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Abstract
Three-dimensional (3D) flow of a viscoelastic
fluid in the neighborhood of new family of
modified stagnation point depending on shear
to strain ratio over a flat surface is numerically
investigated. Similarity equations are obtained
from the fundamental conservation laws of
mass, momentum, energy and nanoparticle
concentration. The resulting set of nonlinear
equations are solved numerically using an implicit
finite difference scheme known as Keller-Box
Method. A comparative analysis for modified
Hiemenz flow, non-axisymmetric stagnation point
and axisymmetric stagnation point flow is carried
out. Velocity, temperature and concentration
profiles, skin frictions local Nusselt and Sherwood
numbers are graphically presented and their
variation with involved parameters is discussed in
detail. We found that velocity concentration and
temperature profiles increase by an increasing the
values ofWe.
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1 Introduction
Stagnation point flows with varied concrete outcomes
in industry and having ample applications in friction
reduction and transpiration cooling the cooling of a
nuclear reactor, phenomena of drag reduction, radial
diffusers, and thrust bearings, several theoretical
investigations have been reported bymany researchers.
Hiemenz [1] first addressed two dimensional flow of
Newtonian fluid in the stagnation region over a flat
plate. The same problem was discussed by Homann
[11] for axisymmetric stagnation point flow on a
smooth sheet. Lin et al. [17] perform a theoretical
analysis to discuss the effects of slip on boundary
layer flow of incompressible viscous fluid in the
neighborhood of the stagnation point on the flat plate.
Rott [22] analyzed two-dimensional, unstable, sticky,
incompressible flow in the vicinity of a stagnation
point over a plate. Libby [16] presented the study
of boundary-layer over an axi-symmetric stagnation
point flow. Gorla [8] investigated that the properties
of fluid dynamics of an axisymmetric stagnation
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point flow on a moving cylinder. Weidman et al.
[31] investigated the viscous fluid motion generated
by axisymmetric stagnation-point flow in a porous
medium. Takhar et al. [28] investigated the flow
when both the free stream velocity and velocity of
the cylinder vary arbitrarily with time, the unsteady
viscous flow in the vicinity of an axisymmetric
stagnation point of an infinite circular cylinder.
Ziabakhsh et al. [34] used a new analytical technique
called the homotopy analysis method (HAM), the
non-linear Brinkman equation for the stagnation-point
flow in a porous medium is analytically solved.
The numerical solution (NS) is compared with the
analytical results, and the comparison shows that there
is good agreement between the NS and HAM solution.
Weidman [30] investigated the impingement of two
axisymmetric stagnation-point flows on a spinning,
radially extending disc which are classical Homann
stagnation point flow and circular Argawal stagnation
flow. A disk surface velocity is obtained in the form
of logarithmic spiral by the combined effect of linear
radial stretching and uniform rotation. Sajid et al.
[25] studied the axisymmetric stagnation point flow of
viscous fluid over lubricant surface. Santra et al. [27]
analyzed the axisymmetric stagnation point flow of
viscous fluid and a thin non-Newtonian liquid coating
of variable thickness lubricates a flat surface against
which a Newtonian fluid impinges orthogonally.
Ishihara et al. [12] consider the axisymmetric
stagnation point flow of one fluid impinging on a disk
covered with a second fluid. A similarity reduction is
employed to reduce the governing PDEs to a nonlinear
ODE boundary value problem. Zhong et al. [33]
investigated the axisymmetric stagnation flow of an
incompressible viscous fluid on a body moving with
the oncoming flow at a time-dependent velocity.

The phenomenon of heat transfer is widely used in
industrial and biomedical applications, including the
cooling of electronic equipment, the cooling of nuclear
reactors, the production of electricity, the conduction
of heat through tissues, and many more. Wang [29]
observed some forced convection cooling processes
a coolant is impinged on a continuously moving
plate and discussed the fluid dynamics and heat
transmission near the stagnation point. Conduction
of heat with constant suction, injection and Homann
hydro magnetic flow has been examined by Attia
[5]. Saleh et al. [26] investigated the axial velocity
and uniform normal transpiration in a moving pipe,
together with the viscous flow and conduction of
heat around an axisymmetric stagnation point flow.

The impinging unbounded stream has an unvarying
strain rate and is steady. In this problem, the
Navier-Stokes equations and the energy equation
have an exact solution. Also when the cylinder’s
axial velocity and its temperature of its wall flow
fluctuate which defined functions that depends upon
time, the general self-similar solution is achieved.
Rahimi [21] examined the time dependent viscous
flow and heat transfer around an axi-symmetric
stagnation point flow on a tube with changing degree
of velocities. Mahabaleshwar et al. [18] investigated
the time dependent flow of a Newtonian fluids via
a stagnation point caused by a straight surface with
mass transpiration, the effects of magneto hydro
dynamic (MHD) and thermal radiation are taken
into consideration. Theoretically, they discussed the
properties of heat impinging on the surface.

Flows of Non-Newtonian fluids have been investigated
by the several researchers under various conditions
because of their occurrence in the engineering and
industrial processes. Such fluids are specifically quite
common in the process ofmanufacturing coated sheets,
foods, optical fibers, drilling muds, plastic polymers,
etc. It is well known that all the non-Newtonian
fluids cannot be described by a single constitutive
relationship in view of their diverse characteristics.

Hence several models of non-Newtonian fluids have
been suggested. The non-Newtonian fluids have been
mainly classified into three types which are called the
differential, the rate and the integral. Out of these, the
differential type fluids have been attractedmuch by the
researchers. A simplest subclass of differential type
model is called a second-grade fluid.

