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Abstract
This study presents a mathematical framework to
analyze the transmission dynamics of the Ebola
Virus Disease (EVD) using an extended SEIRVH
model. The model incorporates vaccinated and
hospitalized compartments, addressing critical
factors such as vaccination efficacy, healthcare
interventions, and natural disease progression.
Differential equations describe the transitions
between six population compartments. The study
evaluates model stability and bifurcation through
well-posedness, positivity, and boundedness
analyzes, ensuring realistic and biologically valid
solutions. The basic reproduction number, R0,
derived from the next generation matrix, serves
as a threshold for outbreak control. Local and
global stability analyzes of disease-free and
endemic equilibria reveal critical insights into
epidemic thresholds and long-term dynamics.
Furthermore, sensitivity analysis highlights key
parameters that influence R0, emphasizing the
importance of vaccination and hospitalization in
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mitigating EVD outbreaks. Numerical simulations
validate theoretical findings, underscoring the
model’s utility in informing effective public
health strategies, such as vaccination campaigns
and hospitalization measures, for controlling
EVD transmission. This research provides a
robust analytical and computational tool for
understanding and managing the spread of Ebola
and similar infectious diseases.

Keywords: EBOLA, stability analysis, sensitivity analysis,
bifurcation analysis, RK-4 method.

1 Introduction
Ebola Virus Disease (EVD) is a highly virulent
zoonotic illness caused by the Ebola virus, a member
of the Filoviridae family. Clinically, EVD presents
as an acute hemorrhagic fever syndrome, marked
by high-grade fever, severe headache, vomiting,
diarrhea, fatigue, and in many cases, internal and
external bleeding, which can culminate in multi-organ
failure [1, 10]. The disease was first identified in 1976
during simultaneous outbreaks in Sudan and Zaire
(now the Democratic Republic of the Congo), with
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its name derived from the nearby Ebola River [1].
Since then, recurrent outbreaks, especially in Central
and West Africa, have underscored its public health
importance [2, 4].

The 2014–2016 West African epidemic, which severely
impacted Guinea, Liberia, and Sierra Leone, was
the largest on record in terms of geographic spread,
morbidity, and mortality [4, 25]. EVD outbreaks
typically exhibit case-fatality rates ranging from 25%
to 90% [4, 10], emphasizing the critical need for timely
detection, rapid intervention, and sustainable control
strategies.

Transmission occurs primarily via direct contact with
bodily fluids—such as blood, feces, or vomit—of
symptomatic individuals or deceased patients.
Indirect transmission via contaminated fomites has
also been documented [3, 10]. In many of the most
severely affected regions, weak diagnostic capacity,
delayed response, and fragile healthcare infrastructure
facilitate rapid amplification of the virus [4, 6].

Mathematical modeling has emerged as
an indispensable tool in understanding
infectious disease dynamics, particularly for
EVD [3, 4, 6, 7, 10]. Compartmental models,
especially those based on the classical SEIR
(Susceptible–Exposed–Infectious–Recovered)
structure, have been widely used to simulate epidemic
trajectories, estimate key parameters such as the basic
reproduction number R0, and assess the potential
impact of public health interventions [16, 17, 21, 22].

In this study, we extend the standard SEIR framework
by introducing two additional compartments:
vaccinated (V ) and hospitalised (H). The V
compartment reflects immunity through vaccination,
while accounting for imperfect efficacy and waning
protection [5, 25]. The H compartment accounts
for individuals receiving clinical care in isolation
units, recognizing that hospitalisation reduces both
mortality and transmission risk [13, 14]. Control
measures, such as vaccination, hospitalisation, and
awareness-based behavioral change, are incorporated
explicitly to evaluate their respective effects on
epidemic outcomes [11, 12, 14, 15].

The resulting model is a nonlinear system of ordinary
differential equations (ODEs) with bilinear incidence,
designed to capture both biological and policy-driven
transitions. Below we describe the model formulation.

2 Model Formulation
To explore the transmission and control dynamics of
EVD, we partition the total human population into six
mutually exclusive epidemiological compartments:

• S(t): Susceptible individuals.
• E(t): Exposed (infected but not yet infectious)

individuals.
• I(t): Infectious individuals.
• V (t): Vaccinated individuals.
• H(t): Hospitalized individuals under clinical

care.
• R(t): Recovered individuals with acquired

immunity.

