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Abstract
This paper investigates the bio-convective behavior
of a third-grade non-Newtonian nanofluid over a
stretching sheet. While the influence of Newtonian
fluid flow based on classical Fourier and Fick’s
laws has been widely discussed in previous studies,
this work focuses on a novel third-grade nanofluid
model incorporating various physical effects.
Notably, the classical Fourier law is replaced by the
Cattaneo–Christov (CC) theory for both heat and
mass fluxes, capturing relaxation phenomena in the
presence of bioconvective effects. Heat and mass
transport are modeled using the CC framework,
and nanoscale mechanisms are described via the
Buongiorno nanofluid model. The influences of
thermophoresis and Brownian motion are analyzed
alongside dissipative and radiative effects. The
Optimal Homotopy Asymptotic Method (OHAM)
is employed to solve the resulting nonlinear
equations. Graphical representations of key
parameters are presented. Results reveal that
the velocity profile increases with higher values
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of material parameters but decreases with an
increase in the Reynolds number. The temperature
decreases with higher Prandtl number but increases
with greater radiation parameter. The concentration
profile is found to decline with increasing Schmidt
number.

Keywords: modified fourier and fick’s law, third-grade
nano-fluid, MHD, viscous dissipation.

1 Introduction
Third grade (3rd) fluid is a subcategory of differential
types that can explain the impacts of both shear
thickening and thinning phenomena. The stability
of third grade (3rd) liquid is explored by Fosdick
and Rajagopal [1]. Viscoelastic mixed convective
flow is developed by Mastroberardino [1] caused by
stretchable surfaces. The study of thermodynamics
for the third grade (3rd) liquid with heat generation
has been done by Adesanya and Makinde [2]. Ellahi
and Riaz [3] systematically thought about third grade
(3rd) fluid flow with variable viscosity. Third grade
squeezing flow is securitized by Hayat et al. [4].
Sajid et al. [5] investigated the coating process of a
non-Newtonian material. Hayat et al. [6] evaluate
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Soret Dufour’s effects on third-grade fluid.

Nomenclature

u Velocity component along x-axis
v Velocity component along y-axis
a Stretching/shrinking constant
g Gravity
B0 Magnetic field constant
T Temperature
Tw Temperature of the wall
T∞ Ambient temperature of the nanofluid
C∞ Ambient concentration of the hybrid nanofluid
ρf Density of the fluid
ε Drag coefficient
νf Kinematic viscosity of the base fluid
µf Viscosity of the fluid
k∗ Porous medium permeability
Q Heat generation rates
DB Brownian motion
k∗ Absorption coefficient
DT Thermophoresis variable
α1,α2,α3 Material constant for third grade fluid
σ∗ Stefan Boltzmann constant
t Dimensionless temperature
ζ Similarity variable
qr Radiative heat flux
Pr Prandtl number
Rd Radiation variable
M Magnetic parameter
α∗1,α

∗
2,α
∗
3 Material Parameter for third grade fluid

M Magnetic parameter
αf Thermal diffusivity
S Ratio of rates
NB Brownian motion parameter
Sc Schmidt number
NT Thermophoresis parameter
δ Heat generation parameter
λ Mixed convection parameter
Ec Eckert number
γ Thermal relaxation variable
γ1 Solutal relaxation parameter
Cf Skin friction coefficient
Rex Reynold number

Nano fluids are produced by dispersing solid particles
of a nano-meter size into various conventional
liquids such as water, gasoline and ethylene
glycol respectively. Nano-liquids have numerous
applications in manufacturing and automotive
cooling, sensing, production of new types of fuels,
microelectronic cooling, hybrid-powered engine
efficiency and home appliance heating/cooling etc.
Choi [7] discovered the term nano fluid. The infusion
of metallic nano particles hooked on conventional
liquids would greatly improve the thermal efficiencies
of those liquids as explained by him. The Nano
fluid convective transportation model with the

Brownian and thermophoresis effects was analysed
by Buongiorno [8]. Non-effective Prandtl numbers by
considering nanoparticles and entropy analysis are
researched by Hayat et al. [9]. Entropy optimization
with different fluid models is studied by Ahmad et al.
[10].

