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Abstract
This study investigates the magnetohydrodynamic
(MHD) flow of Boger tri-hybrid nanofluid
(tri-HNF) through a stretching disk. A novel
machine learning technique, specifically the
Levenberg–Marquardt (LM) scheme under a
backpropagated artificial neural network (ANN),
is used to predict the flow dynamics with heat and
mass transfer. The Cattaneo-Christov mass and
heat fluxes model, permeable media, and viscous
dissipation are considered. The well-known
Brinkman-Hamilton and Crosser model is used to
describe thermal conductivity and viscosity models.
The computational solution to the current problem
has been obtained using the Bvp4c approach, which
is based on finite differences. In order to examine
the numerical solutions and anticipated outcomes,
LM-BNN uses a numerical dataset that is split into
three categories: 15% for testing, 70% for training,
and 15% for validation. Regression analysis, surface
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stresses, error histogram, correlation index, heat and
mass transfer, and mean squared error-based fitness
curves, which range from 10−10 to 10−8 are used to
validate the consistency and efficacy of LM-BNN.
The findings suggest that the velocity profile
declines with the magnetic and relaxation time
ratio parameter. The temperature and concentration
decrease with thermal and solutal relaxation
parameters. The heat and mass transfer rates are
significant for solvent viscosity and nanomaterials
load.

Keywords: boger fluid, modified fourier’s and fick’s
laws, MHD, permeable medium, artificial intelligence, soft
computing.

1 Introduction
The Boger fluid (BF) is classified as a viscoelastic
liquids with constant viscosity, having special
characteristics of rheology [1, 2]. Compared to other
viscoelastic fluids, they sustain a consistent viscosity
evenwhen squeezed because of their extremely diluted
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composition, which inhibits shear-thinning behavior.
These fluids are made by mixing a small quantity
of polymer with a high-viscosity non-Newtonian
fluid, like corn syrup and polyacrylamide. The
shear-thinning effects and elastic character can be
easily distinguished in experiments because to its
composition. Through the comparison of Newtonian
liquids with the same viscosity and BF, the researchers
can determine elasticity effects, flow rates, which
offers important information about non-Newtonian
behavior. The unique rheological characteristics of
BF make it valuable in a wide range of industries
[3, 4]. The BF is used to understand the dynamics
of complex fluids. The BF is utilized in biomedical
research to simulate biological fluid viscosity, which
aids in the development of medical equipment and
drug delivery systems. They are also utilized in
the manufacturing of consumer items, including as
food and beauty products, where precise control
over viscosity is crucial. The BF are used to improve
the efficiency of the drilling process in the oil and
gas industry. Additionally, they are used in the
development of damping systems that ensure stability
and security in engineering structures. In recent
study, James et al. [5], examined the pressure
droplet in a converging conduit. They found that the
non-Newtonian pressure dips were up to multiple
times greater, despite the apparent lack of elasticity. A
computational and experimental study was conducted
by López-Aguilar [6] to examined the pressure drop
of BF in a sharp contraction. They utilized finite
element method to solve the governing equations.
The Taylor vortex flows of BF between an oscillating
cylinder was investigated by Choujaa et al. [7]. They
arrived at the conclusion that the essential vortex
flow conditions at the commencement of instability
are clarified by the influence of both the polymer
elasticity and the polymer-solvent viscosity ratio. The
finite element investigation of monolayer thermal
conductivity in Boger nanofluid (BNF) flow with
motile microorganisms under variable conditions
was scrutinized by Raza et al. [8]. They concluded
that the velocity of NF improve with solvent fraction,
but reduces as the relaxation time ratio. Few recent
theoretic and experimental studies on BNF and BF are
captured in the studies [9–11].

Fluid flow over a stretching disk refers to a revolving
or radially stretching surface that induces fluid motion,
commonly used for the analysis of boundary layer
flows (BLF), energy transfer, and mass transport [12].
This type of flow is particularly significant in industrial

applications such as polymer processing, rotating
machinery, and aerodynamic systems, where the
stretching motion effects fluid dynamics by modifying
velocity and heat profiles. The problem is commonly
modeled using the von Kármán similarity approach
[13], which simplifies the Navier-Stokes equations
into ordinary differential equations, permitting
investigation of flowbehavior under varying stretching
rates, rotation speeds, and heat conditions. Research
on stretching disks helps to optimize processes
including coating, crystal formation, and centrifugal
transporting by understanding how surface motion
influences the surface drag, heat transfer, and fluid
stability [14]. The study of NF over a stretching
disks in incidence of gyrotactic microorganisms was
examined by Chu et al. [15]. They found that
velocity is higher against stretching parameter. The
convective flow of Casson NF through a stretching
rotating disk in the incidence of magnetic force and
nonlinear thermal radiation was elaborated by [16].
Their findings demonstrate that an increasing in the
nanoparticle volume fraction triggers the velocity to
decrease in the radial direction while increasing the
temperature and velocity in the azimuthal direction.
The computational analysis of mass and heat transfer
in MHD NF flow over a revolving disk with fluid
variable features was investigated by Sharma et al.
[17]. It was concluded that the radial motion is much
enhanced by disk spinning, whereas other parameters
like Reynolds number, fluctuating viscosity, and
magnetic field variable show a reduction. Rehman [18]
examined the BLF flow with heat and mass transfer
features over a permeable disk taking activation energy
and Darcy-Forchheimer model. He concluded that,
adding copper nanoparticles enhances the lubrication
effects at the boundary and raises the skin friction.
Additionally, a 3% load of copper nanomaterial results
in significant improvements in heat and mass transfer.