Barış et al. [6] solved the steady three-dimensional
flow of a second grade fluid near the stagnation
point flow over an infinite plate. The plate is
moving parallel to itself with uniform velocity.
Nawaz et al. [20] discussed the second grade fluid
with magnetohydrodynamics stagnation point flow
and heat transfer over a radially stretching sheet.
Moreover, the flow problems are analyzed with
Newtonian heating, Soret and Dofour effects. Ahmad
et al. [10] solved the problem of axisymmetric
stagnation-point flow of second grade fluid over a
lubricated surface in the presence of heat transfer.
The lubricant assumed to have a thin layer of
variable thickness which allows a partial slip over
the surface and obeys the constitutive relationship
of a power law fluid. Hayat et al. [9] presented the
second-grade fluid’s magnetohydrodynamic (MHD)
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stagnation point flow over a stretching cylinder in
this study with heat and mass transfer. Also they
investigated the effects of Joule heating and viscous
dissipation. Saif et al. [24] examined the flow
of second-grade nanomaterial towards a nonlinear
stretching surface with varying surface thickness.
The melting heat and mixed convection effects are
used to investigate the heat transfer process in the
presence of Brownian motion and thermophoresis
effects. Ariel [3] discussed the time independent
axisymmetric laminar flow of second grade fluid on
a radially stretching surface. Ariel [4] investigated
the stagnation point flow of second grade fluid in
two dimension. A boundary value problem that
has differential equations of order one more than
there are possible boundary conditions governs the
flow. Ariel [2] analyzed the numerical algorithm
of laminar two-dimensional flow of a second grade
fluid near a stagnation point and the flow of second
grade fluid over a stretching surface in the presence
of porous medium. Labropulu et al. [15] considered
the constant two-dimensional stagnation-point flow
of a fluid with slip condition. Sahoo et al. [23]
studied an incompressible, electrically conducting,
non-Newtonian second-grade fluid impinging on a flat
plate of constant axisymmetric flow and heat transfer.

To get the best thermal characteristics for nanoparticles
with uniform dispersion and stable suspension in
a base fluid, nano fluids are crucial. Due to their
significance, nano fluids are frequently used in many
engineering and industrial projects. They are also
utilized in microelectronics, heat exchangers, nuclear
reactors, space technology, the plastics industry,
biomedical technology and ships. Nadeem et
al. [19] noticed that the axisymmetric flow of
a second-grade nanofluid with varying viscosity
in the neighborhood of stagnation point in the
presence of Cattaneo-Christov double diffusion model.
An electrically conducting nanofluid’s unsteady 3D
non-axisymmetric Homann flow is investigated when
buoyant forces are present by Khan et al. [13].
Khan et al. [14] analyzed the non-axisymmetric
Homann stagnation-point flow of Walter’s B nanofluid
in the occurrence of a time-independent free stream
is taken into account, together with magneto hydro
dynamic (MHD) and non-linear Rosseland thermal
radiation. Additionally, Buongiorno’s model analyses
the important effects of motion.

2 Flow Model
Three dimensional modified Hiemenz flow of
viscoelastic fluid over a flat plate is conceded. The
Buongiorno’s nano fluid model is used to intricate
the impacts of thermophoresis and Brownian motion.
The Cartesian coordinate system (x, y, z) is taken
in such a way z = 0 represents the surface of the
plate maintained at constant temperature Tw and
constant concentration Cw the fluid occupied the
space z > 0 and the rheology of the fluid is specified
by the stress tensor τ = −PI + µA1 + α1A2 + α2A

2
1

with the thermodynamic constrants µ ≥ 0, in which
P represents the pressure A1 and A2 are kinematic
tensors α1 and α2 represents the normal stress moduli.
A detail discussion on the restriction on these
parameters is available in the literature we follow
Dunn et al. [7] and we used µ ≥ 0, α1 ≥ 0 and
α1 + α2 = 0 thermodynamic conditions in the sub
sequential analysis. In the absence of body forces the
governing equations utilizing conservation laws of
mas, momentum, energy, nanoparticle concentration
and convective diffusion equation are In the potential
region velocity components are u = λ1x, v = λ2y, z =
−az. The equations governing the present flow are:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)

X-component:

ρ

[
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂p

∂x

+ µ

[
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y
+
∂2u

∂z2
+

∂2w

∂x∂z

]
+
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α1


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, (2)
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∂x

∂2w

∂x∂z
− 2

∂w

∂y

∂2w

∂y∂z



,

(4)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

k

(ρC)f

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+

(ρC)p
(ρC)f

[
DB

(
∂T

∂x

∂C

∂x
+
∂T

∂y

∂C

∂y
+
∂T

∂z

∂C

∂z

)
+
DT

Tm

(
∂T

∂x
+
∂T

∂y
+
∂T

∂z

)2]
,

(5)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Dm

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
+
DmKT

Tm

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
,

(6)

where µ is the viscosity of the fluid, α1 is material
moduli, u, v and w = velocity components in the
x, y and z directions; T is fluid temperature, k is
thermal conductivity of the fluid, ρ is density of
fluid, cp is specific heat capacity, Tm shows mean
fluid temperature, Dm is mass diffusivity, DT is
the thermophoresis diffusion, DB is the Brownian
diffusion coefficient and C is the concentration.
The fluid traveling with ambient velocity velocities
mentioned above and imping on the fixed sheet
having surface temperature Tw and concentration Cw
therefore the velocity components, temperature and
concentration satisfy the no-slip boundary conditions.

u = 0, v = 0, w = 0, T = Tw, C = Cw at z = 0

u = ax+ by, v = bx, w = −az, T = T∞, C = C∞ at z →∞

}
,

(7)

as mention by Weidman [32] the velocity components
along x-axis and y-axis for the far field can be written
in matrix form as

[
u
v

]
=

[
a b
b 0

] [
x
y

]
(8)

and these velocities (u′, v′) along the principle axis
(x′, y′) can be written in matrix form as

[
u′

v′

]
=

[
λ1 0
0 λ2

] [
x′

y′

]
(9)

λi(i = 1, 2) are the Eigen values. In (x′, y′, z′) system
the velocity components can be expressed as (u′, v′, w′)
and there expressions for outer potential flow can be
written as (u′, v′, w′) = (λ1x

′, λ2y
′,−az′) where λi(i =

1, 2) = a
2

(
1±

√
1 + γ2

)
. γ is the is the ratio of strain

rate and shear rate of the Hiemenz stagnation point
flow. After dropping prime the boundary conditions
written in Equation (7) can be written in the form
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u = 0, v = 0, w = 0, T = Tw, C = Cw at z = 0

u = λ1x, v = λ2y, w = −az, T = T∞, C = C∞ at z →∞

}
,

(10)

3 Physical Quantities of Interests
At the surface of the plate shear stress and local Nusselt
number and Sherwood number are given by:

τx =

[
µ
∂u

∂z
+ α1

(
u
∂2u

∂y∂z
+ w

∂2u

∂z2
+
∂u

∂x

∂u

∂z
− ∂u

∂z

∂w

∂z

)]
z=0

,

(11)