Fourier heat conduction expression [11] give much
information about heat transfer through the flux. The
paradox of heat conduction is leads by this expression.
The Cattaneo [12] has revised the relation of thermal
relaxation time. Suggestions about the Oldroyed
upper convected derivatives should be considered in
Ref. [13, 14] instead of material differentiations are
given by Christov. Thermal variability in a porous
medium by the retentive Cattaneo-Christov (CC)
model is analysed by Haddad [15]. The impact of
Cattaneo-Christov model considering different fluid
models is discussed by some researchers [16–19].

Here, third grade (3rd) nano liquid flow towards
a stretchable sheet is discussed. Bio-convection,
radiative heat, dissipative impacts and heat generation
are also discussed. By using the optimal method [20–
23] obtained the analytical solution of the governing
equations. The results for various physical variables
are discussed through graphs.

The simultaneous study of generalized (non-Fourier,
non-Fick) heat and mass flux conditions inside
a mixed convective flow regime and nonlinear
third-grade nanofluid behavior is what makes this
work innovative. The integration of third-grade fluids
and nanofluid dynamics under nonlinear rheological
behavior has not been extensively studied, particularly
when generalized boundary conditions that take
into consideration thermal and solutal relaxation
effects are present. Furthermore, by considering
both buoyancy-driven and forced convective effects
both of which are crucial in real-world applications
including industrial heat exchangers, biomedical flows,
and electronic device cooling—this work integrates a
realistic description of mixed convection.

2 Physical Model
In this study, a two-dimensional (x, y) incompressible
non-Newtonian fluid flow over a stretching sheet is
considered. Both mixed convection and bioconvective
effects are taken into account. The sheet is stretched
along the x-axis with a linear stretching velocity Uw =
ax. The surface temperature and concentration are
denoted by Tw and Cw, respectively, while T∞ and C∞
represent the ambient temperature and concentration
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far from the surface. The free stream velocity outside
the boundary layer is represented byUe. The schematic
diagram of the flow configuration is illustrated in
Figure 1.

Figure 1. Flow geometry.

3 Formulation of governing equations
In this work, a mixed convective, laminar,
two-dimensional flow over a moving surface is
investigated. The analysis incorporates a third-grade
non-Newtonian fluid model in the presence of
gyrotactic micro-organisms. Heat and mass transport
are examined using the Cattaneo–Christov (CC) flux
model, which accounts for relaxation effects beyond
the classical laws. Furthermore, the influences of
Brownian motion and thermophoresis are considered
to capture nanoscale transport phenomena. Thermal
radiation and viscous dissipation are included as
additional heat sources in the energy equation.
The governing equations relevant to this study are
presented below.

∂u

∂x
+
∂v

∂y
= 0, (1)

u∂u∂x + v ∂u∂y = Ue
∂Ue
∂x + α1

ρ

(
∂u
∂x

∂2u
∂y2

+ u ∂3u
∂x∂y2

+ 3∂u∂y
∂2u
∂x∂y + v ∂

3u
∂y3

)
+α2

ρ

(
2∂u∂y

∂2u
∂x∂y

)
+ 6α3

ρ

((
∂u
∂y

)2
∂2u
∂y2

)
+ gβt(T − T∞) + gβt(C − C∞)

σQoQo

ρa u+ ν ∂
2u
∂y2

 ,

(2)

The relevant periphery conditions are:

u = Uw = ax, v = 0 at y = 0,
u = Ue = bxwhen y →∞

}
. (3)

Drag force is:

Cfx =

(
τw

ρf (Uw)2

)
, (4)

here:

τw =
(
µ∂u∂y

)
y=0

+

[
α1
ρ

(
u ∂2u
∂x∂y + 2∂u∂x

∂u
∂y + v ∂

2u
∂y2

)
+ 2α3

ρ

(
∂u
∂y

)3
]
y=0

.