There are numerous heat transfer mechanisms
used in common industrial operations, such as
space-based cooling structures, heat exchangers, and
the distribution of moisture and temperature across
groove fields [19]. A significant disadvantage of the
classical Fourier heat flow rule [20] is that it does not
satisfy the well-known causality principle, despite the
fact that it is the favored model for energy transfer
in many real-world scenarios. As a modified version
of Fourier’s law, the Cattaneo-Christov heat flux
(CCHF) model accounts for a lag in heat propagation
by incorporating a finite thermal relaxation period
[21, 22]. This non-Fourier framework is especially
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pertinent in biomedical settings, where the actual
process of heat transfer in living tissues, implants,
and small-sized devices is not adequately captured
by the assumption of continuous heat conduction
[23]. Through the consideration of non-instantaneous
thermal responses, the model considerably improves
the accuracy of thermal studies in applications
like cryotherapy, laser-based therapies, and thermal
surgical ablation. The thermal flux and temperature
gradient are directly related, according to the
traditional Fourier law of heat conduction. A parabolic
heat equation can be derived mathematically from this
relation, suggesting that thermal perturbations spread
instantly across the medium [24]. In some recent
studies, Saravanan et al. [25] examined the CCHF
theory in a turbulence flow inside a heated mounted
enclosure. They came to the conclusion that even after
a slightly chaotic motion appears in tall enclosures,
temperature relaxation strengthens periodic locking.
In square enclosures, the CCHF inhibits the formation
of bifurcations and postpones the commencement
of turbulence; in tall enclosures, the reverse effect
is observed. The role of CCHF on convection
unsteadiness in a upright Brinkman permeable layer
was examined by Jia et al. [26]. They concluded
that, the vibrations induced in the neutral equilibrium
curves vibrations rises as Cattaneo number increases.
Shah et al. [27], provide non-similar solutions for
two-phase hybrid NF flow with CCHF model.

Engineers are showing interest in using NF, which
are made up of nanomaterials scattered throughout
fundamental fluids, as a solution to renewable
energy and heat administration issues. These
innovative fluids are useful in a variety of applications,
including renewable energy sources and electronics
cooling, because they have improved heat transfer
properties and enhanced thermal conductivity [28].
The effectiveness of NF is still being improved
by research in a variety of applications, including
electric vehicle batteries, industrial heat exchangers,
air conditioners, radiators, and solar energy systems.
Currently, researchers are focusing on improving
nanoparticle stability and efficiency by optimizing
their size, shape, and composition of material [29–
31]. Prospective stability, adverse environmental
impacts, and economic feasibility are among issues
being addressed by advancements in NF research. NF
are therefore poised to become a key technology in the
pursuit of improved, sustainable, and cost-effective
energy systems.

Tri-hybrid NF (THNF) are a revolutionary

development in thermal fluids engineering that
build on the accomplishments of hybrid NF. THNF
incorporate three distinct kinds of nanoparticles
into a base fluid, in contrast to hybrid NF, which
combine two different types of nanoparticles, or
standard NF, which use only one type of nanoparticle.
While reducing the drawbacks of single and binary
NF systems, this multi-component technique
provides a very efficient way to improve thermal
conductivity, heat transmission efficiency, and overall
fluid stability [32, 33]. The intrinsic drawbacks
of conventional NF provide the rationale for
creating THNF. Although mono and hybrid NF
have shown notable gains in heat transfer efficiency,
they frequently face trade-offs between increased
viscosity, improved thermal conductivity, and particle
stability. Through the integration of three comparable
nanoparticles, THNF have a synergistic effect that
maximizes thermophysical performance in a variety
of dimensions [34]. Compared to basic and hybrid
NF, THNF has better heat transmission and thermal
conduction properties. Because of this property,
THNF shows great promise for enhancing energy
efficiency and cooling in a variety of applications,
including nuclear reactors andmicrofluidic equipment
[35]. A number of variables affect THNF efficacy, such
as the kinds, sizes, and forms of the nanoparticles and
the proportions of the basic fluids and combination
[36–39]. The integration of non-Newtonian rheology,
MHD, and slip boundary conditions in THNF
systems is still lacking, despite these advancements,
particularly in the presence of stretching disk flow
circumstances. This study fills that gap by examining
the stretching disk flow of MHD Boger THNF driven
by CCHF. It offers a unique viewpoint that combines
sophisticated fluid behavior with useful heat transfer
concerns.

Neural networks (NNs) are extensively utilized in
a number of domains, such as economic research,
enterprise strategy, commerce, handling finances, and
manufacturing maintenance. Corporate applications
including assessment of risks, recognizing fraud,
marketing study, and forecasting also heavily rely
on them. Backpropagation is one of the learning
techniques most frequently utilized in multilayer NNs.
This approach has been used recently to investigate
heat transfer and fluid flow regimes. In order to
investigate the performance of NNs in modeling
a simultaneous grinding process, Mukherjee and
Routroy [40] combined the gradient descent approach
with Levenberg-Marquardt (LM)-algorithms and
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Quasi-Newton. Similar to this, Aljohani et al.
[41] used NNs to analyze intelligent computing by
numerically analyzing a model with non-Newtonian
wire covering. There are innumerable interlinked
nodes (neurons) in each of the layers that make up
this network. NNs constructed usingmachine learning
(ML) include the multilayer perceptron (MLP), which
is used in voice recognition and intelligent searching,
deep NNs (DNNs), convolutional neuronal networks
(CNNs), and the backpropagation algorithm, which is
used in financial forecasting. The activation function
of these networks is logistic functions. To deal with
nonlinearity in fluid flow issues, the LM algorithm can
quickly resolve. This model rheological characteristics
are highly effective for industrial processes such
as material design, procedure optimization, quality
control, and predictive modeling [42].

