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Abstract
This work investigates the formation and dynamics
of electrostatic freak waves in pair-ion (PI) and
pair-ion–electron (PIE) plasmas. The analysis
beginswith the derivation of theKorteweg–deVries
(KdV) equations for both plasma configurations,
from which the corresponding nonlinear and
dispersive coefficients are obtained. By employing
the wave superposition principle, the KdV
equations are systematically reduced to the
nonlinear Schrödinger equation (NLSE), enabling
the exploration of modulation instability and
rogue wave generation. Analytical solutions of the
NLSE are utilized to construct parametric plots that
elucidate the evolution of freak waves in PI and PIE
plasmas. Comparative analysis reveals pronounced
differences in the amplitude, localization, and
structural properties of the freak waves in the two
plasma environments, highlighting the critical role
of electron contributions in shaping nonlinear wave
phenomena.
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reductive perturbation method.

Symbol Abbreviations
PI Pair Ion
EPI Electron Pair Ion
Kdv Korteweg-de Vries
NLSE Non linear schoridenger wave equations

1 Introduction
Freak waves, also referred to as rogue waves, are
extreme wave events characterized by amplitudes
significantly exceeding those of the surrounding
waves. Although rare, their occurrence can be highly
destructive, posing severe risks to ships, offshore
structures, and other installations. Such waves have
been observed in diverse physical environments,
including oceans, lakes, and even in plasma systems
[1]. In plasma systems, freak waves are generally
attributed to the combined influence of nonlinear
and dispersive effects [2]. Nonlinear effects refer to
phenomena in which the wave amplitude influences
its propagation characteristics, whereas dispersive
effects arise when different frequency components
of the wave travel at different velocities. Pair-ion
(PI) and pair-ion–electron (PIE) plasmas represent
two classes of plasma systems that are of particular
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interest in the study of freak wave dynamics [3].
Pair-ion (PI) plasmas consist solely of positive and
negative ion species, whereas pair-ion–electron (PIE)
plasmas contain an additional electron population.
Freak waves in PI and PIE plasmas were first identified
through numerical simulations in the early 2000s.
Since then, numerous investigations have explored
their occurrence in these systems. These studies have
demonstrated that freak waves can arise under a
wide range of conditions, encompassing variations
in plasma parameters as well as different forms of
external perturbations [4, 5]. The characteristics of
freak waves in PI and PIE plasmas depend on many
factors, including the plasma parameters and the type
of external perturbation. However, some general
trends have been observed [6]. Freak waves in PI
and PIE plasmas are typically highly localized in both
space and time, and they can possess considerable
energy, with amplitudes several times greater than
those of the surrounding wave field. Although
the study of freak waves in these plasma systems
remains in its early stages, ongoing research holds
significant potential for advancing our understanding
of their underlying mechanisms and for developing
strategies to mitigate the risks associated with their
occurrence [7]. This research may contribute to
the development of advanced early warning systems
for detecting freak waves in plasmas. As noted
earlier, the precise mechanisms responsible for the
generation of freakwaves in PI and PIE plasmas are not
yet fully understood. Nevertheless, several possible
mechanisms have been proposed, among which
nonlinear wave focusing is a prominent candidate [8].
Wave focusing leads to an increase in amplitude, and
when the focusing is sufficiently strong, it can result
in the formation of a freak wave. Another plausible
mechanism for their generation is the modulation
instability of waves [9]. Modulational instability is
a process in which a wave can break up into a series of
smaller waves. These smaller waves can then interact
with each other to form a freak wave. In addition to
these nonlinear mechanisms, it is also thought that
dispersive effects can play a role in the generation of
freak waves [10]. If a plasma wave packet undergoes
sufficient dispersion, it may evolve into a freak wave.
Although freak waves in PI and PIE plasmas have
been extensively reported in numerical simulations,
experimental observations remain comparatively
scarce. This scarcity is largely due to the challenges
associated with reproducing the requisite plasma
conditions in laboratory environments. Nonetheless, a
limited number of successful experiments have been

conducted. In one such study, a PI plasma was
generated using a laser, and the subsequent formation
of freak waves within the plasma was observed
[11]. In a separate experiment, PIE plasma was
produced using a microwave discharge, after which
the emergence of freak waves within the plasma was
recorded [12]. These experimental findings further
substantiate the occurrence of freak waves in both
PI and PIE plasmas. Investigations in this area hold
considerable promise for practical applications. For
instance, such studies could facilitate the development
of advanced early warning systems for detecting freak
waves in plasmas, thereby enhancing the protection of
spacecraft and other critical structures from potential
damage. Moreover, this line of research may enable
the creation of novel techniques for controlling freak
waves in plasma environments, which could prove
valuable in various fields, including plasma fusion and
plasma-based material processing [13–15].
In this study, the ion-to-electron density ratio was
chosen to capture both laboratory-accessible and
astrophysical plasma regimes. Higher electron
concentrations highlight dispersive effects, while lower
fractions emphasize nonlinear ion dynamics. The
selected parameters which strongly influence freak
wave formation. Cooler ions enhance localization
and amplitude growth, whereas warmer ions broaden
velocity distributions and reduce extreme wave events.
These choices ensure that our parameter space remains
both physically relevant and broadly applicable.
Our work is positioned within the broader context
of plasma freak wave research, which has drawn
increasing attention in connection with turbulence,
nonlinear instabilities, and energy localization. Recent
studies in space and astrophysical plasmas further
highlight the relevance of extreme wave events
to naturally occurring environments. By linking
our findings to these developments, we extend
the understanding of freak wave dynamics in both
laboratory and astrophysical plasma systems.