(5)

The energy and concentration expression for
Cattaneo-Christove (CC) model are:

u∂T∂x + v ∂T∂y + δEΩE = α∂
2T
∂y2

+ τ

[
DB

∂C
∂y

∂T
∂y + DT

T∞

(
∂T
∂y

)2
]

+ Q
ρCp

(T − T∞)− 16σ∗T 3

3ρcpk1
∂2T
∂y2

+ µ
ρCp

(
∂u
∂y

)2

+ α1
ρCp

[(
u∂u∂y

∂2u
∂x∂y + v ∂u∂y

∂2u
∂y2

)]
+ 2 α3

ρCp

(
∂u
∂y

)4

 ,

(6)

here ΩE is given by:

ΩE = u∂u∂x
∂T
∂x + v ∂u∂y

∂T
∂y + u ∂v∂x

∂T
∂y + v ∂u∂y

∂T
∂x + 2uv ∂2T

∂y∂x + u2 ∂2T
∂x2

+ v2 ∂2T
∂y2

− Q
ρCp

(
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)
− µ

ρCp
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∂x∂y

∂T
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∂2T
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)
+2 τDT
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(
v ∂T∂y
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)
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(
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2T
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
.

(7)

u
∂C

∂x
+ v

∂C

∂y
+ δFΩF = DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2

}
, (8)

here ΩF is given as:

ΩF = u2 ∂2C
∂x2

+ u∂u∂x
∂C
∂x + u ∂v∂x

∂C
∂y + 2uv ∂

2C
∂x∂y

∂T
∂x + v ∂u∂y

∂C
∂x + v2 ∂2C

∂y2
+

v ∂v∂y
∂C
∂y −DB

(
u ∂3C
∂x∂y2

+ v ∂
3C
∂y3

)
− DT

T∞

(
v ∂

3T
∂y3

+ u ∂3T
∂x∂y2

) }
.

(9)

The relevant conditions are:

T → Tw at y = 0,
T → T∞ when y →∞,

}
. (10)

C → Cw at y = 0,
C → C∞ at y →∞,

}
. (11)
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In above equation DB ,DT denotes Brownian and
thermosphere quantity, (Q > 0) be the heat generation
rate, the Boltzmann constant is σ∗, k1 denote the
coefficient of mean absorption and the specific heat
is the Cp.

4 Non-Dimensional formulation
Considering transformations:

u = axf ′(η), v = −
√
aνf(η), t =

T − T∞
Tw − T∞

, J =
C − C∞
Cw − C∞

,

η =

√
a

ν
y

 ,

(12)

the eq. (1) is satisfied while others eqs. (2)-(11) are:

f ′′′ + ff ′′ − f ′2 + α∗1

(
f ′f

′′′ − f ′f ′′′ − f ′′′′f
)

+ (α∗1 + α∗2) f ′′f
′′

+6α∗3Ref
′′
f
′′
f
′′′

+ S2 +Mf ′ + λt+ λλcJ = 0

}
,

(13)

(1 +Rd) t
′′

+ Pr ∗γ1 ∗
(
ff ′t′ + f ′f ′t

′′ − δft′ − 2ff ′t
′′
)

+ Prft′

Pr ∗γ1 ∗ Ec ∗
(

2f ′f ′f
′′′ − ff ′′f ′′′

)
− Pr ∗γ1 ∗NB ∗ (ff ′J ′′ − fJ ′t′) + Pr ∗Ec ∗ α∗1

f ′f
′′
f ′′ + Pr ∗γ1 ∗ Ec ∗ α∗1

(
f ′f ′f

′′
+ ff

′′
f
′′ − ff ′f ′f ′′′

−2fff
′′′
f
′′′

+ ff ′f ′f
′′

)
+ Pr ∗Ec ∗ f ′′f ′′

Pr ∗γ1 ∗ Ec ∗ α∗3 ∗
(

4ff
′′
f
′′

+ ff
′′
f
′′′
)

+ Pr ∗Ec ∗ α∗1 ∗ ff
′′
f
′′′

+ 2Pr ∗Ec ∗ α∗3 ∗Re
f ′′f ′′f ′′f ′′ − Pr γ1NtJ

′′t′ − Pr γ1Rdft
′′ +NBt

′J ′ +Ntt
′t′ + Pr δt] = 0,


(14)

J ′′ + LefJ ′ + NB
Nt
t′′ − Leγ2[f2J ′′ + ff ′J ′]− γ2

NB
Nt
t′′ = 0

}
,

(15)

{
f(0) = 0, t(0) = 1, f ′(0) = 1, J(0) = 1
f ′(∞) = S, t(∞) = 0, J(∞) = 0,

}
. (16)

Dimensionless form of skin friction is given as:

√
RexCfx = f

′′
(0) + α∗1

(
3f ′(0)f

′′
(0)− f(0)f

′′′
(0)
)

+ α∗2

(
f
′′
(0)
)3
.