Figure 1 illustrates the expanding applications of
artificial neural networks (ANNs) from 2019 to
2024. The 3D bar chart shows a marked increase
in adoption levels (on a scale of 0–10) across
diverse sectors, including healthcare, finance, and
autonomous vehicles. This trend underscores the
versatility of ANNs in predictivemodeling for complex
real-world challenges, such as fluid dynamics and heat
transfer. The uniqueness of this study is demonstrated
by the way it presents a number of cutting-edge ideas
that were not previously integrated into a single model.
A Boger tri-HNF MHD flow over a porous disk has
never been modeled before, despite the fact that Boger
fluids and NF have been studied independently in the
literature, as well as the Cattaneo-Christov heat flux
and AI approaches. In a porous, MHD environment,
the main research gap addressed is the absence of
a thorough framework that concurrently takes into
account the complicated rheology of Boger fluids,
the improved thermal characteristics of a suspension
of tri-nanoparticles, and non-Fourier heat and mass
transfer. In order to close this gap and justify its
innovation, the study uses a LM backpropagated
ANN to produce a reliable and effective predictive
solution. This contributes novel, credible data to the
field of thermal engineering. This work uses ANN to
investigate the heat and mass transport properties in
MHD Boger tri-HNF flow across a porous medium
in an effort to fill a gap in the existing literature. The
LM-NN, which uses advanced features for efficient
modeling and analysis, is used in this study. The study
combines the Darcy-Forchheimer and CCHF models,
using ANNs to model hybrid NF. As evidenced by
the low mean square error (MSE) and absolute error

Figure 1. Application of ANN to real world problem.

(AE) values, the ANN makes predictions that are
extremely accurate. The growing need for efficient
heat transfer systems in sophisticated engineering
applications subsequently spurred this investigation.
The primary objectives include improving heat transfer
efficiency, solving fluid dynamics computational
challenges, and streamlining complex engineering
systems. Applications requiring quick and efficient
heat dissipation, such as cooling systems in the
technological, transportation, and renewable energy
sectors, are best suited for tri-HNF. By providing
insights into the behavior of tri-HNF under complex
boundary and magnetic settings, the research also
aims to improve thermal systems and materials.

2 Constitutive equations
The constitutive law for stress and equations for mass
balance, energy, mass concentration, and momentum
transit control the flow of an incompressible
viscoelastic fluid. Analysis of mass and heat transfer
is carried out using relaxation of mass fluxes and
heat fluxes, respectively, in the presence of viscous
dissipation and mass diffusions. In non-dimensional
form the constitutive equations are represented by
[43, 44]:

∇ · ~V = 0, (1)
ρ
(
~V · ∇~V

)
= ∇ · σ + Fext, (2)

(ρcp)
(
~V · ∇T

)
= −∇ · qh + σ · ∇~V , (3)(

~V · ∇C
)

= −∇ · qm. (4)
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Figure 2. Problem illustration and coordinates system.

The BF model, a prominent constitutive model in
rheology, is used to study the flow characteristics of
viscoelastic materials including polymers and some
complex fluids. The BF is widely used to describe
materials that exhibit both viscous and elastic behavior
for the study of features such as shear-thinning and
viscoelasticity. The BF model demonstrated here obey
the following constitutive equation [45, 46]:

σ = −pI + 2µsD + σp. (5)

where

σp = 2µ0D, and µ0 = µs + µp. (6)

here, D = 1
2

(
∇V +∇V T

) is the deformation rate, µs
is solvent viscosity, µp is the polymeric viscosity, and
p is the pressure term. In energy and concentration
equations qh and qm are double diffusion heat and
mass fluxes. The generalized Fourier’s and Fick’s law
assuming incompressible flow ∇ · ~V = 0, and steady
flow conditions takes the following form [47, 48]:

qh + λ1

(
~V · ∇qh − qh · ∇~V

)
= −kf∇T, (7)

qm + λ2

(
~V · ∇qm − qm · ∇~V

)
= −Dm∇C. (8)

Equation (7) and (8) restore to classical Fourier’s
and Fick’s law taking λ1 = λ2 = 0. Furthermore,

Fext is the external force in momentum conservation
which is the sum of Lorentz force and Darcy law [49].
Mathematically,

Fext = FL + Fp. (9)

where

FL = ~J × ~B, and Fp = ∇p = −µ
~V

K
. (10)

where ~J is the current density, ~B is the magnetic field
strength, andK is the medium permeability.

3 Governing problem
Consider the MHD Boger tri-HNF across a stretching
disk dipped in a porous material. The cylindrical
coordinate system (r, θ, z) is adopted for problem
formulation as depicted in Figure 2. It is assumed
that the flow of mixture fluid take place along circular
disk located at z = 0. The circular disk stretches with
stretching rate of br. The fluid is made up of three
different kinds of nanoparticles: silver (Ag), Copper
(Cu) and magnesium oxide (MgO). The derivatives
along the tangential coordinate θ may be disregarded
because of the axial symmetry. Let T = T (r, z) and
C = C(r, z) are the temperature and concentration
distribution and ~V = (u(r, z), 0, w(r, z)) be the velocity
vector. The generalized Fick’s law, and Fourier’s
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law are deployed in energy and mass concentration
equations. The well-known Brinkman-Hamilton and
Crosser models are considered for effective viscosity
and thermal conductivity.
The flow is laminar, incompressible, steady, and
two-dimensional flow equations takes the following
form [18, 50]:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (11)

(
u
∂u

∂r
+ w

∂w

∂z

)
=
µthnf
ρthnf

((
1 + α1

1 + α2

)
∂2u

∂z2

)
−
σthnfB

2
0u

ρthnf
−
µthnf
ρthnf

u

K
,

(12)

(
u
∂T

∂r
+ w

∂T

∂z

)
=

knf
(ρcp)thnf

∂2T

∂z2
+

µnf
(ρcp)thnf

((
1 + α1

1 + α2

)(
∂u

∂z

)2
)

− λ1
(
u2
∂2T

∂r2
+ w2∂

2T

∂z2
+ 2ww

∂2T

∂r∂z

+

(
u
∂u

∂r
+ w

∂u

∂z

)
∂T

∂r
+

(
u
∂w

∂r
+ w

∂w

∂z

)
∂T

∂z

)
,

(13)

(
u
∂C

∂r
+ w

∂C

∂z

)
= DM

(
∂2C

∂z2

)
− λ2

(
u2
∂2C

∂r2
+ w2∂

2C

∂z2
+ 2uw

∂2C

∂r∂z

+

(
u
∂u

∂r
+ w

∂u

∂z

)
∂C

∂r
+

(
u
∂w

∂r
+ w

∂w

∂z

)
∂C

∂z

)
.