2.1 Model Assumptions
The model is governed by the following assumptions,
consistent with established EVD dynamics [3–5, 9]:

(i) Recruitment into the susceptible population
occurs at a constant rate Ah.

(ii) Susceptible individuals are vaccinated at rate α1;
vaccine-induced immunity wanes at rate α2.

(iii) Susceptible individuals contract EVD via effective
contact with infectious individuals at rate β,
modeled with a bilinear incidence term βSI [3, 4].

(iv) Exposed individuals progress to the infectious
class at rate δ1, or are vaccinated (e.g., ring
vaccination or post-exposure prophylaxis) at rate
δ2 [5, 25].

(v) Vaccinated individuals may still become infected
due to vaccine failure at rate δ3.

(vi) Infectious individuals recover at rate γ1 or are
hospitalized at rate γ2 [13].

(vii) Hospitalized individuals recover or die (exit the
compartment) at rate γ3.

(viii) All compartments are subject to a uniform natural
mortality or removal rate k.

2.2 Mathematical Model
The dynamics of the EVD transmission system are
captured by the following set of nonlinear ODEs, with
parameters defined in Table 1:



dS
dt = Ah + α2V − (α1 + k + βI)S,
dE
dt = βSI − (δ1 + δ2 + k)E,
dI
dt = δ1E + δ3V − (γ1 + γ2 + k)I,
dV
dt = α1S + δ2E − (δ3 + α2 + k)V,
dH
dt = γ2I − (γ3 + k)H,
dR
dt = γ1I + γ3H − kR.

(1)
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Table 1. Descriptions of parameters used in the model.
Parameter Interpretation

Ah Recruitment rate into the susceptible class.
α1 Vaccination rate for susceptible individuals.
α2 Rate of waning immunity among vaccinated individuals.
β Effective contact rate between susceptible and infectious individuals.
δ1 Progression rate from exposed to infectious.
δ2 Vaccination/intervention rate among exposed individuals.
δ3 Vaccine failure rate.
γ1 Recovery rate of infectious individuals.
γ2 Hospitalisation rate of infectious individuals.
γ3 Recovery/mortality rate in hospitalized individuals.
k Natural mortality/removal rate across all compartments.

Subject to the following initial conditions:

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0,

V (0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0.
(2)

Figure 1 presents the flow diagram representing
the compartmental structure and transitions of the
proposed model. Each parameter and transition is
biologically motivated and derived from literature [3,
4, 10].

Figure 1. Flow diagram of the proposed Ebola virus
transmission model.

3 Theoretical Analysis
3.1 Positivity of Solutions
Theorem 3.1 Given non-negative initial conditions, all
solutions of the system (1) remain non-negative for all t ≥ 0.

Proof. We prove the non-negativity of each
compartment in system (1) using contradiction and
differential inequalities.
Step 1: S(t) ≥ 0
Suppose there exists a first time t0 > 0 such that
S(t0) = 0, with S(t) > 0 for t < t0, and S(t) < 0
for some t > t0. The governing equation is:

dS

dt
= Ah + α2V − (α1 + k + βI)S. (3)

At t = t0, since S(t0) = 0, we have:

dS

dt

∣∣∣∣
t=t0

= Ah + α2V (t0) ≥ 0, (4)

which contradicts S(t) < 0 for t > t0. Thus, S(t) ≥ 0
for all t ≥ 0.
Step 2: E(t) ≥ 0

dE

dt
= βSI − (δ1 + δ2 + k)E. (5)

If E(t0) = 0, then dE
dt = βSI ≥ 0, so E(t) ≥ 0.

Step 3: I(t) ≥ 0

dI

dt
= δ1E + δ3V − (γ1 + γ2 + k)I. (6)

If I(t0) = 0, then dI
dt = δ1E + δ3V ≥ 0.

Step 4: V (t) ≥ 0

dV

dt
= α1S + δ2E − (δ3 + α2 + k)V. (7)

If V (t0) = 0, then dV
dt = α1S + δ2E ≥ 0.

