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Abstract

In this article, we specially focused on rhombus
silicate molecular structure.  Graph is a data
structure for describing complex systems, which
contains a set of objects and relationships. A
molecular graph, also known as a chemical graph,
is a graph-theoretic representation of the structural
formula of a chemical compound used in chemical
graph theory and mathematical chemistry. A
chemical graph is a labelled graph whose edges
represent covalent bonds and vertices represent the
atoms. A set of vertices (atoms) of a graph G
is known as its dominating set with respect to
the vertices, if every vertex other than that set is
adjacent to some vertex in set. The vertex and edge
dominating sets, total domination and chromatic
number of rhombus silicate structure has been
discussed in this article.
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1 Introduction

A graph G(V, E) with vertex set V and edge set £ is
connected if there exists a connection between any pair
of verticesin G. A network is simply a connected graph
having no multiple edges and loops. A chemical graph
is a graph whose vertices denote atoms and edges
denote bonds between that atoms of any underlying
chemical structure. The degree of a vertex is the
number of vertices that are connected to that fixed
vertex by the edges. In a chemical graph, the degree
of any vertex is at most 4.

Graph theory is used for mathematical gearing
of the chemical compound in order to get deep
unsightly observation of sensible properties of
chemical compounds. Physical properties just like
boiling point, are interconnected to the 3-dimensional
structure of the chemical compounds. Chemical bonds
are symbolized as edges and atoms symbolised as
vertices in the graph. A graph can be recognised as a
sequence of number, a matrix, a numeric number or
a polynomial and these representations are uniquely
defined for a graph [1].

To understand the whole network its essential to know
about the basics of silicate structure S:0, tetrahedron.
Silicates [12] are the largest most interesting and the
most complex mineral type structure. SiO, is the
fundamental unit of silicate [8]. When all the silicon
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nodes are deleted from a Si0, tetrahedron molecule,
the obtained structure is an oxide structure.

Mathematical study of domination in graph theory
began around 1960’s. We discuss results related to
domination of rhombus silicate molecular structure
[16]. We also provide some fundamental definitions
about graph in general, followed by a discussion of
domination in graphs [3, 6, 11].

Chemical graph theory, often known as molecular [21]
topology, is an interdisciplinary subject that uses graph
theory to explore molecular structures. It makes an
effort to pinpoint the structural elements involved in
correlations between structure-property and activity
relationships [20], utilising methods from graph
theory, set theory, and statistics. The classification of
molecules and modelling of unidentified structures
with desired features are made possible by topological
characterisation of chemical structures.

2 Domination Graphs

In this section, we discuss about the vertex and edge
domination sets, total domination of graphs.

2.1 Vertex Domination

The concept of dominating sets with respect to the
vertices [14, 15, 17, 18] is defined as a set D of vertices
in a graph G = (V, E) is a dominating set if every
vertex v € V is a member of D or adjacent to the
member other than D however, the member of subset
D is not adjacent to each other. A dominating set D is
a minimal dominating set if no proper subset D’ C D
is a dominating set. The vertex domination number
T(G) of a graph G is the minimum cardinality of a
dominating set of G [10]. We call such a set as Y-set
of G.

Figure 1. Domination number & total domination number
of peterson graph.

2.2 Total Domination

The total domination number T; of a graph is the
magnitude of a smallest total dominating set [2, 7],

where a total dominating set is a set of vertices of the
graph such that all vertices (counting those in the set
itself) have a neighbor in the set. Total dominating
number [6] are defined for connected graphs.

For example, in the Peterson graph [5] illustrated
above, T'(P) = 3. Since the set S = {1,2,9} is a least
possible dominating set, as shown in Figure 1(a), while
T:(p) = 4 because S* = {4,8,9,10} is the minimum
total dominating set as shown in Figure 1(b).

For undirected simple graph G with no multiple edges,
the total vertex domination number 7" and vertex
domination number T satisfies [12]:

T <T, <2(T).

Figure 2. Edge domination.

2.3 Edge Dominating Set

Arumugam and Velammal [4] proposed the idea of
edge domination number of graphs. If a subset of the
edges of the graph S contain disjoint lines or disjoint
edges of graph G, then S is known as edge dominating
set. The edge domination number 7”(G) of the graph
G is the minimum cardinality taken over all the edge
dominating sets of graph.