(14)
The boundary conditions for the problem are [51, 52]:

u→ uw(r) = br + νthnfS1

(
1 + α1

1 + α2

)(
∂u

∂z

)
,

w = 0, T = Tw, C = Cw, as z = 0, (15)
u→ cr, T → T∞, C → C∞, as z →∞. (16)

where α1 and α2 are the BF parameters, the symbol
K refer to the porosity of the medium, S1 is the slip
parameter, λ1 and λ2 are the thermal and solutal
relaxation parameters, respectively.

In order to transform the governing PDE into a system
of ODEs, the following similarity transformation are
deployed [18, 53]:

u = brf ′(η), w = −2
√
bνff(η), Θ(η) =

T − T∞
Tm − T0

,

χ(η) =
C − C∞
Cm − C0

, η = z

(
a

νf

) 1
2

.

(17)

The transport equations are reduced into a system of
ODEs:

A1

(
1 + α1

1 + α2

)
f

′′′
−A2

(
f

′2 − 2f
′′
f
)
−A2

(
Pof

′)−A3Maf
′

= 0,

(18)

A5Θ′′ −A4 Pr
(
fΘ′ − 2f ′Θ

)
+A1A4 PrEc

(
1 + α1

1 + α2

)
f ′′2

− Pr εT
(
f2Θ′ − ff ′Θ′ − ff ′′Θ + f ′2Θ′′

)
= 0,

(19)

Ψ
′′

+ Sc
(
fΨ′ − 2f ′Ψ

)
− Scεc

(
f2Ψ′ − ff ′Ψ′ − ff ′′

Ψ + f
′2

Ψ
′′
)

= 0,
(20)

with

f ′(0) + L1
νthnf
νf

((
1 + α1

1 + α2

)
f ′2(0)

)
f(0) = 0, Θ(0) = 0, Ψ(0) = 0.

(21)

f ′(∞) = B, Θ(∞) = 0, Ψ(∞) = 0. (22)

The physical quantities such as skin frictionCf , Nusselt
Nu and Sherwood number Sh are modeled using
following equations:

Cfr =
τwr

ρthnfu2
w

, where τwr = 2 µthnf

((
1 + α1

1 + α2

)
∂u

∂z

)∣∣∣∣
z=0

,

(23)

Nur =
xqw

kthnf (Tw − T∞)
, where qw = − kthnf

(
∂T

∂z

)∣∣∣∣
z=0

,

(24)
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Shr =
xqm

DM (Cw − C∞)
, where qm = − DM

(
∂C

∂z

)∣∣∣∣
z=0

.

(25)

In dimensionless form

1

2

√
RerCfr = A2

((
1 + α1

1 + α2

)
f

′2(0)

)
, (26)

Nur = −
√
RerA5

(
Θ′(0)

)
, (27)

Shr = −
√
Rerχ

′(0). (28)

where

L1 = S1

√
b

νf
, Po =

νf
Kb

, Ma =

√
σfB

2
0

bρf
, B =

c

b
,

Pr =
µf (cp)f
kf

, Ec =
u2w

(cp)f (Tw − T∞)
, Sc =

νf
DM

,

εT = bλ1, εc = bλ2, Rer =
ruw
νf

. (29)

and

A1 =
ρthnf
ρf

, A2 =
µthnf
µf

, A3 =
σthnf
σf

,

A4 =
(ρcp)thnf

(ρcp)f
, A5 =

kthnf
kf

.
(30)

The dynamics of NF expression are taken as
suggested by [54, 55]. As shown in Table 1, the
thermo-chem-physical features of water and the
three nanomaterials are used to compute parameters
such as effective density ρthnf and effective thermal
conductivity kthnf .

4 Methodology
4.1 Numerical scheme
The shooting technique is employed for computing
the nonlinear coupled ordinary differential equations
(18) and (19) with boundary conditions (21) using
the Bvp4c solver, a built-in function computing tool in
MATLAB. This is the point at which the higher-order
system of equations becomes the first-order system.
In Bvp4c, the initial guess is necessary for further
computations. A guess is made at an initial mesh point,
and the results are produced by increasing the step

size until the desired level of precision is achieved.
It is necessary to select the proper initial guess and
boundary layer thickness based on the values of the
parameters that were employed. In this problem,
tolerance is taken into account 10−6. The solution is
validated with previous results in limiting scenario.
The problem validation is provided in Table 2.

4.2 Implementation of Artificial neural network
The LM backpropagated ANN is a computational
model that learns to identify tendencies and solve
challenging tasks. It is modeled after the biological
neural networks found in the human brain. Validation,
testing, and training are the three main stages of
the technique. Associated layers of artificial neurons
(input, hidden, and output layers) process input
data during training. Each layer has a weight that
iteratively adjusts via the backpropagation to reduce
the error between estimated and actual outputs using
algorithmic techniques such as gradient descent.
In order to avoid overfitting, the validation step
adjusts hyperparameters (such as learning rate and
number of layers), while the testing phase assesses
the model performance using actual data. The ANN
mimicked after the intricate network of neurons
in the human brain, which has attracted a lot of
interest lately. By mimicking evolutionary processes
found in neural networks, they show similar efficacy
to the human brain in terms of categorization,
learning, classification, optimizing, prediction, and
generalization [62, 63]. Different neural connection
training and rule arrangements result in a wide range
of network configurations. Dense connections between
neurons usually give rise to layers. The data input,
hidden, and output phases are typically included in an
ANN design. After receiving external data, these tiers
process it before sending it via theANN.Data first goes
through hidden layer neurons without going through
the input layer. Weights, connecting lines, and neuron
interconnections can all be changed tomake translation
easier. The system keeps track of input values and the
weights assigned to them in an ANN training database.
The best number of layered and hidden neurons is a
crucial consideration in the construction of ANN. The
frequency and quality of interneuron interconnections
are represented by weights, where the ANN stores the
information it acquired. Theway these connections are
structured allows for the classification of many types
of neural network designs, including feed-forward
neural networks (FFNN) and feed-backward neural
networks (FBNN). The LM-BNN is used to assess the
performance of the suggested Boger tri-HNF model.
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Table 1. The thermo-chem-physical features of Water, and three nanomaterials [56–58].
Thermo-chem-physical features ρ :

[kg.m−3] σ
[
Ω.m−1] k

[
(W.m−1.K−1)] cp

[
(J.kg−1.K−1)]

Water (H2O) 997.01 5.5× 10−6 0.636 2415
Silver Ag 10,500 8.1× 106 429 235
Copper Cu 8933 59.6× 106 400 385

Magnesium oxide (MgO) 3560 1× 10−8 45 700

Table 2. Validation of the problem for skin friction 1
2

√
RerCfx taking different values ofMa.