Step 5: H(t) ≥ 0

dH

dt
= γ2I − (γ3 + k)H. (8)

If H(t0) = 0, then dH
dt = γ2I ≥ 0.

Step 6: R(t) ≥ 0

dR

dt
= γ1I + γ3H − kR. (9)

If R(t0) = 0, then dR
dt = γ1I + γ3H ≥ 0.

Conclusion: All compartments remain non-negative
for all t ≥ 0. �
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3.2 Disease-Free Equilibrium Point
The disease-free equilibrium (DFE) represents a state
where no infection exists in the population:

(S∗, E∗, I∗, V ∗, H∗, R∗) =

(
Ah

α1 + k
, 0, 0, 0, 0, 0

)
.

(10)
The DFE is stable if the basic reproduction number
R0 ≤ 1. When R0 > 1, the disease may invade and
persist in the population.

3.3 Endemic Equilibrium Point
An endemic equilibrium refers to a state where the
disease persists over time. The number of infections,
recoveries, and deaths balance such that:

S∗ =
Ah − V ∗

α1 + k + βI∗
,

E∗ =
βS∗I∗

δ1 + δ2 + k
,

I∗ =
δ1E

∗ + δ3V
∗

γ1 + γ2 + k
,

V ∗ =
α1S

∗ + δ2E
∗

δ3 + α2 + k
,

H∗ =
γ2I
∗

γ3 + k
,

R∗ =
γ1I
∗ + γ3H

∗

k
.

(11)

3.4 Model Analysis and Boundedness
Define the total human population as:

N(t) = S(t) +E(t) + I(t) +V (t) +H(t) +R(t). (12)

Differentiating, we obtain:
dN

dt
= Ah − kN(t). (13)

Solving the differential equation yields:

N(t) = N(0)e−kt +
Ah
k

(1− e−kt). (14)

Hence, as t→∞, the population tends to:

lim
t→∞

N(t) =
Ah
k
. (15)

Lemma 3.1 The region

Ω =

{
(S,E, I, V,H,R) ∈ R6

+ : N(t) ≤ Ah
k

}
(16)

is positively invariant.

Proof. From the total population dynamics:
dN

dt
= Ah − kN, (17)

with the integrating factor method, we obtain:

N(t) ≥ N(0)e−kt +
Ah
k

(1− e−kt). (18)

Therefore, N(t) → Ah
k as t → ∞, and solutions are

bounded within region Ω. Furthermore, since each
component satisfies:

S(t)
E(t)
I(t)
V (t)
H(t)
R(t)

 ∈ R6
+, (19)

the model is mathematically well-posed and
epidemiologically meaningful. �

4 Basic Reproduction Number (R0)
The basic reproduction number, denoted as R0, is
a critical threshold used to evaluate the potential
for disease spread in a fully susceptible population.
Specifically, R0 represents the expected number of
secondary infections produced by a single infectious
individual introduced into a completely susceptible
population. When R0 < 1, the disease cannot invade
the population and will eventually die out. Conversely,
if R0 > 1, the disease may cause an outbreak and
persist in the population. Thus, understanding and
computing R0 is crucial for predicting the future
dynamics of the disease and guiding effective control
strategies.
Numerous studies have addressed the determination
of R0 for various epidemiological models [15, 16]. In
this work, we computeR0 for the proposed model (20)
using the next-generation matrix method [17, 18]. The
infection subsystem is isolated, and the matrices F and
V are constructed in accordance with the formulation
given in [8].
The infection subsystem of the model (20) is given by:


dE
dt = βSI − (δ1 + δ2 + k)E,
dI
dt = δ1E + δ3V − (γ1 + γ2 + k)I,
dV
dt = α1S + δ2E − (δ3 + α2 + k)V.

(20)

The new infection matrix F and its Jacobian at the
disease-free equilibrium are:
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F =

βSI0
0

 , F ∗ =

0 βS0 0
0 0 0
0 0 0

 . (21)

The transition matrix V is defined as:

V =

 (δ1 + δ2 + k)E
(γ1 + γ2 + k)I − δ1E − δ3V

(δ3 + α2 + k)V − δ2E

 . (22)

The inverse of the Jacobian of V evaluated at the
disease-free equilibrium is:

V ∗−1 =

δ1 + δ2 + k 0 0
−δ1 γ1 + γ2 + k −δ3
−δ2 0 δ3 + α2 + k

 .