τy =

[
µ
∂v

∂z
+ α1

(
v
∂2v

∂y∂z
+ w

∂2v

∂z2
+
∂v

∂x

∂v

∂z
− ∂v

∂z

∂w

∂z

)]
z=0

,

(12)

Nux =
xqw

k(Tw − T∞)
, where qw = −

[
k
∂T

∂z

]
z=0

,

(13)

Shx =
xmw

D(Cw − C∞)
, andmw = −

[
D
∂T

∂z

]
z=0

,

(14)

3.1 Similarity Transformations
Weidman [32] suggested that by introducing the
following transformations one obtained the set of
ordinary differential equations which give rise the
modified Hiemenz stagnation point flow.

u(x, y, z) = λ1xf
′
(η), v(x, y, z) = λ2yg

′
(η), w(z) = −

√
ν

a
[λ1f(η) + λ2g(η)]

θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞

 ,

(15)

where η =
√
a/νz is dimensionless independent

variable. Applying these transformations Equation
(1) identically satisfy and Equations (2)-(6) takes the
form


(
1 +

√
1 + 4γ2

2

)(
1 + ff ′′ − f ′2

)
+ f ′′′ +

(
1−

√
1 + 4γ2

2

)
gf ′′



+We


(
1 +

√
1 + 4γ2

2

)(
2f ′f ′′′ − ff iv + 3f ′′2

)
−

(
1−

√
1 + 4γ2

2

)
gf iv


= 0,

(16)


(
1−

√
1 + 4γ2

2

)(
1 + gg′′ − g′2

)
+

(
1 +

√
1 + 4γ2

2

)
fg′′ + g′′′



+We


(
1−

√
1 + 4γ2

2

)(
2g′g′′′ − ggiv + 3g′′2

)
−

(
1 +

√
1 + 4γ2

2

)
fgiv


= 0,

(17)

θ′′ + Pr

((
1 +

√
1 + 4γ2

2

)
f +

(
1−

√
1 + 4γ2

2

)
g

)
θ′

+Nb Pr θ
′φ′ +Nt Pr θ

′2 = 0,

(18)

φ′′ +
Nt

Nb
θ′′

+ Sc

((
1 +

√
1 + 4γ2

2

)
f +

(
1−

√
1 + 4γ2

2

)
g

)
= 0,

(19)

where We = α1a/νρ signifies Weissenberg number,
Pr = ν/α indicates the Prandtl number, Schmidt
number is Sc = ν/Dm, Nt = DT /Tm(Tw − T∞)/ντ
represents the parameter of thermophoresis andNb =
DB(Cw − C∞/ν)τ depicts the Brownian diffusion
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parameter. It is worth to mention here that Equation
(19)-(19) reduces for the simple viscous fluid ifWe =
0). Further equations for Non-axisymmetric Homann
stagnation point can be reduces if the similarly
variables reported by Weidman [30] can be used in
this case Equations (2)-(6) takes the form

[
(1 + γ)

(
1 + ff ′′ − f ′2

)
+ f ′′′ + (1− γ)gf ′′

]

+We

[
(1 + γ)

(
2f ′f ′′′ − ff iv + 3f ′′2

)
− (1− γ)gf iv

]
= 0,

(20)

[
(1− γ)

(
1 + gg′′ − g′2

)
+ (1 + γ)fg′′ + g′′′+

]

+We

[
(1− γ)

(
2g′g′′′ − ggiv + 3g′′2

)
− (1 + γ)fgiv

]
= 0,

(21)

θ′′ + Pr ((1 + γ)f + (1− γ)g) θ′ +Nb Pr θ
′φ′ +Nt Pr θ

′2 = 0,
(22)

φ′′ +
Nt

Nb
θ′′ + Sc ((1 + γ)f + (1− γ)g) = 0, (23)

Moreover for γ = 0 the above equations
(20)-(23) corresponds for axi-symmetric flow. The
corresponding no-slip conditions in new transformed
form are

f(0) = 0, g(0) = 0, f ′(0) = 0, g′(0) = 0, θ(0) = 1, φ(0) = 1,

f ′(∞) = 1, g′(∞) = 1, θ(∞) = 1, φ(∞) = 1,

f ′′(∞) = 0, g′′(∞) = 0,
(24)

And the pressure field for the second grade fluid is

p = p0 − ρ


λ21x

2

2
+
λ22y

2

2

+ ν

{
(λ1f + λ2g)

2

2a
+
(
λ1f

′ + λ2g
′)}


+ α1ρ
a

ν

[(
λ1xf

′′)2 + (λ2yg′′)2]

+ α1ρ


5

2
λ21f

′2 +
5

2
λ21g
′2 + 3λ1λ2f

′g′

+

∫ η

0
(λ1f + λ2g)

(
λ1f

′′′ + λ2g
′′′) dη

 ,
(25)

In new variables wall shear stresses local Nusselt and
Sherwood numbers can be read as

τx =

(
1 +

√
1 + 4γ2

2

)
ν

1
2 ρa

3
2 f ′′(0)x,

τx =

(
1−

√
1 + 4γ2

2

)
ν

1
2 ρa

3
2 g′′(0)y,

(26)

Nux = −θ′(0)
√
Rex, µx = −φ′(0)

√
Rex, (27)

4 Solution by Keller Box Method
In the first step, the higher order differential equations
are converted into first order ordinary differential
equations. For this we assume

f ′ = m, (28)

m′ = n, (29)

n′ = o, (30)

From our assumption (11) takes the form

− ko′(AAf +BBg) + n′ +AA
(
fn−m2 + 1

)
+BB(gn) + kAA

(
2mo+ 3n2

)
= 0,

(31)

g′ =M, (32)

M ′ = N, (33)

N ′ = O, (34)

So (12) takes the form

− kO′(AAf +BBg) +N ′ +BB
(
gN −M2 + 1

)
+AA(fN) + kBB

(
2MO + 3N2

)
= 0,

(35)

θ′ = l, (36)
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l′ +Pr(AA+BBg)l+Nb Pr(lp) +Nt Pr l
2 = 0, (37)

φ′ = p, (38)

p′ +
Nt

Nb
l′ + Sc(AAf +BBg)p = 0, (39)

f(0) = 0

g(0) = 0

m(0) = 0

M(0) = 0

m(∞) = 0

M(∞) = 0

n(∞) = 0

N(∞) = 0

θ(0) = 1

φ(0) = 1

θ(∞) = 0

φ(∞) = 0



, (40)

4.1 Discritization Using Central Difference
Approximation

ηj = ηj−1 + hj , ηJ = η∞ (41)

hj = ηj − ηj−1 (42)

In the first step, we discretized the equations from (28)
to (39) using central difference approximation: the
resulting equations are nonlinear equations. In the
second step, Newton’s linearization scheme is used to
make above equations linear.