Ma B Khashi’ie et al. [59] Rafique et al. [60] Azhar et al. [61] Present results
1.0 0.0 1.64532 1.64532 1.64532 1.64534
- 0.2 1.38320 1.38320 1.38320 1.38322
- 0.5 0.92353 0.92353 0.92353 0.92356
0.0 - 0.78032 0.78032 0.78032 0.78035
5.0 - 1.35766 1.35766 1.35766 1.35769
10.0 - 1.75767 1.75767 1.75767 1.75769

The most common type of ANN are feed-forward
neural networks, which are usually trained using
the backpropagation controlled learning algorithm.
Backpropagation is used for updating the network’s
weights by comparing them to the gradient of a
loss function. For a given input dataset, this loss
function calculates the difference between the actual
and expected outputs. A neural network with two
outputs and ten hidden layers is created for the
suggested BF model. Regression estimation purposes,
error histogram analysis, and mean squared error
value analysis using the tool command are used to
validate the performance of its LM-ANN. The velocity,
temperature, concentration, skin friction, Nusselt and
Sherwood number results for input values ranging
from 0 to h = 1.6, show substantial dispersion for
planned LM-ANN execution. The numerical data set
is divided into three parts: 15% for training, 70% for
validation, and 15% for testing [64]. Figure 3, provide
multilayer ANN model detail. In this model, there
is one input, 10 hidden, and 7 output hidden neuron
layers.

Figure 3. Neuron structure of ANN.

The most popular and well-respected training
technique among researchers is frequently the LM
algorithm. The resulting layer of ANN model uses
the purelin function as its activation function, and the
Tan-Sigmoid function [63] for the transfer function in

the hidden layer.

f (x) =
1

1 + e−(x)
, purelin (x) = x. (31)

The forecasting accuracy and operational efficiency
of the ANN model must be evaluated after it has
been designed. The R−squared error and MSE are
calculated to assess the model efficacy. Here is the
detail of MSE and R:

MSE =
1

n

 n∑
j=1

(
Xactual(j) − Xpredicted(j)

)2 , (32)

R =

√√√√1−
∑n

j=1

(
Xactual(j) − Xpredicted(j)

)2∑n
j=1Xactual(j)

.

(33)

The relative error of ANN is further estimated by %
error,

%Error =
(Xactual(j) − Xpredicted(j))

Xactual(j)
× 100. (34)

where Xactual(j) and Xpredicted(j) are the actual and
predicted values of ANN.

5 Results and discussion
The aim of this section is to elaborate the performance
of flow, heat and mas transfer rate performance
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(a)C3S1 (b)C3S2

(c)C3S3 (d)C3S4

(e)C3S5 (f)C3S6
Figure 4. Performance of all scenario.

of Boger tri-HNF. The application and evaluation
of LM back-propagating ANN for case 3 of the

experiment (scenarios 1 through 6) are covered in
depth. ANN has a hidden pattern with modules
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(a)C3S1 (b)C3S2

(c)C3S3 (d)C3S4

(e)C3S5 (f)C3S6
Figure 5. Transition State plots for all scenario.

that convert input to output in along with restricting
the input layer and output layers. The Tri-HNF

concentration, temperature, velocity, wall stresses,
Nusselt, and Sherwood are examined. To illustrate
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(a)C3S1 (b)C3S2

(c)C3S3 (d)C3S4

(e)C3S5 (f)C3S6
Figure 6. Error histograms for all scenario.

these charts, the ranges for those profiles between the
highest and lowest points have been generated, and

all of the values have been fixed. We have collected
100 metrics for these profiles. The effectiveness
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(a)C3S1 (b)C3S2

(c)C3S3 (d)C3S4

(e)C3S5 (f)C3S6
Figure 7. Regression plots for all scenario.
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(a)C3S1 (b)C3S2

(c)C3S3 (d)C3S4

(e)C3S5 (f)C3S6
Figure 8. Fit plots for all scenrio.

of the ANN model is assessed using a variety of
metrics, including the effectiveness curves for velocity
profiles, phase changes, regression estimation, and
error histograms. The estimated solution on the MSE

source is constructed using the training data, the LM
is constructed using the verification data, and the real
input performance is verified using the test data. All of
the parameters and cases for each scenario are shown
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in Table 3. The MSE, time, number of epochs, and
other convergence conditions are all listed in Table 4.
The border stresses, Nusselt and Sherwood number
details, and their inaccuracy are detailed in Tables 5, 6,
and 7.

Table 3. Detail of governing parameters, scenario and cases.