(23)
Multiplying F ∗ and V ∗−1 yields:

FV −1 =

 βS0δ1
(δ1+δ2+k)(γ1+γ2+k)

βS0

γ1+γ2+k
0

0 0 0
0 0 0

 . (24)

The basic reproduction number R0 is given by the
spectral radius of FV −1:

R0 =
βδ1Ah

(δ1 + δ2 + k)(γ1 + γ2 + k)(α1 + k)
. (25)

The effects of the parameters β, Ah, and k on R0 are
illustrated in Figure 2, highlighting their influence on
the potential for disease spread.

4.1 Local Stability of the Disease-Free Equilibrium
Theorem 4.1 The disease-free equilibrium E0 of system
(20) is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof. At the disease-free equilibrium point E0, the
Jacobian matrix of system (20) is:

JE0 =



−(α1 + k) 0 βS∗ α2 0 0
0 −Z1 βS∗ 0 0 0
0 δ1 −Z2 δ3 0 0
α1 δ2 0 −(δ3 + α2 + k) 0 0
0 0 γ2 0 −(γ3 + k) 0
0 0 γ1 0 γ3 −k

 ,

(26)

Figure 2. Effects of β, Ah, and k on R0.

where Z1 = δ1 + δ2 + k and Z2 = γ1 + γ2 + k. The
eigenvalues of this matrix are:

λ1 = −(α1 + k), λ2 = −(γ1 + γ2 + k),

λ3 = −k, λ4 = −Z1,

λ5 = −Z1Z2, λ6 = −Z1Z2(δ3 + α2 + k).

(27)

Since all eigenvalues are negative when R0 < 1, the
disease-free equilibrium is locally asymptotically stable
by the Routh-Hurwitz criterion [21, 22, 24]. �

4.2 Global Stability of the Endemic Equilibrium
Theorem 4.2 If R0 > 1, then the endemic equilibrium E1

of system (20) is globally asymptotically stable in Ω.

Proof. For R0 > 1, the existence of a unique
endemic equilibrium E1 is guaranteed. We consider
the standard Lyapunov function [23]:

V (x) =
n∑
i=1

ci
2

(xi − x∗i )2, (28)

which, for our system, takes the form:
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V (S,E, I, V,H,R) =
1

2
[(S − S∗) + (E − E∗)

+(I − I∗) + (V − V ∗) + (H −H∗) + (R−R∗)]2 .
(29)

Differentiating (29) along solutions of system (20),
and noting that:

d

dt
(S+E+I+V +H+R) = −k(S+E+I+V +H+R),

(30)

we obtain:

dV

dt
= −k(S + E + I + V +H +R) · [(S − S∗) + (E − E∗)

+(I − I∗) + (V − V ∗) + (H −H∗) + (R−R∗)] .
(31)

Clearly, dV
dt ≤ 0, and equality holds if and only if

the state variables equal their endemic equilibrium
values. Hence, by LaSalle’s Invariance Principle [23],
the endemic equilibrium E1 is globally asymptotically
stable in Ω. �

4.3 Sensitivity Analysis of R0

The sensitivity analysis of the basic reproduction
number R0 with respect to model parameters plays
a crucial role in understanding the influence of
each parameter on disease transmission, control, and
treatment effectiveness, as demonstrated in similar
infectious disease models [19]. This analysis identifies
which parameters most significantly impact R0 and
thus should be prioritized in disease mitigation
strategies.