The above Figures 2(a) and 2(c) shows the connected
edge dominating number and Figure 2(b) shows the
minimum edge dominating sets and Figure 2(d) are
the dominating sets but not the dominating numbers
because their cardinalities are equal to 4, which is
not the least dominating set according definition. For
literature about chromatic numbers, see [9].

In this section, we discuss the method of finding
chromatic number of Rhombus type networks.

By far the most intriguing mineral class is silicate.
Metal oxides or metal carbonates are fused with sand
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to produce these. As a basic unit, Si0, tetrahedra can
be found in all silicates [22]. The corner vertices of the
510, tetrahedron represent oxygen ions in chemistry,
while the centre vertex represents silicon ions. In
graph theory, the corner vertices are referred to as
oxygen nodes, while the centre vertex is referred to
as a silicon node. Different silicate structures can
be obtained by arranging the tetrahedron silicate in
different ways. Similarly, different silicate structures
build different silicate networks [23]. Figure 3 depicts
a three-dimensional rhombus silicate network of
dimension 2. In general, the vertices and edges of a
rhombus silicate of dimension n are 5n? + 2n and 12n?
respectively [13].

A

4

Figure 3. Rhombus silicate network Rh.SI(2).

3 Algorithm for Graph Vertex Coloring

There is no well organized algorithm for coloring of
the nodes in simple graph with least number of colors.
The following algorithm is studied for locating the
chromatic number of the graph G.

e Color first vertex with any color, say C;. Then,
color the remaining (n — 1) vertices one by one,
by observing the following these instructions:

e Selecta vertex and colored it with unadapted color
of its adjacent vertices.

o If the has been adapted, then choose the next color
for the vertex.

o If selected colors have been utilized, then allot
a new or unused color to the presently chosen
vertex.

3.1 Chromatic Number

The node colouring of a simple graph G with &
(minimum number of colors) colours is the process
of assigning colour to each of the node of G such that
adjacent nodes does not have the identical colours. The
chromatic number of a graph G is denoted by T(G).
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4 Results for Rhombus Silicate Molecular
Structure

In the following theorems, we computed the vertex and
edge dominating sets, total domination and chromatic
number of rhombus silicate structure.

Theorem 4.1. For G be the Rhombus silicate network
RhSI(n), the domination number Y(G) = n?, where
n € N,

Proof. By using mathematical induction:
Forn = 1itis T(G) = 1 = n?, correct.

We have to add at the right hand side one, below one,
and at the corner right below also one vertex: 1 + 1 +
1+1=4.

Step induction assumption: For n = k holds T'(G)) =
k. The “dimension" of Rhombus silicate network as
the number of vertices existing in every side of the
network as shown in Figures 3 and 4. Thus the n =
k-network has k vertices at every side.

A_A_A__A

Figure 4. Rhombus oxide silicate network Rh.SI(4).

Step induction proof: We claim that for n = k+1 holds
T(G) = (k+ 1)

We can look for the Rhombus type network in the cases
k and k + 1: the step to k + 1 needs additional vertices:
We have to add at the right hand side k, below £, and at
the corner right below still one vertex: k> +k+k+1 =
(k+1)2 O

Theorem 4.2. Let G be a rhombus silicate network
RhSI(n), the T'(G) = 3n? + 3n, wheren € N.

Proof. To prove the statement first of all we have
to determined the edge domination number [4]
separately for each dimension by using the definition
of edge domination. Dimension wise the sequence
of edge domination is: 3,9,18,30,45,--- so on
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respectively. As red lines in Figure 4 represents the
edge domination number of 4-Dimension of Rhombus
oxide silicate network which can also be written as
RhSI(4). Now with the help of this sequence we
proceeds toward the required result.