Profiles Cases Parameters
α1 α2 εT εc Ma P0

Flow
profile (S1)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

Thermal
profile (S2)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

Concentration
profile (S3)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

Skin
friction
(S4)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

Nusselt
number
(S5)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

Sherwood
number
(S6)

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 0.5 0.5 0.5 0.5
3 1.0 1.0 1.0 1.0 1.0 1.0

The impact of layer size and epoch count on model
efficiency is the main focus of this in-depth sensitivity
investigation of the ANN configuration. Essential
metrics like the correlation coefficient R, training
time, number of epochs, and MSE are considered
in the analysis. According to Figure 4(a-f), the
results highlight the best ANN structure for striking
a balance between accuracy and computing efficiency.
The analysis highlights the model enhanced learning
capability by showing that adding more layers
dramatically lowers the MSE. A near-perfect match
between the anticipated and actual values is indicated
by the R−value, which is initially low for 2-layer
networks but rapidly approaches 1.0 as the number
of layers increases. The MSE epochs scores, which
display the network performance at different intervals,
are significant. The recorded MSE for all scenario S1,
S2, S3, S4, S5 and S6 are 5.82 × 10−10 at 648 epochs,
2.51× 10−10 at 587 epochs, 1.05× 10−9 at 705 epochs,
1.30× 10−10 at 577 epochs, 7.03× 10−10 at 781 epochs
and 1.47× 10−10 at 941 epochs. Better performance is
indicated by lower MSE. The learning accuracy of the
network is indicated by these plots. The complexity
and non-linearity of the simulated situations are

highlighted by the range in epochs required to achieve
these MSE, showing how different situations require
different levels of training for optimal outcomes.
Figure 5(a–f) shows the convergence performance,
coherence, and predictability of case 3 simulation
maintenance inside the architecture. The parameter
Mu, which represents the gradients and step size, is
an important consideration in this case. For all S1,
S2, S3, S4, S5 and S6, the Mu value is set to 1 × 10−9,
1 × 10−8, 1 × 10−9, 1 × 10−8, 1 × 10−8 and 1 × 10−8,
respectively. The equivalent gradient values for each
scenario are 9.95 × 10−8, 9.99 × 10−8, 9.96 × 10−8,
9.99×10−8, 9.95×10−8 and 9.97×10−8. These figures
show how the gradient responds to the Mu parameter,
highlighting the network adaptive learning process.
A notable pattern of decreasing Mu and gradient
values over time is depicted in the graph, suggesting
stability and convergence as well as the necessity for
less network reconfiguration as it develops. This
decrease demonstrates that the changes become less
frequent and smaller as the network approaches
peak performance. Additionally, it is associated with
increased testing and training efficiency. Figure 6(a-f),
which incorporates error histograms andfitness curves,
provides a comprehensive behavioral assessment of
errors. The error bar is a very helpful tool that
illustrates the distribution of errors throughout the
training process. As can be seen from the case
3 histogram, most errors are positive throughout
scenarios (a-f), with the erroneous box of references
mainly located above the zero axes. The network
training methods can be improved and adjusted
further in light of this tendency toward positive
mistakes. In addition to the histogram, the fitness
curves show how the network fitness has evolved over
time. These results demonstrate the network capacity
for error minimization and adaptation over training
periods. These graphs indicate a tendency toward
reducing errors, indicating the network’s learning
precision and effectiveness. In Figure 7(a-f), the
linear regression investigation for case 3 scenarios
(a-f) is reviewed. Understanding the relationship
between input factors and the network’s output
forecasts is done using regression analysis. A greater
correlation degree indicates better performance. The
study demonstrates the degree of agreement between
the expected and actual outcomes. The scatter
plot in this image most likely has all of the points
perfectly arranged along a line that signifies complete
forecasting accuracy. The model functionality and
possible areas for improvement are shown by any
divergence from this line. It has been noted that
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Table 4. The output of ANN for all scenario (S) and cases (C).

S C MSE Performance Gradient Mu Epoch TimeTraining Validation Testing

S1
1 3.5445E−9 4.9335E−9 3.6785E−9 3.73E−9 7.34E−9 1.0E−9 456 1s
2 2.8899E−9 3.8901E−9 4.7890E−9 3.89E−9 8.45E−9 1.0E−9 589 2s
3 3.5323E−9 2.8932E−9 3.5674E−9 2.09E−9 9.55E−9 1.0E−9 648 2s

S2
1 3.9078E−9 4.8790E−9 3.0982E−9 3.92E−9 7.56E−9 1.0E−9 505 1s
2 3.7867E−9 5.7889E−9 2.8990E−9 4.05E−9 8.89E−9 1.0E−9 563 1s
3 4.1235E−9 5.9093E−9 5.3454E−9 4.23E−9 9.99E−9 1.0E−9 587 2s

S3
1 3.2267E−9 4.4455E−9 3.5673E−9 3.50E−9 7.98E−9 1.0E−9 305 1s
2 3.6789E−9 4.5590E−9 4.6787E−9 3.45E−9 8.09E−9 1.0E−9 412 1s
3 4.8978E−9 5.0233E−9 4.8776E−9 4.45E−9 9.96E−9 1.0E−9 705 2s

S4
1 4.1234E−9 4.4839E−9 3.7334E−9 3.78E−9 8.12E−9 1.0E−9 422 1s
2 4.3421E−9 5.1234E−9 4.7879E−9 4.40E−9 8.01E−9 1.0E−9 508 2s
3 5.0191E−9 5.9233E−9 5.0916E−9 5.10E−9 9.99E−9 1.0E−9 577 2s

S5
1 4.1234E−9 4.4839E−9 3.7334E−9 3.78E−9 8.34E−9 1.0E−9 487 2s
2 3.3421E−9 4.1234E−9 4.7879E−9 3.34E−9 9.02E−9 1.0E−9 534 2s
3 5.0191E−9 5.9233E−9 5.0916E−9 5.10E−9 9.99E−9 1.0E−9 781 2s

S6
1 3.3457E−9 3.8399E−9 3.3394E−9 4.90E−9 8.46E−9 1.0E−9 560 2s
2 3.4021E−9 4.1349E−9 4.8709E−9 2.56E−9 9.01E−9 1.0E−9 712 2s
3 5.4536E−9 5.2303E−9 5.1687E−9 4.59E−9 9.99E−9 1.0E−9 941 2s

Table 5. Numerical, ANN outcomes and error analysis of 1
2

√
RerCfx taking ϕAg = 3%, ϕCu = 4%, ϕMgO = 5%.