We examine the sensitivity of R0 in relation to the
key parameters of the Ebola virus model (20). The
sensitivity index of a parameter ψ is computed using
the normalized forward sensitivity index as proposed
by Chitnis et al. [21], defined as:

XR0
ψ =

∂R0

∂ψ
× ψ

R0
(32)

The sensitivity indices for relevant model parameters
are computed as follows, with their impacts illustrated

in Figure 3:

XR0
β = 1, XR0

Ah
= 1,

XR0
δ1

= − δ1
δ1 + δ2 + k

, XR0
δ2

= − δ2
δ1 + δ2 + k

,

XR0
k = −k

(
1

δ1 + δ2 + k
+

1

γ1 + γ2 + k
+

1

α1 + k

)
,

XR0
γ1 = −γ1

(
(δ1 + δ2 + γ1)(α1 + k) + (γ1 + γ2 + k)(α1 + k)

(δ1 + δ2 + γ1)(γ1 + γ2 + k)(α1 + k)

)
,

XR0
γ2 = −γ2

(
(δ1 + δ2 + γ1)(α1 + k) + (γ1 + γ2 + k)(δ1 + δ2 + γ1)

(δ1 + δ2 + γ1)(γ1 + γ2 + k)(α1 + k)

)
,

XR0
α1

= −α1 ·
βAh(δ1 + δ2 + γ1)

(δ1 + δ2 + γ1)2(γ1 + γ2 + k)2

(33)

Figure 3. Sensitivity indices of parameters influencing R0.

5 Optimal Control System
To further mitigate the Ebola Virus Disease (EVD),
we expand the model (1) by incorporating two
time-dependent control functions: m1(t) and m2(t).
Here, m1(t) represents enhanced diagnostic efforts
for exposed individuals, while m2(t) captures the
immediate treatment of infected individuals. The
extended model is given by:

dS

dt
= Ah + α2V − (α1 + k)S − (1−m1)βIS,

dE

dt
= (1−m1)βIS − (δ1 + δ2 + k)E,

dI

dt
= δ1E + δ3V − (γ1 +m2γ2 + k)I,

dV

dt
= α1S + δ2E − (δ3 + α2 + k)V,

dH

dt
= m2γ2I − (γ3 + k)H,

dR

dt
= γ1I + γ3H − kR.

(34)

The impact of these control measures on the dynamics
of the EVD compartments is illustrated in Figure 4. The
goal is tominimize the number of exposed and infected
individuals while also minimizing the costs of the
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Figure 4. Dynamics of EVD compartments with and without control interventions (m1,m2).

control measures. This is achieved via the following
cost functional:

J (m1,m2) =

∫ tf

t0

[B1E + B2I] dt

+
1

2

(
B3m2

1(t) + B4m2
2(t)
)
,

(35)

subject to the admissible control set:

U = {mj(t) : 0 ≤ mj(t) ≤ 1, j = 1, 2, t ∈ [0, tf ]} .

5.1 Characterization of Optimal Control
Applying Pontryagin’s Maximum Principle [23], a
widely used approach in infectious disease control
models [20], the HamiltonianH for the system is given
as:

H = B1E + B2I +
1

2

(
B3m2

1 + B4m2
2

)
+

6∑
i=1

λi
dxi
dt
,

(36)

where λi are the adjoint variables corresponding to
state variables S,E, I, V,H, and R.

The adjoint system is governed by:
dλ1
dt

= λ1(α1 + k) + (λ1 − λ2)(1−m1)βI + λ4α1,

dλ2
dt

= −B1 + (δ1 + δ2 + k)λ2 − λ3δ1 − λ4δ2,

dλ3
dt

= −B2 + (λ1 − λ2)(1−m1)βS

+ λ3(γ1 +m2γ2 + k)− λ5m2γ2 − λ6γ1,
dλ4
dt

= −λ1α1 − λ3δ3 + λ4(δ2 + α2 + k),

dλ5
dt

= λ5(γ3 + k)− λ6γ3,

dλ6
dt

= λ6k,

(37)
with transversality conditions:

λi(tf ) = 0, for i = 1, . . . , 6.

The optimal controls are characterized by:

m∗1(t) = min

(
1,max

(
0,

(λ2 − λ1)βIS
B3

))
,

m∗2(t) = min

(
1,max

(
0,

(λ3 − λ5)γ2I
B4

))
.

(38)

Combining the state system (34), the adjoint
system (37), and the optimal controls (38), we obtain
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the full optimality system for simulation and control
implementation.