2 Freak waves by conversion of KDV to NLS
Equation

The soliton solutions for PI and PIE plasmas are
reported in [16]. In the present work, the analysis
is extended to freak waves by transforming the KdV
equation into the NLSE. The general form of the KdV
equation, alongwith its associated coefficients, is taken
from [17, 18]. An infinite series expansion, based on
the superposition principle of waves, is then employed
to generate the freak wave solutions as described
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below:
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Stretched Variables X and T are given as:

X = ε (ξ + µτ) , T = ε2τ (2)

Find the relevant derivatives by Using stretched
variables form (2) we get
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Now let the infinite transformation series [15]
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Using Equation(4) into Equation(5)
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Second order derivative is given below:
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Now again derive Equation (12) and using the value
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For First Order Approximation let l = n = 1 yield:
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1
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⇒ ω = −Bk3 (17)

For First Harmonic of Second Order Approximation
let l = 1,n = 2 yields:

µ
∂φ11
∂X
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∂φ11
∂X

= 0

⇒ µ = 3Bk2 (18)

For Second Harmonic model let l = n = 2 with
coefficients ofε0:
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The zero order harmonics for l=0 is:

φ
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By solving the 1st harmonic equations (l= 1) in the
3rd-order approximation (n = 3), we get an explicit
compatibility condition, and thus the NLS equation,
with little effort:

i
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For simplify we let φ11 = Ψ
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1
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+Q|Ψ|2Ψ = 0 (21)

The Equation (21) called the Nonlinear Schrodinger
Equation and describe the nonlinear evolution of an
amplitude modulated IA wave carrier. The nonlinear

coefficient Q and the dispersion coefficient P are
provided by:

⇒ P = 6Bk and Q =
A2

6Bk
(22)

By extending as described in Taniuti andYajima (1969),
Asano et al. (1969), Shimizu and Ichikawa (1972),
and El-Labany et al. (2007), we view the solution of
Equation (21) as a weakly modulated sinusoidal wave.

Ψ =
1

Q

[
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1 + 4T 2 + 4
PX

2
− 1

]
eiT (23)

Putting values of Equation(22) into Equation(23) we
get

Ψ =
1
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At end we get the calculation

Ψ =
6Bk
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(
3 + 8iT − 4T 2

)
− 4X2

6Bk (1 + 4T 2) + 4X2

]
eiT (24)

Solution of Equation (23) specifically demonstrates
that the DIAW energy is focused in a tiny amount
of space. This aspect of the nonlinear solution may
characterize the DIA rogue wave in plasmas. The
wavelength of most rogue waves is shorter than the
wavelength of the center portion of the envelope
generated around a carrier wave.

2.1 CASE-1. Pair Ion (PI) Plasma
A set of nonlinear equations for pure PI plasma When
we consider a pure PI plasma, we do not consider
magnetization. The electrostatic waves of equally
massed positively and negatively charged ions heated
to the same temperature have been examined using the
two-fluid theory. where A and B specify the nonlinear
and dispersive coefficients, respectively (Phys. Scr. 80
(2009) 035502):

A =


[(

3λ2 − 1
) (
λ2 − µ

)3 − (3λ2 − µ) (λ2 − 1
)3]

2λ (λ2 − 1) (λ2 − µ)
[
(λ2 − µ)3 + (λ2 − 1)

2
]


(25)
and
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B =

(
λ2 − 1

)2 (
λ2 − µ

)2
2λ
[
(λ2 − µ)2 + (λ2 − 1)

2
] (26)

The parameter λ in term of µ is defined here:

λ =

√
1 + µ

2
(27)

All these parameters of PI plasma are defined as:
• P,Q&A,B = The Dispersion Coefficients

• µ = Temperature Ratio = T−
T+

• λ = Linear Dispersion Relation
= Linear Phase V elocity

Thermal V elocity Of Positive Ion

• k = Carrier Wavenumber
Note:

The Pure PI depends of µ, λ & K values

2.1.1 Calculation of solution for pure PI plasma
Putting values of Equations (25-26) into Equation (24)
we get

2.1.2 Graphical Analysis of PI Plasma
parameters values for plot:

• The solution is not valid for K = 0&λ = µ = 1

• Solution will hold for µ > 0&K < 0 andK > 0

2.2 CASE-2. Pair Ion-Electron (PIE) Plasma
In unmagnetized plasmas of pure PI, electrons are
now thought of as an impurity. For PIE plasmas with
electrostatic waves perpendicular to the magnetic field,
we give a description of the corresponding nonlinear
set of equations. When electrons are introduced to
pure PI plasmas, the dynamics shift from slow to
fast. Ions are considered to be heated adiabatically,
but electrons are supposed to be isothermal, because
ions have greater inertia than electrons. Electrons are
expected to be Boltzmann distributed and to have
no inertia or temperature dependence, but ions of
the same mass and temperature are thought to be
dynamic. Landau damping effects are disregarded
in the model, which has been developed using a multi
fluid technique (Phys. Scr. 80 (2009) 035502):

A =

[
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The parameter λ in term of µ is defined here:
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√
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(31)

All these parameters of PIE plasma are defined as:
• P,Q&A,B = The Dispersion Coefficients
• β = T

Tc
= Totaltemperature

temperatureofelectron

• p = Linear Dispersion Relation = n0+

n0e
=

perturbdensity
equilibriumdensity

• λ = Linear Dispersion Relation
• k = Carrier Wavenumber

The PIE depends of β, λ, p&K values

2.2.1 Calculation of solution for PIE plasma
Putting values of Equations (29) and (30) into
Equation (24), we get
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The final PI solution including with the dispersion coefficients A & B are here below:
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(28)

Figure 1. Oscillations with downward sharp freakwave
generated with negative wavenumberK < 0 and

temperature ratio µ = 0.5.

Final result alongwith coefficients are given here below

Ψ =
3k[2pλ(2p− 1)(λ2p− 3β)]2(λ2p− 3β)2

pλ(2p− 1)[3pλ2 + 3β − (λ2p− 3β)3]2

×
[

3k(λ2p− 3β)2(3 + 8iT − 4T 2) − 4X2pλ(2p− 1)

3k(λ2p− 3β)2(1 + 4T 2) + 4X2pλ(2p− 1)

]
eiT

(35)

Figure 2. Oscillations with upward sharp freakwave
generated with positive wavenumberK > 0 and

temperature ratio µ = 0.5.

2.2.2 Graphical Analysis of PIE Plasma
For parameters values for plot:

• The solution is not valid for k=0&p = 0

• Solution will hold for p > 0, k > 0&β > 0

Figures 1 and 2 illustrate the freak wave structures
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Figure 3. PIE for k < 0 , β = 0.5 and p > 0 here for the
negative value of wavenumberK and interval values of
β&p, provide multiple Sharpe downward breather freak

waves are generated.

Figure 4. PIE for k > 0 , β = 0.5 and p > 0 here for the
negative value of wavenumberK and interval values of
β&p, provide multiple Sharpe downward breather freak

waves are generated.

in PI plasma for negative and positive wavenumbers,
respectively. For comparison, Figures 3 and 4 show the
corresponding results in PIE plasma. The inclusion
of electrons in PIE plasmas leads to sharper and
more elongatedwaveformswith enhanced amplitudes,
primarily due to modified nonlinear coupling and
dispersion relations.

3 Conclusion
This work presents a novel approach to the
investigation of electrostatic freak waves by
transforming the Korteweg–de Vries (KdV) equation
into the nonlinear Schrödinger equation (NLSE)
through the application of the wave superposition
principle. The exact analytical solution of the
NLSE is discussed, and the calculations for pair-ion
(PI) and pair-ion–electron (PIE) plasmas are
performed using the parameter and coefficient
values reported in [17, 18]. The structure of PI
plasma depends on µ & K, while PIE with free
electrons depends on β, p & K under defined domain
(µ > 0,K 6= 0, p 6= 0 & β ∈ [0,∞)). The Plot of PI
& PIE plasmas for k < 0; provide freak waves with
a downward direction as by Figure 1, similarly for
k > 0; provide freak waves with an upward direction
as Figure 2. The Temperature ratio for PI is µ and for
PIE is β, take the value of µ = β = 0.5 & p > 0 at these
value of coefficients PI has a freak wave structure
with oscillation while PIE has a freak wave structure
with sharp breathers. The amplitude of freak waves
in PIE plasmas is found to be greater than that in PI
plasmas for the same range of parameters. The results
and analysis indicate that the variations in structure,
amplitude, and behavior of freak waves in PI and
PIE plasmas arise from the presence or absence of
electrons. In PI plasmas, which contain only ions,
the freak waves exhibit a relatively regular structure,
whereas in PIE plasmas, the inclusion of electrons
leads to sharper and more elongated waveforms. The
combined influence of all relevant coefficients, namely
dispersion, phase velocity, temperature, and density,
significantly governs the characteristics of freak waves
in both plasma systems. While the KdV equation
describes only solitary wave solutions, the NLSE
provides a more powerful framework for analyzing
freak waves, making it highly suitable for plasma
wave investigations.
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