α1 α2 εT εc Ma P0 Bvp4c approach 1
2

√
RerCfx ANN 1

2

√
RerCfx Absolute error

0.2 0.2 0.5 0.5 0.2 0.5 2.45352 2.45350 0.00002
0.4 - - - - - 2.31045 2.31041 0.00004
0.6 - - - - - 2.32978 2.32969 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 2.32967 2.32966 0.00001
- 0.4 - - - - 2.40034 2.40030 0.00004
- 0.6 - - - - 2.44356 2.44353 0.00003
0.2 0.2 0.5 0.5 0.2 0.5 2.45116 2.45114 0.00002
- - 0.6 - - - 1.51767 1.51766 0.00001
- - 0.7 - - - 1.66785 1.66785 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 2.16890 2.16888 0.00002
- - - 0.6 - - 1.47651 1.47650 0.00001
- - - 0.7 - - 1.46589 1.46587 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 2.44564 2.44563 0.00001
- - - - 0.4 - 2.65895 2.65892 0.00002
- - - - 0.6 - 2.69586 2.69583 0.00003
0.2 0.2 0.5 0.5 0.2 0.5 2.45604 2.45602 0.00002
- - - - - 0.6 2.25789 2.25786 0.00003
- - - - - 0.7 2.02342 2.02340 0.00002

every piece of data from the testing, validation, and
training stages precisely matches the equality line.
There is perfect correlation between the anticipated
and actual values, as shown by the training, validation,
and testing coefficients of determination values all
being exactly 1. The gathered data (R) unequivocally

demonstrates that the systems were built to produce
precise forecasts. The fitness assessment plots of every
scenario in a networkmodel are shown in Figure 8(a–f),
together with the errors brought on by variations
between the goal and benchmark solutions. The close
agreement between target outcomes and reference
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Table 6. Numerical, ANN outcomes and error analysis of Nur
taking ϕAg = 3%, ϕCu = 4%, ϕMgO = 5%.

α1 α2 εT εc Ma P0 Ec Bvp4c approach Nur ANN Nur Absolute error
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.35245 0.35242 0.00003
0.4 - - - - - - 0.37436 0.37434 0.00002
0.6 - - - - - - 0.39416 0.39415 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.37565 0.37564 0.00001
- 0.4 - - - - - 0.34359 0.34354 0.00005
- 0.6 - - - - - 0.43056 0.43055 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.45216 0.45214 0.00002
- - 0.6 - - - - 0.42679 0.47676 0.00003
- - 0.7 - - - - 0.38055 0. 38053 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.38907 0. 38905 0.00002
- - - 0.6 - - - 0.40689 0.40688 0.00001
- - - 0.7 - - - 0.46879 0.46877 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.48987 0.48985 0.00002
- - - - 0.4 - - 0.49950 0. 49949 0.00001
- - - - 0.6 - - 0.51586 0.51582 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.45989 0.45987 0.00002
- - - - - 0.6 - 0.47897 0.47894 0.00003
- - - - - 0.7 - 0.50234 0.50232 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.46744 0.46742 0.00002
- - - - - - 0.3 0.47446 0.47445 0.00001
- - - - - - 0.4 0.48086 0.48085 0.00001

Table 7. Numerical, ANN outcomes and error analysis of Shr
taking ϕAg = 3%, ϕCu = 4%, ϕMgO = 5%.

α1 α2 εT εc Ma P0 Ec Bvp4c approach Shr ANN Shr Absolute error
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.12453 0.12452 0.00001
0.4 - - - - - - 0.13743 0.13741 0.00002
0.6 - - - - - - 0.14165 0.14164 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.13567 0.13566 0.00001
- 0.4 - - - - - 0.14350 0.14348 0.00002
- 0.6 - - - - - 0.13962 0.13961 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.14212 0.14210 0.00002
- - 0.6 - - - - 0.16794 0.16793 0.00001
- - 0.7 - - - - 0.18059 0.18058 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.13890 0.13889 0.00001
- - - 0.6 - - - 0.14680 0.14678 0.00002
- - - 0.7 - - - 0.15687 0.15685 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.13898 0.13897 0.00001
- - - - 0.4 - - 0.12950 0.12949 0.00001
- - - - 0.6 - - 0.11580 0.11578 0.00002
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.14920 0.14919 0.00001
- - - - - 0.6 - 0.15782 0.15781 0.00001
- - - - - 0.7 - 0.16230 0.16229 0.00001
0.2 0.2 0.5 0.5 0.2 0.5 0.2 0.14674 0.14673 0.00001
- - - - - - 0.3 0.17786 0.17784 0.00001
- - - - - - 0.4 0.20845 0.20844 0.00001

profiles across all models validates the precision of the neural network framework.
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Figure 9. Flow performance of various fluid by uplifting
Ma.

Figure 10. Flow performance of various fluid by uplifting
P0.

Figure 9, shows the impact of the magnetic parameter
Ma on the velocity profile f ′(η). Each plot includes
comparison of Boger tri-HNF, HNF, and mono-NF.
The BLF is restricted by higher estimation of Ma.
Physically, the Lorentz force, which is generated by the
magnetic range opposes the fluidmovement. Figure 10,
illustrates the impact of the porosity parameter P0

on f ′(η). Momentum decreases when the porosity
parameter increases because increased permeability
promotes fluid flow in porous medium faster by
lowering impedance. The Darcy’s law, which governs

Figure 11. Flow performance of various fluid by uplifting
α1.

Figure 12. Flow performance of various fluid by uplifting
α2.

fluid flow in permeable media, states that these
two-layered variations for HNF, NF, and tri-HNF
result in lesser momentum transfer as the fluid
encounters less obstruction. The velocity performance
for an increase in solvent parameter α1 is displayed
in Figure 11. It is demonstrated that the velocity
distribution is enhanced by raising the solvent fraction
parameter α1. Phyiscally, the Boger tri-HNF is
extremely elastic due to its greater flow rate at low
Reynolds number Rer < 100 and constant viscosity.
High α2 increases viscosity within the boundaries,
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Figure 13. Thermal performance of various fluid by
upliftingMa.