Step I Find the first difference between terms:

9-3=6,18—9=9,30— 18 = 12,45 — 30 = 15

Step II Find the second difference between terms:

9-6=3,12-9=3,15—12=3

Therefore, there is a common second difference of
+3. We can therefore conclude that this is a quadratic

sequence of the form:
T, = un? + vn + w

(1)

Step III Determine general term to find u,v,w for

equation (1). We look first three terms in the sequence.

n=1:Ti=u+v+w
n=2:T,=4u—+2v+w
n=3:T3 =%+ 3v+w

We know that, T = 3,75, = 9,75 = 18

n=1:3=u+v+w
n=2:9=4u+2v+w
n=3:18=%u+3v+w

(2)
(3)
(4)

Subtract equation (2) from Equation (3), we have

Th—-T1 = 4du+2v+w—(ut+v+w)
9—-3=4u—-—u+2v—v+w—w

6 =3u+v (5)

Subtract equation (3) from equation (4), we have

T35—-T, = 9u+3v+w— (4u+2v+ w)
1I8—9=9u—4u+3v—2v+w—w

9 =5u+v (6)

Subtract equation (5) from equation (6), we have

9—-6=5u+v— (3u+v)
3=bu—3u+v—w

3=2u
3
°_—u
2

Put the value of v in equation (5), we have

Put values of u and v in equation (2)

53,3,
TV
w=20

Now put values of u, v and w in equation (1)

3 3
Tn:fn2—|—fn+0

2 2
Gy =3n2a 3
:>T(G)—2n +2n

Hence, this is the required result for edge domination
number of Rhombus Silicate network RhSI(n). O

Theorem 4.3. Let G be a rhombus silicate network
RhSI(n), the T¢(G) = 2n? — 1, where n € N.

Proof. Let G = RhSI(n), for total dominating set,
we are looking for the least cardinality subset of G,
such that the elements of subset, adjacent to itself
as well as to the elements other than that subset as
shown in Figure 6. For first dimension, the vertex total
domination number is 1.

By using mathematical induction.

For: RhSI(1)

T(G) =1
Which can also be written in the form: T;(G) =2 —1
TH(G)=2(1)2 -1

Base Case (n=1): Consider RhSI(1). As shown in
Figure 5, the minimal total dominating set requires
only one vertex. This vertex is adjacent to all other
vertices in the network, satisfying the total domination
condition. Thus: YT;(G) = 2n? — 1

The result is true for n = 1.

By using the principal of induction. Suppose Y;(G) is
correct for any n = k € W. That is, RhSI(k) = 2k? — 1
represents an integer.

Now, we want to show that for RhSI(k + 1). For n =
k -+ 1, the statement becomes:

RhSI(k+1)=2k+1)2—1=2k>+4k+2—1
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As 2k? + 4k + 1, k € W. Hence, both the conditions
are satisfied, we conclude that the given statement is
true Vn € N. O

Figure 5. Vertex total domination of rhombus silicate
network RASI(1).

A__A_A__A

X X X_X
X XX X
X_X_X_X

VVVV

Figure 6. Vertex total domination of rhombus silicate
network RhSI(n) (T+(G).)

Theorem 4.4. For Rhombus Silicate Network RhSI(n),
the chromatic number is 4.

Proof. Case I
For RhSI(1)

Supposed that we have 1-dimension of Rhombus
silicate network. To determine the chromatic number
we need to colour all the vertices in such manner that
adjacent vertices not having the selfsame colour. To
fulfill such requirement their are minimum 4 colour to
be needed for the colouring of the network. As shown
in Figure 7.

Case II For RhSI(2)
Suppose that, we have 2-dimension of Rhombus

silicate network. To determine the chromatic number

90

cl

c4 c3 o2

c2 C

cl

Figure 7. Colouring of RhSI(1).

we need to colour all the vertices in such manner that
adjacent vertices not having the same colour. To fulfill
such requirement their are minimum 4 colour to be
needed for the colouring of the network. As shown in
Figure 8.

Figure 8. Colouring of RhSI(2).

Case I1I
For RhSI(3)

Supposed that we have 3-dimension of Rhombus
silicate network. To determine the chromatic number
we need to colour all the vertices in such manner that
adjacent vertices not having the identical colour. To
fulfill such requirement their are minimum 4 colour to
be needed for the colouring of the network. As shown
in Figure 9.

e Blue— C1.
e Black— C2.
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A__A__A

X_X_X
X_X_X

VVV

Figure 9. Colouring of RhSI(3

e Red — C3.
e Green— C4.

So, it is proved that to colour Rhombus silicate network
Colouring of RhSI(n). we need minimum 4 different
colours in such manner that adjacent vertices not
having identical colour and the statement is true for
alln e N. O

5 Results for Rhombus Hex Derived network
of type 3 Molecular Structure

In the following theorems, we computed the vertex and
edge dominating sets, total domination and chromatic
number of rhombus silicate structure.