5.2 Discussion
The relationship between the infection rate β and
the basic reproduction number R0 is direct and
proportional. An increase in β leads to a corresponding
increase in R0, indicating that transmission intensity
escalates with higher infection rates. Therefore,
reducing β is essential for outbreak control. This can be
achieved through interventions such as immunization,
isolation, public health education, and hygiene
improvements.
The sensitivity index of δ1 is negative, implying that an
increase in δ1 reduces R0. A higher mortality rate in
the first infectious class shortens the infectious period,
thereby limiting disease transmission. Similarly, an
increase in δ2 also lowers R0, underscoring the role
of mortality in reducing the number of secondary
infections.
For the recovery rate k, its sensitivity index is also
negative. Enhancing the recovery rate throughmedical
treatment or supportive care diminishes the number
of infectious individuals, hence reducing R0.
The transition parameters γ1 and γ2 represent
movement between different risk groups or health
statuses. Their negative sensitivity indices suggest that
facilitating transitions (e.g., hospitalization or effective
isolation) can mitigate disease spread.
Furthermore, the natural death rate α1 exhibits a
negative sensitivity index. A higher α1 reduces the
pool of susceptible individuals, thereby lowering the
overall transmission potential.

6 Numerical Simulation
To analyze the impact of model parameters on the
disease dynamics, we evaluate the sensitivity of the
basic reproduction number R0 using the normalized
forward sensitivity index defined by Chitnis et al. [21],
given by Equation (32).

ΓR0
θ =

∂R0

∂θ
· θ
R0
, (39)

where θ denotes a given model parameter. Sensitivity
analysis helps identify key parameters for intervention
strategies.
Figure 5 illustrates the time evolution of each
compartment in the SEIRVH model. During

Figure 5. Dynamics of compartments S,E, I, V,H, and R.

Figure 6. Effect on Susceptible class.

Figure 7. Effect of hospitalization on susceptible population.

simulations, a subset of parameters is varied while
others remain constant to assess system response.
When β = 0.003, we find that R0 = 0.9 < 1,
and the disease-free equilibrium (DFE) is locally
asymptotically stable.
Similarly, for β = 0.0006, R0 = 0.1499 < 1, the system
also converges to the DFE. In contrast, when β = 0.006,
resulting in R0 = 1.4990 > 1, the system approaches
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Figure 8. Effect on exposed class.

Figure 9. Effect on infectious class.

Figure 10. Effect on recovered class.

an endemic equilibrium, aligning with Theorem 4.1
and Theorem 4.2.
Figures 6–15 show that increasing β accelerates the
depletion of the susceptible population and intensifies
the epidemic. A smaller β (e.g., 0.1) leads to slower
disease spread, while a higher β (e.g., 0.5) results in
rapid increases in exposed and infectious individuals.
Vaccination effects are evident in Figures 11–14. With
vaccination, the susceptible, exposed, and infectious

Figure 11. Vaccination impact on susceptible class.

Figure 12. Vaccination impact on exposed class.

Figure 13. Vaccination impact on infected class.

populations decline more quickly. The number of
recovered individuals increases, indicating improved
control over disease spread.

7 Conclusion Remarks
This study presents a comprehensive analytical and
numerical investigation of the Ebola Virus Disease
(EVD) through an extended SEIRVH model that
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Figure 14. Vaccination impact on recovered class.

Figure 15. Hospitalized population under vaccination.

incorporates vaccination and hospitalization. The
model’s well-posedness, positivity, and boundedness
affirm its biological validity.

Using the next-generation matrix approach, we
derived the basic reproduction number R0 and
assessed local and global stability for both disease-free
and endemic equilibria. The Lyapunov function
method confirms the global stability conditions,
while sensitivity analysis reveals the most influential
parameters on R0.

A backward bifurcation was identified using Center
Manifold theory, emphasizing the challenge of
achieving disease eradication even when R0 < 1.
Optimal control analysis incorporating vaccination,
therapy, and public awareness further illustrates
effective mitigation strategies.

Numerical simulations validate the theoretical results
and demonstrate the crucial role of reducing β
through public health interventions. Moreover,
the Non-standard Finite Difference (NSFD) scheme
outperformed the classical RK-4 method in simulating

disease dynamics.
Overall, this model provides a robust tool for
understanding and managing EVD outbreaks. It
highlights the necessity of integrated strategies
combining vaccination, hospitalization, and timely
interventions, offering practical guidance for public
health authorities to mitigate the devastating impacts
of infectious diseases.
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