Figure 14. Thermal performance of various fluid by
uplifting α1.

which lowers velocity, as shown in Figure 12. In all
three types of fluids, it is found that the fluid flow
behaviors decline gradually as the relaxation time ratio
α2 values rise. But for both momentum BL thicknesses,
the boost is much more noticeable in tri-HNF, which
is explained by the Boger tri-HNF intrinsically high
elasticity. The balance between viscosity and elasticity
in a non-Newtonian fluid is characterized physically
by α2.
The effect ofMa on the temperature distribution Θ(η)
is examined in Figure 13. Phyiscally, when a magnetic

Figure 15. Thermal performance of various fluid by
uplifting α2.

Figure 16. Thermal performance of various fluid by
uplifting εT .

field is applied, a Lorentz force is created. This resistive
force works against fluid motion. This resistance raises
the temperature distribution by converting kinetic
energy into heat energy. Collectively, these findings
highlight how this parameters interact to regulate
temperature behaviour and heat transport in the fluid
system. The rise in temperature is significant in
tri-HNF ϕAg = 3%, ϕCu = 4%, ϕMgO = 5%, because
of increase thermal conductivity of nanomaterial of
base fluid. The response of solvent fraction factor α1

on temperature profile Θ(η) is shown in Figure 14.
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Figure 17. Concentration performance of various fluid by
uplifting εT .

Figure 18. Concentration performance of various fluid by
uplifting εc.

It demonstrates how the temperature rises with an
increase in α1 input. Physically, the Boger fluid strong
elasticity at constant viscosity and small Reynolds
number increase the velocity rate. Consequently, as
the solvent fraction strength increases, the thermal
boundary rises, raising the electrically charged
particles. As seen in Figure 15, the temperature drops,
when α2 is increased. The dispersion of heat decreases
at the disk surface. The Cattaneo-Christov heat
flux model thermal relaxation parameter εT accounts
for finite thermal diffusion speed by introducing a

temporal delay among the temperature difference and
heat flux. Improvements in this parameter εT slow
down heat transfer, which reduces thermal diffusion
and temperature buildup close to the stretched disk as
shown in Figure 16. The physical manifestation of this
is a change from immediate Fourier-type conduction to
non-equilibrium heat transfer, in which the fluid holds
onto thermal energy for a longer period of time, raising
local temperature profiles and postponing thermal
equilibrium in the BL.
The influece of thermal and soluatal relaxation
parameter on concetration is depicted in Figure 17
and Figure 18. In lag time among a concentration
gradient and the subsequent mass diffusion is taken
into account by the solutal relaxation parameter.
The slower mass transit caused by a rise in this
parameter modifies the concentration BL and
indirectly influences temperature through coupled
thermo-solutal interactions. Localized accumulation
of heat may result from a greater solutal relaxation
value because species diffusion affects thermal
transport. The Boger tri-HNF and other viscoelastic
fluids exhibit non-Fickian mass transfer and thermal
coupling. These variables work together to produce
a more robust and constrained solute boundary
layer, where thermally induced species transfer and
slower mass diffusion raise local concentrations while
postponing equilibrium.

6 Conclusion
The present study investigates the impact of the
Cattaneo-Christov heat and mass fluxes model on
the Boger tri-HNF under magnetic field conditions.
The fluid flow across a stretching disk follows the
Oberbeck-Boussinesq approximation. The dynamics
of the flow are influenced by Lorentz forces, disk
porosity, slip effects, and viscous dissipation. The
Bvp4c method was used to solve the nonlinear PDE
that described the governing flow. The accuracy of
the numerical solutions was predicted and confirmed
using the LM-ANN model. The model integrates
novel machine learning mechanism for Boger tri-HNF
under the impact of Cattaneo-Christov heat and mass
fluxes model. With an average error of 10−9, the
ANN model performs exceptionally well in training,
testing, and validation for the current project. The
accuracy and consistency of the LM-ANN prediction
outputs and numerical solutions are demonstrated by
achieving a degree of perfection between 10−10 and
10−4. Results are validated using information gleaned
from numerical tables, efficiency, regression, velocity,
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temperature, concentration, and error histogram
graphical representations. The following summarizes
the key conclusions of the study:
• Velocity and temperature of tri-HNF uplift with

solvent parameter α1, while an opposite trend
was seen against magnetic parameterMa. Similar
trend for flow and temperature was achieved for
the relaxation time ratio α2.

• Impact of Ma on velocity and temperature was
contradictory.

• The thermal and solutal relaxation parameter
depict similar trend on temperature and
concentration, respectively.

• The ratio parameter, thermal relaxation parameter,
and solutal relaxation parameter show a declining
trend, whereas the rate of heat and mass transfer
increases with increasing values of the magnetic,
solvent viscosity, and slip parameters.

• Augmentations in solvent viscosity and slip
decline the wall stresses.

• Measurements indicate that the absolute error for
skin friction, Nusselt, and Sherwood numbers
compared to the actual values and the ANN
predicted values falls between 10−4 to 10−5.

• The study central hypothesis is directly validated
by the effective use and validation of the ANN
framework, as shown by the low MSE and strong
correlation index. The results demonstrate that
the AI framework is a reliable and accurate
method for examining the intricate relationships
among three distinct nanoparticles, the Boger
fluid, MHD effects, and the CCHF over a porous
disk.

Limitation of this research: The ANN and a
numerical framework was trained on a produced
dataset, rather than experimental data, serve as the
study main limitations. Although the model was
verified against earlier research in a restricted setting,
it ignores the intricacies and possible variations that
would be present in an actual physical experiment.
Therefore, the study result is very dependent on how
accurately it uses computing and might not fully
account for all the complexities of the physical system.
Future studies: The present study can be extended
in the future by using experimental data to validate
its theoretical model and AI framework. Complex
physical phenomena such as Hall currents, Joule

heating, or various features of porous media can
also be included in future studies. The practical
utility of the current framework would also be
expanded by applying it to different geometries,
like pipelines or channels, and by utilizing more
sophisticated AI algorithms. A thorough examination
of entropy creation may also shed light on the system’s
thermodynamic efficiency.
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