δfj − δfj−1 − hj
(
δm+ δmj−1

2

)
= r1 (43)

δgj − δgj−1 − hj
(
δMj + δMj−1

2

)
= r2 (44)

ξ1δfj + ξ2δfj−1 + ξ3δmj + ξ4δmj−1 + ξ5δnj

+ ξ6δnj−1 + ξ7δoj + ξ8δoj−1 + ξ9δgj + ξ10δgj−1

+ ξ11δMj + ξ12δMj−1 + ξ13δNj + ξ14δNj−1 + ξ15δOj

+ ξ16δOj−1 + ξ17δθj + ξ18δθj−1 + ξ19δlj + ξ20δlj−1

+ ξ21δφj + ξ22δφj−1 + ξ23δφj + ξ24δφj−1 = r3
(45)

ψ1δfj + ψ2δfj−1 + ψ3δuj + ψ4δuj−1 + ψ5δvj

+ ψ6δvj−1 + ψ7δwj + ψ8δwj−1 + ψ9δgj + ψ10δgj−1

+ ψ11δMj + ψ12δMj−1 + ψ13δNj + ψ14δNj−1

+ ψ15δOj + ψ16δOj−1 + ψ17δθj + ψ18δθj−1

+ ψ19δlj + ψ20δlj−1 + ψ21δφj + ψ22δφj−1

+ ψ23δpj + ψ24δpj−1 = r4
(46)

δmj − δmj−1 − hj
(
δnj + δnj−1

2

)
= r5, (47)

δnj − δnj−1 − hj
(
δoj + δoj−1

2

)
= r6, (48)

δMj − δMj−1 − hj
(
δN + δNj−1

2

)
= r7, (49)

δNj − δNj−1 − hj
(
δOj + δOj−1

2

)
= r8, (50)

δθj − δθj−1 − hj
(
δl + δlj−1

2

)
= r11, (51)

δφj − δφj−1 − hj
(
δpj + δpj−1

2

)
= r12, (52)

where,

r1 = fj−1 − fj + hj

(
mj+mj−1

2

)
,

r2 = gj−1 − gj + hj

(
Mj+Mj−1

2

)
,

r3 = k

(
AA

2
(fj + fj−1) +

BB

2
(gj + gj−1)

)
(oj − oj−1)

+ nj−1 − nj − hjAA
(
fj + fj−1

2

)(
nj + nj−1

2

)
+ hjAA

(
mj +mj−1

2

)2

− hjAA

− hjBB
(
gj + gj−1

2

)(
nj + nj−1

2

)
− 2hjkAA

(
mj +mj−1

2

)(
oj + oj−1

2

)
− khjAA3

(
nj + nj−1

2

)2

,
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r4 = k

(
AA

2
(fj + fj−1) +

BB

2
(gj + gj−1)

)
(Oj −Oj−1)