Theorem 5.1. For every n, if n is a natural number, then
for RhH DN3(n) network Y (G) is

Proof. Case I

Assume that n = 1 than, by definition of domination
number we find only 3 vertices in 1%t dimension of
RhHDN3(n) which fulfill all the requirements of
dominating vertices. Therefore, Y(G) = 3 for n = 1.

Case I1

For n = 2 With out any lose of generality, by using the
basic concept of domination we are locating for a subset
of minimum vertices which satisfied the criteria of
domination. In this case their are minimum 8 vertices
as shown in Figure 9 the blue vertices. Mathematically,
can be written as:

The structure of RhH DN3(2) is shown in Figure 10.
Through systematic analysis, we identify that the
minimum dominating set consists of 8 vertices, as
indicated by the blue vertices. These vertices are
strategically positioned such that every vertex not in
the set is adjacent to at least one vertex in the set,
satisfying the domination condition.

A__A

N4

Figure 10. RhH D N3 (2

The cardinality calculation yields:
T(G)=8=2x4=2(2)?%=2n

This result aligns with the proposed formula for n > 2.

Case 111

Forn > 2

Assume that n = 3 By using definition of domination
number we get minimum 18 vertices which dominates
the system. As shown in Figure 11 the blue vertices
can be represented in mathematic form as:

1
T(G) =2(9) = 2(3)* = 2n?

For the third dimension, Figure 12 illustrates the
structure of RhH D N3(3). By applying the domination
criteria, we determine that the minimum dominating
set requires 18 vertices, as marked in the figure. This

result validates the general formula:
T(G) =18 =2x 9 =2(3)? = 2n?

The pattern established in lower dimensions continues
to hold for n = 3.

Concluding Remarks: By the observation of above
three cases, the given statement is true for all n € N.
In RhH DN3(n), which is the required result. O
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A\

Figure 11. RhHDN5(1).

A__A

AL X

Theorem 5.2. Let edge domination Y'(G) of RhH D N3(n)
is 3n? + n, iff the sequence of dimensions of RhH D N3(n)

A XX

WWW

Figure 12. RhHDN5(3

is4,14,30,52, - -.

Proof. Consider the sequence of RhHDN3(n) is

4,14,30,52, - - -. Now we have to prove that the edge

domination Y/(G) = 3n? + n.

Step I Find the first difference between terms:

14 —4=10,30 — 14 = 16,52 — 30 = 22

Step II Find the second difference between terms:

So, there is a common second difference of +6. We can
therefore conclude that this is a quadratic sequence of

the form:

92

16 — 10 = 6,22 — 16 = 6

Tn:un2+vn—|—w

(7)

Step III Determine general term to find w, v, w for
equation (7). We look first three terms in the sequence.

n=1TT=ut+v+w
n=2:Ty=4u+2v+w
n=3:1T3 =9+ 3v+w
We know that, 77 = 4,7y = 14,73 = 30
n=1:4=u+v+w
n=2:14=4u+2v+w
n=3:30=9%u+3v+w

Subtract equation (8) from equation (9).

Th—T=4u+2v+w— (u+v+w)
—4d=4u—-—u+2v—v+w—w
10 =3u+wv

Subtract equation (9) from equation (10).

T3—-T» = u+3v+w— (du+2v+w)

(8)
9)
(10)

(11)

30—14=9% —4u+3v—2v+w—w

16 =5u+ v

Subtract equation (11) from equation (12).

16 —10 =b5u+v — (3u+v)
6=5u—3u+v—w
6 =2u

3=u
Put the value of v in equation (11).
10=3(3) 4+ v
1=v
Put values of u and v in equation (8).
4=03)+(1)+w
w =10
So, put values of u, v and w in equation (7).
T, = 3n%+n
= Y'(G)=3n*+n
Hence, this is the required result.

Converse:

(12)
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Now we have to that the converse of the statement
also exist. So, we assume that the general for edge
domination Y'(G) = 3n? + n of RhH DN3(n), where
n=1,2,34,

For n=1

Applying the formula Y'(G) 3(1)2
This result is visually confirmed in Figure 13, which
demonstrates the edge domination set for RhH DN3(1)
consisting of exactly 4 edges that satisfy the edge
domination criteria.

T(G) =31 +1=Y(G)=4

Figure 13. Dominating edges of RhH DN3(1).