(17)

where Pr
(

=
µCp

k

)
is Prandtl number, Hartman

number M
(

= σMoMo
ρa

)
, ratio of rates is the S

(
= b

a

)
,

thermophoresis parameter Nt

(
= τDT (Tw−T∞)

νT∞

)
, the

radiation parameter is Rd

(
= 16σ∗T 3

∞
3k1k

)
, Schmidt

number is Sc
(

= ν
DB

)
, Brownian motion parameter

NB

(
= τDB(Cw−C∞)

ν

)
, the third grade fluid parameters

are
(
α∗1

(
= α1a

µ

)
, α∗2

(
= α2a

µ

)
, α∗3

(
= α3a

µ

))
, heat

generation parameter δ
(

= Q
ρCp

)
, λ
(

= gβt(Tw−T∞)
a

)
mixed convective parameter, Eckert number is
Ec(= U2

w
Cp(Tw−T∞)), thermal relaxation parameter

γ(= aδE) and solutal concentration parameter
γ1(= aδF ).

5 Methodology
We determined the series solutions by using homotopy
analysis:

εfk∗(hf ) =
1

N∗ + 1

N∗∑
j∗=0

∗

[
k∑
i=0

∗(fi)η=j∗Πη

]2

, (18)

εtk∗(hf , ht, hJ) =

1

N∗ + 1
∗

N∗∑
j∗=0

∗

[
k∗∑
i=0

∗(fi)η=j∗Πη,

k∗∑
i=0

∗(ti)η=j∗Πη,

k∗∑
i=0

∗(Ji)η=j∗Πη

]2

,

(19)

εJk∗(hf , ht, hJ) =

1

N∗ + 1

N∗∑
j∗=0

∗

[
k∗∑
i=0

∗(fi)η=j∗Πη,
k∗∑
i=0

∗(ti)η=j∗Πη,
k∗∑
i=0

∗(Ji)η=j∗Πη

]2

,

(20)

εt
∗
k∗ = εfk∗ + εtk∗ + εJk∗, (21)

where the total square residual error is represented
by εt∗k∗ . When S = 0.1, M = 0.2, Pr = 1.2, NB =
0.5, α∗1 = 0.1, α∗2 = 0.2, NT = 0.1, α∗1 = 0.3,
γ = γ1 = 0.2, Re = 0.1, Ec = 1.0, λ = 0.1 and
Da−1 = 0.4. Then the total usual squared residual
error is abated by employing Mathematica BVPh2.0.
The optimal values of convergence control variables
are hf = −0.816767, ht = −0.287548, hJ = 2.35602,
and hφ = −0.4562,. The total residual error is εt∗k∗ =
0.79552. The variation of the total residual error with
respect to the approximation order is illustrated in
Figure 2.

6 Discussion
6.1 Velocity Distribution:
Figure 3 illustrates the variation of the magnetic
parameter (M) on f ′(η), where f ′(η) increases with
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Table 1. Residual errors.

k∗ εfk∗ εtk∗ εJk∗

2 0.346508 0.016186 0.0881337
4 0.0326625 0.00574157 0.0198452
8 0.307458 0.00163756 0.00411318
10 0.300818 0.00104241 0.002397
12 0.029512 0.000708731 0.00159226
14 0.0290089 0.000506021 0.00119825

Figure 2. Total residual error.

M = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. Because magnetic
field produces resistive forces between fluid elements
therefore reduces velocity. Figures 4, 5, and 6 illustrate
the influence of α∗1, α∗2 and α∗3 respectively on velocity
profile. It displays that a inverse inclination is
followed by a transition at η = 1.5 when increase
of (α∗1 = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0) liquid velocity
trivializes adjacent the plate. On the fact material
variables are converse relation to viscosity. So,
increase in (α∗2 = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0) and (α∗3 =
1.0, 2.0, 3.0, 4.0, 5.0, 6.0) moderate the fluid viscosity
down and thus augment the liquefiedmotion. Figure 7
illustrates the influence of the Reynolds number (Re =
1.0, 2.0, 3.0, 4.0, 5.0, 6.0) on the velocity profile f ′(η). It
is observed that the fluid velocity f ′(η) decreases as
the Reynolds number increases. Figure 8 presents the
variation of f ′(η) with respect to the ratio parameter S.
As S increases, the fluid velocity also increases. This is
because a higher value of S corresponds to a stronger
ambient flow, which enhances the overall fluid motion.
The effect of the stretching parameter λ on the velocity
f ′(η) is shown in Figure 9. For higher of (λ) the f ′(η)
enhances. Physically viscous forces reduce for greater
estimation of (λ) and so velocity improves.