+Nj−1 −Nj − hjBB
(
gj + gj−1

2

)(
Nj +Nj−1

2

)
+ hjBB

(
Mj +Mj−1

2

)2

− hjBB

− hjAA
(
fj + fj−1

2

)(
Nj +Nj−1

2

)
− 2hjkBB

(
Mj +Mj−1

2

)(
Oj +Oj−1

2

)
− khjBB3

(
Nj +Nj−1

2

)2

,

r7 = mj−1 −mj + hj

(
nj + nj−1

2

)
,

r8 = nj−1 − nj + hj

(
oj + oj−1

2

)
,

r9 =Mj−1 −Mj + hj

(
Nj +Nj−1

2

)
,

r10 = Nj−1 −Nj + hj

(
Oj +Oj−1

2

)
,

r11 = θj−1 − θj + hj

(
lj + lj−1

2

)
,

r12 = φj−1 − φj + hj

(
pj + pj−1

2

)
,

ξ1 = −
k

2
AA (oj − oj−1) +

AA

4
hj (nj + nj−1) = ξ2,

ξ3 = −
hj
2
AA (mj +mj−1) + kAA

hj
2

(oj + o) = ξ4,

ξ5 = 1 +
AA

4
hj (fj + fj−1) +

BB

4
hj (gj + gj−1) +

k
hj
2
AA (nj + nj−1) ,

ξ6 = −1 +
AA

4
hj (fj + fj−1) +

BB

4
hj (gj + gj−1) +

k
hj
2
AA (nj + nj−1) ,

ξ7 = −k
2
AA (fj + fj−1) −

k

2
BB (gj + gj−1) +

kAA
hj
2

(mj +mj−1) ,

ξ8 =
k

2
AA (fj + fj−1) +

k

2
BB (gj + gj−1) +

kAA
hj
2

(mj +mj−1) ,

ξ9 = −
k

2
BB (oj − oj−1) + hj

BB

4
(nj + nj−1) = ξ10,

ψ1 = −
k

2
AA (Oj −Oj−1) + hj

AA

4
(Nj +Nj−1) = ψ2,

ψ9 = −
k

2
BB (O −Oj−1) + hj

BB

4
(Nj +Nj−1) = ψ10,

ψ11 = −
hj
2
BB (Mj +Mj−1) + k

hj
2
BB (Oj +Oj−1) =

ψ12,

ψ13 = 1 + hj
BB

4
(gj + gj−1) + hj

AA

4
(fj + fj−1) +

k
hj
2
BB (Nj +Nj−1) ,

ψ14 = −1 + hj
BB

4
(gj + gj−1) + hj

AA

4
(fj + fj−1) +

k
hj
2
BB (Nj +Nj−1) ,

ψ15 = −k
2
AA (fj + fj−1) −

k

2
BB (gj + gj−1) +

k
hj
2
BB (Mj +Mj−1) ,

ψ16 =
k

2
AA (fj + fj−1) +

k

2
BB (gj + gj−1) +

k
hj
2
BB (Mj +Mj−1) ,

λ1 = Prhj
AA

2

(
lj + lj−1

2

)
= λ2,

λ9 = Prhj
BB

2

(
lj + lj−1

2

)
= λ10,

λ19 = 1 + Prhj
AA

2

(
fj + fj−1

2

)
+

Prhj
BB

2

(
gj + gj−1

2

)
+ Nb Pr

hj
2

(
pj + pj−1

2

)
+

Nt Prhj

(
lj + lj−1

2

)
,

λ20 = −1 + Prhj
AA

2

(
fj + fj−1

2

)
+

Prhj
BB

2

(
gj + gj−1

2

)
+ Nb Pr

hj
2

(
pj + pj−1

2

)
+

Nt Prhj

(
lj + lj−1

2

)
,

λ23 = Nb Pr
hj
2

(
lj + lj−1

2

)
= λ24,

β1 = Schj
AA

2

(
pj + pj−1

2

)
= β2,

β9 = Schj
BB

2

(
pj + pj−1

2

)
= β10,
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β19 =
Nt

Nb
, β20 = −

Nt

Nb
,

β23 = 1 + Schj
AA

2

(
fj + fj−1

2

)
+

Schj
BB

2

(
gj + gj−1

2

)
,

β24 = −1 + SchjAA

(
fj + fj−1

2

)
+

Schj
BB

2

(
gj + gj−1

2

)
.

The linearized equations are expressed in block matrix
form i.e. block-tridiagonal structure

Aδ = R, (53)

where,

A =


[U1] [V1]
[U2] [V2] [W2]

· · ·
... . . . ...

· · · [Uj−1] [Vj−1] [Wj−1]
. . . [Vj ] [Wj ]

 , δ =



δ0
δ1
δ2
...
...
δj−1
δj


, B =



r1
r2
r3
...
...

rj−1
rj


,

(54)
where Ui, Vi andWi are matrices of order 12× 12 the
block elimination method with forward and backward
methods are used to solve this system.

5 Graphical Discussion and Results
By applying Keller box method, the numerical
solution of system of nonlinear equations with
nonlinear boundary conditions are approximated for
various values of involved parameter. Emphasis
has been given to the second grade parameter
Weissenberg number We, Nb Brownian motion
parameter, Nt thermophoresis parameter, Prandtl
number Pr, Schmidt number Sc and ratio of strain rate
and shear rate of Hiemenz stagnation point flow. Also
comparative analysis is discussed for Axisymmetric,
Non-axisymmetric and modified Hiemenz stagnation
point flow.

5.1 Velocity
The behaviour is observed for γ = 0 and γ = 2.
It is clear that from Figure 1, at a particular point
of η, f ′(η), the velocity along x axis increases with
the increase of We. Since We is the ratio of elastic

Figure 1. Influence of We on velocity profile f ′(η) other
parameters are Nt = 0.1, Nb = 0.5, Sc = 0.9,Pr = 3 and

γ = 0, 2, 3.

Figure 2. Influence of We on velocity profile g′(η) other
parameters are Nt = 0.1, Nb = 0.5, Sc = 0.9,Pr = 3 and

γ = 0, 2, 3.

forces to viscous forces, so because of their elasticity,
viscoelastic fluids may store and release energy. The
elastic effects grow more clear as theWe number rises,
allowing the fluid to store more energy. The fluid’s
velocity may increase as a result of the stored energy.
Comparative analysis also describes that for the case
of Axisymmetric stagnation point the velocity is rises
faster as compared to the corresponding velocity
profiles for the case of non-axisymmetric andmodified
Hiemenz stagnation point flow of second grade fluid.
Figure 2 shows the variation in velocity profile g′(η),
with η, for different values of Weissenberg number.
It is clear from Figure 2, at a particular point of η,
g′(η), the velocity along x axis increases with the
increase of We. When We = {0.4, 0.6, 0.8} then for
the case of modified Hiemenz stagnation point flow,
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Figure 3. Effect of different values of γ on Velocity Profile
f ′(η)when other parameters are

Nt = 0.1, Nb = 0.5, Sc = 0.9,Pr = 3 andWe = 0.3.

Figure 4. Effect of different values of γ on Velocity Profile
g′(η)when other parameters are

Nt = 0.1, Nb = 0.5, Sc = 0.9,Pr = 3 andWe = 0.3.

the velocity is greater as compared to the velocity
profiles of non-axisymmetric stagnation point and
axisymmetric stagnation point flow. Figure 3 shows the
similarity profiles f ′(η) for different positive values of
γ. The profile for γ = 0, is the axisymmetric stagnation
point flow. The critical value for γc = 1.1482 displayed
as a dashed line in the velocity where g′′(0) = 0. The
velocity f ′(η) along y axis is increases by increasing the
large values of γ. Also Figure 4 shows the similarity
profiles for g′(η) for different positive values of γ. The
profile forwhich g′′(0) = 0, for γc = 1.1482 is plotted as
dashed line. The velocity g′(η) along x axis is increases
by increasing the large values of γ.

5.2 Temperature Profile
The effects of Weissenberg numberWe on the velocity
distributions are presented in Figure 5 shows the

Figure 5. Effect of Nb on θ(η) other parameters are
Nt = 0.3, Sc = 1,Pr = 3 andWe = 0.5.

Figure 6. Effect of Nt on θ(η) other parameters are
Nb = 0.9, Sc = 1,Pr = 3 andWe = 0.5.

Figure 7. Effect of Pr on θ(η) other parameters are
Nt = 0.1, Nb = 0.5, Sc = 0.1 andWe = 0.6.

influence of Brownian motion Nb against θ(η). Due
to the fact that temperature is a measurement of the
average kinetic energy of the molecules in a system,
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Figure 8. Effect of Sc on θ(η) other parameters are
Nt = 0.5, Nb = 0.9,Pr = 3 andWe = 0.5.