For n=2

The edge domination pattern for RhHDN3(2) is
illustrated in Figure 14. The diagram clearly shows
14 edges that form a minimal edge dominating set,
confirming the computational result:

T(G)=3(2)?2+2=12+2=14

This exact correspondence between the formula
and the visual representation in Figure 14 strongly
supports the validity of the general formula.

For n=3

The complexity of edge domination in higher
dimensions is demonstrated in Figure 15, which shows
the minimal edge dominating set for RhH DN3(3). The
configuration consists of exactly 30 edges, validating
the computational result:

T(G)=3(3)*+3=27+3=30

+1 = 4.

A\

A X

N4

Figure 14. Dominating edges of RhH D N3 (2

The precise alignment between the formula and the
visual evidence in Figure 15 confirms the pattern for
n=3.

A__A__A

XX
£ XX

WWW

Figure 15. Dominating edges of RhH D N5(3

Forn=4

T(G) =3(4)* + 4= T/(G) =52

By the variation of n we get the sequence of terms : 4,
14, 30, 52,... which is our required sequence. Hence
the conversed of the given statement is also true. [

Theorem 5.3. For RhH D N3(n), the total domination is
Y(G) = 4n% — 1, where n € N.

Proof. Let G = RhHDN3(n) is the set of whole
vertices, than for the total domination. we are locating
for the least cardinality subset of G(V') such that the
elements of subset adjacent to them self as wall as
to the elements other than that subset. By using
mathematical induction.
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For: RhHDN3(1)

T:(G)=3

According to the general formula:Y;(G) = 4n* — 1
than, T;(G) = 4(1)% —
T(G)=4-1
T(G)=3

1

3=3(Trueforn=1)

(By using the principal of induction)let us imagine that
T(G) is accurate for any n = kelW. Thatis, RhSI(k) =
4k? — 1 represents an integer.

Now we want to show that RhH DN3(k + 1) is also an
integer. For n = k + 1,the statement becomes:

RRHDN3(k +1) = 4(k +1)* — 1
=4(K*+2k+1) -1
= 4k?+8k+4—1
As 4k2 + 8k + 3 is also an integer because we know

that k € W. Since both the conditions are satisfied, we
conclude that the given statement is true Vn € N.  [J

Theorem 5.4. For Rhombus Network RhH DN3(n), the
chromatic number is 3.

Proof. Case I

For RhH DNs(1)

Now we have to determine the chromatic number of
1-dimension. We need to colour all the vertices in such
manner that no adjacent vertex having the identical
colour. To fulfill such requirement their are minimum

3 colour to be needed for the colouring of the network,

as shown in Figure 16.
Case II
For RhHDN3(2)

Suppose that, we have 2-dimension of network. To
determine the chromatic number we need to colour
all the vertices in such manner that no adjacent vertex
having the selfsame colour. To fulfill such requirement
their are minimum 3 colour to be needed for the
colouring of the network, as shown in Figure 17.

Case III For RhSI(3).

Suppose that, we have 3-dimension of network. To
determine the chromatic number [19] we need to
colour all the vertices in such manner that no adjacent
vertex having the selfsame colour. To fulfill such

94

Figure 16. Colouring of RhH DN35(1).

A\

AL

A4

Figure 17. Colouring of RhH DN3(2

AA__A__A

AL X
AL X

WWW

Figure 18. Colouring of RhHDN3(3

requirement their are minimum 3 colour to be needed
for the colouring of the network, as shown in Figure 18.

e Blue— C1.
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e Black— C2.
e Red — C3.

So, it is proved that to colour the network Colouring of
RhH DN3(n). we need minimum 3 different colours
and the statement is true for all n € N. O

6 Conclusion

In this article, we focused on rhombus silicate
molecular structure. Graph is a data structure for
describing complex systems, which contains a set
of objects and relationships. A molecular graph,
also known as a chemical graph, is a graph-theoretic
representation of the structural formula of a chemical
compound used in chemical graph theory and
mathematical chemistry. A chemical graph is a
labelled graph whose edges represent covalent bonds
and vertices represent the atoms. A set of vertices
(atoms) of a graph G is known as its dominating
set with respect to the vertices, if every vertex other
than that set is adjacent to some vertex in set. The
vertex and edge dominating sets, total domination and
chromatic number of rhombus silicate structure has
been discussed in this article.
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