Figure 3. f ′ viaM .

Figure 4. f ′ via α∗1.

Figure 5. f ′ via α∗2.

6.2 Temperature Distribution:
Figure 10 examines the effect of the thermal generation
parameter δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 on the
temperature profile t(η), showing that temperature
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Figure 6. f ′ via α∗3.

Figure 7. f ′ via Re.

Figure 8. f ′ via S.

increases as δ increases due to enhanced heat
generation. Figures 11 and 12 indicate that higher
values of the material parameters α∗2 and α∗3, which
represent normal stresses and viscous forces, lead
to a decrease in temperature; this occurs because

Figure 9. f ′ via λ.

stronger material parameters reduce viscous forces
while increasing normal stresses. Figure 13 reveals
that a larger Prandtl number Pr results in a lower
temperature profile, since higher Pr values correspond
to reduced thermal diffusivity, thereby limiting heat
transfer from hot to cold regions. The influence
of the radiation parameter Rd on t(η) is shown in
Figure 14, where increasing Rd enhances radiative
heat transfer and raises the temperature. Figure 15
demonstrates that the temperature rises with higher
Eckert number Ec, as more kinetic energy is converted
into internal energy. Figure 16 highlights the role of the
heat relaxation parameter γ = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
showing that larger γ values delay heat transfer,
leading to reduced temperature. Lastly, Figure 17
shows that an increase in the Brownian motion
parameter NB contributes to a higher temperature
profile.

Figure 10. t via δ.
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Figure 11. t via α∗1.

Figure 12. t via α∗3.

Figure 13. t via Pr.

6.3 Nano-particles concentration:
Figure 18 reveals that the concentration J(η)
decreases with an increase in the Brownian motion
parameter NB . Physically, a higher NB intensifies

Figure 14. t via Rd.

Figure 15. t via Ec.

Figure 16. t via γ.

molecular collisions within the fluid, leading to
heat generation that, in turn, reduces concentration.
The influence of the thermophoresis parameter
NT = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 on J(η) is examined in
Figure 19, showing a notable increase in concentration
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Figure 17. t via NB .

Figure 18. J via NB .

Figure 19. J via NT .

as NT rises. Figure 20 illustrates the effect of the mass
relaxation parameter γ1, where higher values of γ1

reduce mass transfer from the fluid to the surface,
resulting in a decline in J(η). Figure 21 indicates
that the concentration profile also decreases with

Figure 20. J via γ1.

Figure 21. J via Sc.

Figure 22. Cf via α∗1 and α∗3.

increasing Schmidt number Sc, due to reduced mass
diffusivity. Figure 22 shows the downward trend
in wall shear stress with respect to the material
parameters α∗1 and α∗3; this occurs as their increase
leads to greater resistance at the wall, lowering shear
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Figure 23. Streamlines for the flow.

stress. Figure 23 presents the streamline structure
of the current flow field, providing insight into
the flow behavior. Lastly, Table 1 lists the average
squared residual errors corresponding to the optimal
convergence control factor εJk∗ = 2. The results
confirm that residual errors decrease as the order of
approximation increases, validating the convergence
of the proposed solution.

7 Concluding remarks
In this study, a comprehensive numerical investigation
has been carried out to explore the behavior of
nonlinear third-grade nanofluids under generalized
heat and mass flux conditions in a mixed convective
flow regime. The results highlight the significant
influence of fluid nonlinearity, nanoparticle
concentration, and relaxation parameters on the
thermal and concentration boundary layers.

The following are the main results:

1. M , α∗1, α∗2 and α∗3 are the higher estimations of the
fluid velocity while reduces via Da−1.

2. For higher radiation and thermal relaxation
parameters fluid temperature enhances.

3. Higher α∗1 and α∗3 lead to a rise in temperature.

4. Through (γ1) and (Sc) concentration reduces.

5. Drag force is reducing for larger estimation of α∗1
and α∗3.
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