Figure 9. Effect of We on θ(η) other parameters are
Nt = 0.5, Nb = 0.5,Pr = 2 and Sc = 0.1.

an increase in Brownian motion contributes to an
increase in systemic temperature. The particles’ kinetic
energy is effectively increased as they move faster
quickly and collide more energetically, transferring
some of their energy to the suspended particles. The
temperature rises as a result of the increased kinetic
energy. So, higher the Brownian motion the quantity
of temperature is rises. Comparative analysis also
describes that for the case of Axisymmetric stagnation
point the temperature is exceeded as compared to the
corresponding temperature profiles for the case of
non-axisymmetric and modified Hiemenz stagnation
point flow of second grade fluid. Figure 6 shows
the influence of Thermophoresis motion Nt against
θ(η). It is clear from Figure 6, at a particular point
of η, θ(η), the temperature along y axis increases
with the increase of Nt. When a fluid containing
suspended particles is subjected to a temperature
gradient, the particles feel a net force that pushes them

from hot to cold areas of the fluid. The increase in
temperature caused by the increase in thermophoresis
is not a direct result of particle thermophoretic motion.
Instead, it is the outcome of energy transfer that occurs
during particle movement. Comparative analysis also
illustrates that for the case of non-axisymmetric and
modified Hiemenz stagnation point flow of second
grade fluid the temperature profiles are smaller than
the temperature of Axisymmetric stagnation point
flow. Figure 7 shows the influence of Prandtl number
Pr against θ(η). Figure 7, at a particular point of
η, θ(η), the temperature along y axis decreases with
the increase of Pr. The thermal conductivity of the
fluid decreases as the Prandtl number rises, and
hence the temperature decreases. This is because
a lower thermal diffusivity, indicated by a greater
Prandtl number, means that heat transfer through
the fluid occurs more slowly. Comparative analysis
indicates that the temperature profile for axisymmetric
stagnation point is smaller as compared to temperature
profiles for non-axisymmetric stagnation point and
modified stagnation point flow of second grade fluid
by the increment in Prandtl number. The graphical
relationship between the temperature profile θ(η)
and the Schmidt number Sc is shown in Figure 8.
It shows that at a particular point of η, θ(η), the
temperature along y axis increases with the increase
of Sc. Schmidt number is the ratio of viscous
to molecular diffusion rate. When the Schmidt
number is increased then a large viscous diffusion
rate is observed. As a result, temperature profiles
starts to grow. Comparative analysis indicates that
the temperature profile for axisymmetric stagnation
point is rises fast as compared to temperature
profiles for non-axisymmetric stagnation point and
modified stagnation point flow of second grade
fluid by the increment of Schmidt number. Figure
9 shows the influence of Weissenberg number
We against θ(η). It shows that at a particular
point of η, θ(η), the temperature along y axis
increases with the increase of Weissenberg number
We. Comparative analysis indicates that the
temperature profile for axisymmetric stagnation point
is rises fast as compared to temperature profiles
for non-axisymmetric stagnation point and modified
stagnation point flow of second grade fluid by the
increment of Weissenberg number.

5.3 Concentration Profile
Figure 10 shows a graphical representation of the
concentration profile φ(η) for various values of the
Nb. Normally, the Brownian movement constraint Nb
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Figure 10. Effect of Nb on φ(η) other parameters are
Nt = 0.4, Sc = 1,Pr = 3 andWe = 0.5.

Figure 11. Effect of Nt on φ(η) other parameters are
Nb = 0.9, Sc = 0.1,Pr = 3 andWe = 0.5.

Figure 12. Effect of Pr on φ(η) other parameters are
Nt = 1, Sc = 1, Nb = 0.9 andWe = 0.5.

which arises due to the presence of nanoparticles. The
concentration profile φ(η) gradually decreases as Nb
increases for axisymmetric, non-axisymmetric and

Figure 13. Effect of Sc on φ(η) other parameters are
Nt = 0.9, Nb = 1,Pr = 4 andWe = 0.2.

Figure 14. Effect ofWe on φ(η) other parameters are
Nt = 0.1, Nb = 0.2,Pr = 3 and Sc = 3.

modified Hiemenz stagnation point flows. Actually,
the nanoparticles are pushed by the Brownian
effect in the direction of the concentration gradient.
Lower the solutal field of nano fluid, larger the
Brownian motion variable. Comparative analysis
indicates that the temperature profile for modified
Hiemenz stagnation point is greater as compared
to concentration profiles for non-axisymmetric
stagnation point and axisymmetric stagnation point
flow of second grade fluid by the increment of Nb.
Figure 11 shows a graphical representation of the
concentration profile φ(η) for various values of Nt.
For axisymmetric, non-axisymmetric and modified
Hiemenz stagnation point, it can be shown that
the concentration profile φ(η) rise with the higher
amount of thermophoresis variable Nt. Physically,
the thermophoresis phenomenon arises as a result of
nanoparticles moving from hot region to cold region
which causes the resulting nanoparticle’s percentage

78



ICCK Journal of Applied Mathematics

to rise. Comparative analysis indicates that the
concentration profile for modified Hiemenz stagnation
point is greater as compared to concentration
profiles for non-axisymmetric stagnation point and
axisymmetric stagnation point flow of second grade
fluid by the increment of Nb. Figure 12 captured
the notable effect of Pr on the concentration profile
φ(η). As the value of dimensionless Prandtl number
Pr increases the concentration profile φ(η) increases
because the thermal boundary layer is closely related
to the concentration profile. The concentration
gradient across this layer is likewise steeper with
larger Prandtl numbers because the thermal boundary
layer is smaller. As a result, as the Prandtl number
rises, the concentration profile grows more quickly.
Through comparison, we notice that the amount
of mass transfer is small in non-axisymmetric and
modified stagnation point than the axisymmetric
stagnation point.

The physical features of Schmidt number Sc and
solutal field φ(η) are described in Figure 13. As the
value of dimensionless Sc increases, the solutal field
gradually starts decreasing for all three cases. Schmidt
number is the ratio of viscous to molecular diffusion
rate. When the Schmidt number is increased and the
fluid concentration drops, a large viscous diffusion
rate is observed. As a result, concentration profiles
start to decline. Comparative analysis depicts that the
concentration profile for modified Hiemenz stagnation
point is greater as compared to concentration
profiles for non-axisymmetric stagnation point and
axisymmetric stagnation point flow of second grade.
The physical features of Weissenberg numberWe and
solutal field φ(η) are described in Figure 14. The
concentration profile φ(η) is growing by increasing the
values ofWeissenberg numberWe. The distribution of
solute or dispersed particles within the fluid is referred
to as the concentration profile. The fluid is undergoing
greater rates of shear and elastic deformation when
the Weissenberg number rises. Although the
behavior of viscoelastic fluids can be complicated,
in general, a higher Weissenberg number results
in more prominent elastic effects and flow-induced
structure development. The concentration profile
may be significantly impacted by these flow-induced
structures.

