity and temperature profiles against
Darcy number Da, Hartmann number (M), Jeffery
fluid parameters \; and Brinkmann number Br.

4.1 Velocity Profile

Da 01020%04 N\

S A S e e

-0.5 0.0 0.5 1.0
y

Figure 2. u of Da for Br =0.2; x =0, M =1.0; \;

0.02; 8 = 0.02.

=05a=

{4 = 01,05, 09, 1.4

Figure 3. u of A\; for Br =0.2; 2 =0; M =1.0, Da =0.5; a =
0.02; 3=0.02.

P M= 10203550

0.0} ---------------------------------------------------------------------
—05p AL -----------------------------------------------------------------------
ofl . : : :
-1.0 -0.5 0.0 0.5 1.0
y
Figure 4. u of M for Br=0.2; x=0; Da=0.5; A\1=0.5; «=0.01;
3=0.02.

The impact of Da, M and A\ on velocity profile are
captured in Figures 2, 3 and 4. The velocity of flowing
fluid increases with an increase in Darcy number (Da)
as graphically presented in Figure 2. When studying
peristaltic flow through veins and arteries, the porosity
of walls must be considered. Because an increase
in porosity causes a reduction in drag force gives a
resulting decrease in flow resistance. The decrease
in velocity towards the channel boundaries is also
observed in this Figure 3 depicts that an increase
in the value of Jeffery fluid parameter (A1) causes a
reduction in velocity. It is because by increasing A, the
viscous effects dominate at the centre of the channel.
Due to the classical effect of Hartmann number, it is
obvious that an increase in the value of M causes a
decrease in velocity profile as illustrated in Figure 4.
As Lorentz force (a resistive force) is present in MHD
phenomena, thus by increasing M the Lorentz force
produce more resistance to the fluid flow due to which
velocity decreases.

R M
3.0p e Todon R d ua-_—t:"_—: ----- EERERTRTR
25 i ; ------- -,n'-wr-ffn_u-u—— --------------------------
1 &
20F S/ JI L et U ETTTITTITOT AT RIIS P W
] s
1.5F s T T P Y TSP STE (OO

Da—Ol 02 0.3,047

LOE -/
%] Y R N RRR-MMRLUG SIRE USRI
0.0F 1 i i i
-1.0 -0.5 0.0 0.5 1.0
y

Figure 5. Temperature profile of Da for Br=0.2; z=0;
M=1.0; \;=0.5; «=0.02; 5=0.02.

-1.0

-0.5 0.0 0.5 1.0
Yy

Figure 6. Temperature profile of A for Br=0.2; x=0;
M=1.0; Da=0.5; «=0.01; 5=0.02.
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Figure 7. Temperature profile of M for Br=0.2; =0;
Da=0.5; \1=0.5; «=0.01; 5=0.02.

-1.0 -05 0.0 05 1.0
y
Figure 8. Temperature profile of Br for x=0; M =1.0;
Da=0.5; \1=0.5; «=0.01; 5=0.02.

4.2 Temperature Profile

The impact of Da, M, A\, Br on temperature profile
(a resistive force) through Figures 5, 6, 7 and 8. In
this section it is observed from Figure 5 that the
profile for temperature distribution increases with an
increase in the value of Darcy number (Da). Figure 6
depicts that an increase in the value of Jeffery fluid
parameter (\;) causes a reduction in temperature.
Figure 7 depicts that higher increase in the value
of Hartmann number (M) causes an increase in
temperature. Figure 8 depicts that an increase in the
value of Brinkman number (Br) causes an increase in
temperature. Itis observed through these Figures 5, 6,7
and 8 that temperature increases because of resistive
characteristics of Da, M, and Br parameters.

5 Concluding remarks

The key findings of this study are: 1. The velocity
changes for modified Darcy parameter. 2. The
Hartmann boundary layer increases for increasing M .
3. For higher )\ temperature decays. 4. Both Magnetic
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and Darcy parameter enhances the temperature.
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