5.4 Skin Friction
Figure 15 shows the behavior of Weissenberg number
on the velocity profiles f ′′(0) and g′′(0). It is seen that
an increase inWe reduces the wall shear stress. The

Figure 15. Influence ofWe on velocity profile f ′′(0) and
g′′(0).

viscoelastic behavior of the fluid is enhanced by the
stronger elastic effects as theWeissenberg number rises.
When viscoelastic fluids deform, they have the capacity
to store and release energy, altering the flow behavior.
Longer relaxation times and a higher degree of elastic
deformation are indicated by a rise in the Weissenberg
number. Therefore, when the Weissenberg number
rises, the flow is more affected by elastic processes,
resulting in a fluid with lower effective viscosity
and lower wall shear stress than in purely viscous
flow. Comparative analysis indicates that the wall
shear stress in non-axisymmetric stagnation point flow
rapidly exceeds that of the modified stagnation point
flow of second grade fluid (see Table 1).

5.5 Heat Transfer

Figure 16. Influence ofWe on velocity profile f ′′(0) and
g′′(0) other parameters are Nt = 0.5, Nb = 0.5, Sc = 0.9

and Pr = 3.
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Table 1. Comparison result for f ′′(0) and [g′′(0)] for various values of γ andWe. Dashes (–) indicate that the value is not
applicable or not computed.

We γ Axisymmetric Non-Axisymmetric Modified Hiemenz

0.00001 0 1.31195 – –
[1.31195] – –

0.1 1.28304 – –
[1.28304] – –

0.5 1.2035 – –
[1.2035] – –

1 – 1.6173261 1.4690242
– [0.67356834] [0.06313222]

2 – 1.9345877 1.7981013
– [0.10774733] [-0.403979]

3 – 2.1825311 2.0587613
– [-0.31044393] [-0.686853]

Figure 17. Influence ofWe on velocity profile θ′(0) other
parameters are Nt = 0.5, Nb = 0.5, Sc = 0.9 and Pr = 3.

Figure 18. Influence of Nb on velocity profile θ′(0) other
parameters are Nt = 0.4,We = 0.3, Sc = 0.9 and Pr = 3.

Figure 19. Influence of Nt on velocity profile θ′(0) other
parameters areWe = 0.3, Nb = 0.8, Sc = 0.9 and Pr = 3.

Figure 20. Influence of Pr on velocity profile θ′(0) other
parameters are Nt = 0.5, Nb = 0.8, Sc = 1 andWe = 0.3.

5.6 Mass Transfer
Figure 16 depicts the effect of dimensionless parameter
We (Weissenberg number) on the local Nusselt
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Table 2. Comparison result of θ′(0) and φ′(0) for different values of Pr, γ,We, Sc,Nb and Nt. Dashes (–) indicate that the
value is not applicable or not computed.

We γ Pr Nb Nt Sc Axisymmetric Non-axisymmetric Modified Hiemenz

0.00001 0 1 0.9 0.5 0.5 0.432568 – –
[0.543449] – –

0.1 0.425155 – –
[0.534946] – –

0.5 0.405484 – –
[0.513243] – –

1 – 0.481211 0.413012
– [0.635692] [0.524302]

2 – 0.547341 0.530011
– [0.699907] [0.648106]

3 – 0.634535 0.632623
– [0.79405] [0.76957]

2 1.5 – 0.545993 0.535725
– [0.725473] [0.668277]

2 – 0.524563 0.519602
– [0.760885] [0.69958]

3 – 0.460584 0.463058
– [0.839507] [0.772374]

0.6 – 0.509104
– [0.874389] [0.50737]

0.7 – 0.348233 0.456949
– [0.89506] [0.552957]

0.8 – 0.300837 0.408831
– [0.907107] [0.584616]

0.4 – 0.331977 0.443127
– [0.877014] [0.573753]

0.6 – 0.272871 0.377253
– [0.940416] [0.600574]

0.8 – 0.225219 0.3215
– [1.01349] [0.644565]

0.3 – 0.39501 0.412677
– [0.484123] [0.401172]

3 – 0.124736 0.124196
– [1.62777] [1.57339]

5 – 0.101964 0.10074
– [1.92883] [1.87644]

number Nux(Rex)−
1
2 . Here local heat transfer rate

is the decreasing function ofWe. This is due to a few
factors. First, the fluid flow can be restricted by elastic
forces, slowing the rate of heat transfer. Second, the
fluid may develop a "skin" close to the heat transfer
surface as a result of the elastic stresses, which can also
slow down the rate of heat transmission. Third, the
fluid may have a more complicated flow pattern as a
result of the elastic forces, which could make it harder
for heat to pass from the surface to the fluid. As a result

of these considerations the local heat transfer rate
will decrease as the Weissenberg number rises. The
influence of Brownian motion Nb on the local Nusselt
number Nux(Rex)−

1
2 is displayed in Figure 17. It is

clear that local heat transfer rate is decreasing function
of Brownian motion Nb. The temperature gradient at
the surface is decreased as a result of the increased
Brownian motion, which leads the nanoparticles to
diffuse away from the hot surface because of this
the local heat transfer coefficient slows down as the
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Figure 21. Influence of Sc on velocity profile θ′(0) other
parameters are Nt = 0.3, Nb = 0.7,We = 0.3 and Pr = 3.

Figure 22. Influence ofWe on velocity profile φ′(0) when
other parameters are Nt = 0.5, Nb = 0.5, Sc = 0.9 and

Pr = 3.

Figure 23. Influence of Nb on velocity profile φ′(0) when
other parameters are Nt = 0.4,We = 0.2, Sc = 0.9 and

Pr = 0.4.

Brownian motion parameter rises. Figure 18 depicts
the the influence of Thermophoresis motion Nt on the
local Nusselt number Nux(Rex)−

1
2 . We can observed

Figure 24. Influence of Nt on velocity profile φ′(0) when
other parameters are Nb = 0.8,We = 0.2, Sc = 0.9 and

Pr = 0.4.

Figure 25. Influence of Pr on velocity profile φ′(0) when
other parameters are Nb = 0.8,We = 0.2, Sc = 0.9 and

Nt = 0.4.

Figure 26. Influence of Sc on velocity profile φ′(0) when
other parameters are Nt = 0.4,We = 0.2,Pr = 0.4 and

Nb = 0.8.

that local heat transfer rate is the decreasing function
of parameter of Thermophoresis motion Nt. Since, the
inverse relationship exist between local heat transfer
rate and thermophoresis motion. So, local heat transfer
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decreases by an increasing the thermophoresis motion
parameter. The particles in the fluid are more likely
to move the heated surface when thermophoresis
motion increases. As a result, there will be a small
number of particles available to transmit heat away
from the surface, which will slow down the rate of
heat transfer. Figure 19 displayed the effect of Prandtl
number Pr on the local Nusselt number Nux(Rex)−

1
2 .

It is clear that the wall heat transfer rate is the
decreasing function of Pr. The rate at which heat is
transferred from a surface to a fluid passing by it is
known as the local heat transfer rate. It is a Prandtl
number’s function, and it gets smaller as the Prandtl
number rises. This is because a higher Prandtl number
indicates that the fluid is more viscous, which causes
the heat to flow through the fluid to take longer. The
local heat transmission rate is consequently reduced.
The graphical relationship between the local Nusselt
number Nux(Rex)−

1
2 and the Schmidt number Sc is

shown in Figure 20. We can observed that the wall heat
transfer is decays when Schmidt number increases. As
the Schmidt number increases, the Nusselt number
decreases so local heat transfer rate decays. A higher
Schmidt number indicates that the fluid diffuses more
slowly. As a result a lower local heat transfer rate
is achieved since it will take longer for the heat to
flow from the fluid’s surface to its inside. Figure 21
illustrates the effect of the strain-to-shear ratio γ on the
local Nusselt number Nux(Rex)−

1
2 . It is observed that

an increase in γ leads to a reduction in the local heat
transfer rate, as the altered flow dynamics induced by
the strain-to-shear ratio affect the thermal boundary
layer, thereby reducing the efficiency of heat transfer
from the surface to the fluid.

From comparative analysis, we can conclude
that by increasing the dimensionless parameters
Pr,We, Sc,Nb and Nt the wall heat transfer rate is
larger in non-axisymmetric stagnation point flow than
the modified Hiemenz stagnation point flow of second
grade fluid.

Figure 22 displays the effects of We on the local
Sherwood number Shx(Rex)−

1
2 . We can see that

local mass transfer rate is the decreasing function of
Weissenberg numberWe. The elastic forces become
more dominant by increasing theWeissenberg number,
which may prevent the ability of the fluid to transfer
mass. This is because the fluid may become more
structured as a result of the elastic forces, which
makes it more challenging for the fluid molecules to
move around and interact with one another. As a

result, the Weissenberg number rises, the local mass
transfer rate will decrease. Figure 23 displays the
effects of parameter of Brownian motion Nb on the
local Sherwood number Shx(Rex)−

1
2 . Here local mass

transfer rate is increasing function ofNb. A larger local
mass transfer rate will result from stronger Brownian
motion, which is indicated by a higher value of Nb.
Because of this the stronger Brownian motion will
cause the nanoparticles to move more quickly between
phases. The nanoparticles move erratically (random)
due to Brownian motion. More collisions and more
mass transfer will take place when Brownian motion
becomes stronger. Because of this, Brownian motion
Nb and the local mass transfer rate are both rising
functions.

Figure 24 shows the effects of parameter of
Thermophoresis motion Nt on the local Sherwood
number Shx(Rex)−

1
2 . It is clear that rate of transfer of

mass is the increasing function of Brownian motionNb.
There is an increase in the local mass transfer rate by
increasing the thermophoresis motion because as Nt
increases, thermophoresis becomes faster, which leads
to to an increase in the migration of nanoparticles to
the surface and a steeper concentration gradient near
the surface. This both contribute to an increase in the
local mass transfer rate. The graphical relationship
between the local Sherwood number Shx(Rex)−

1
2

and the Prandtl number Pr is shown in Figure 25.
We can see that the rate of transfer of mass is an
increasing function of Prandtl number Pr. There
is a direct relationship between local Sherwood
number Shx(Rex)−

1
2 and the Prandtl number Pr. A

larger Prandtl number means that the diffusivity
of momentum is low. This means that the fluid
will have a harder time resisting the forces that are
driving the mass transfer, so the rate of mass transfer
will also rise. The influence of Schmidt number
Sc on the local Sherwood number Shx(Rex)−

1
2 is

displayed in Figure 26. We can observed that the rate
of transfer of mass is an increasing function of Schmidt
number Sc. A greater Schmidt number causes steeper
concentration gradients close to the interface, which
in turn promotes quicker mass transfer across the
boundary or interface. As a result, the wall mass
transfer rate is an increasing function of the Schmidt
number.

From comparative analysis, we can conclude that
by increasing the dimensionless parameters Pr, Sc,
Nb, and Nt, the wall mass transfer rate is larger
in non-axisymmetric stagnation point flow than the
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modified Hiemenz stagnation point flow of second
grade fluid, while themass transfer rate decreases with
increasing We. The numerical results presented in
Table 2, validate the effects of these parameters on the
local Sherwood number.

6 Main Findings
• The velocity f ′(η), concentration and temperature

profiles increases by an increasing the values of
We.

• The velocity g′(η) decreases by an increasing the
values ofWe.

• By increasing Brownian parameter Nb, the
temperature is increased while opposite behavior
is achieved for concentration.

• By increasing thermophoresis parameter Nt, both
concentration and temperature profiles rises.

• For large values of Prandtl number Pr, the
temperature is declined while opposite behavior
is achieved in concentration.

• The temperature is exceeds for increasing values
of Schmidt numberSc, while concentration profile
is declined.

• The wall shear stresses f ′′(0) and g′′(0) are
decreasing function ofWe.

• The local heat transfer rate is an decreasing
function of Nb,Nt,We, SC and Pr.

• The local mass transfer rate is an increasing
function of Nb,Nt, SC and Pr while opposite
trend is obtained forWe.
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